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Relativistic, 3-Dimensional, 2-Body Integral Equations.
On-Shell and 08-Shell Foruialisms*
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Covariant on-shell and oB-shell formalisms are presented on the basis of the Bethe-Salpeter equation
and the 2-particle unitarity condition. The 2-body theory is formulated in terms of the relativistic 3-di-
mensional integral equations of the Low type. T'hree approaches are presented which take into account differ-
ently the left-hand cuts, besides including the 2-particle right-hand cut. The partial-wave expansion and
some methods of solving the reduced equations are pointed out. A covariant formulation and a generaliza-
tion for arbitrary masses are included in full detail.

1. INTRODUCTION

A MANAGEABLE scheme of relativistic, unitary
on-shell and oR-shell 2-body theory is highly de-

sired for several purposes, such as providing a covariant
and unitary input to a 3-particle theory and perhaps
later providing such an input to a many-particle theory.
The necessity of having a covariant oR-shell 2-particle
theory as a starting point for building up a 3-particle or
multiparticle theory is obvious. The 2-particle sub-
system has to be tied up with the rest, which means that
some of the particles, coming out from a 2-particle blob,
become virtual, and consequently we will have to deal
with an off-shell 2-particle theory.

The relativistic, covariant formulation of the 2-
particle theory also plays an important role if we want
to use such a theory in solving 3-particle problem, for
the reason that when we deal with a 3-particle system we
have to make several Lorentz transformations between,
for example, the 2-particle rest frame and the total 3-
particle center-of-mass system. In addition the Lorentz
transformations between three diRerent 2-particle rest
frames turn out to be very important in several practical
problems of the 3-body system, the ~mS system being
an example.

Besides the necessity of having a 2-body oR-shell
theory as an input for a 3-particle system, one may think
of applications of a 2-body oR-shell scheme itself in
checking several dynamical assumptions about 2-body
interactions. The present investigation is then moti-
vated by these two purposes: to provide a practical
input to the 3-body theory and to formulate an oR-shell
2-body theory. To get the 2-body theory in a simple
form we have approximated the full unitarity condition
with the 2-particle unitarity. This is a reasonable ap-
proximation from the point of view of building up a 3-
particle and multiparticle theories, where the higher-
unitarity cuts will be preserved. Based on this assump-
tion, we have reduced the Bethe-Salpeter equation from
the 4-dimensional to a 3-dimensional integral equation,
which can be decomposed into a 1-dimensional integral
equation for the partial-wave amplitudes. The same

*Supported in part through AFSOR Contract No. AF 49(638)-
1389.

f'On leave from Jagellonian University, Cracow, Poland.

160

problem has been discussed previously, from a different
point of view, by several authors. ' In spite of having
3-dimensional integrals, we have formulated the 2-body
theory in a manifestly covariant way, having all rela-
tivistic kinematical factors built in and using invariant
variables.

We consider three slightly different approaches of
formulating the 2-body theory in an approximate 2-
particle unitary form. In one of the approaches only the
right-hand cut is included, while in the other two both
left- and right-hand cuts are taken into account. Several
of our results have already been established, ' ' or are
a straightforward generalizations of known equations.
The structure of our equations is that of a Low-type
equation.

The ladder approximation is used to show explicitly
the difference between the three approaches and to ex-
plain several details. The box graph is an especially
good example for comparing our approximate schemes,
based on 2-particle unitarity, because in the appropriate
variables the whole analytic structure of the box graph
is given solely by the 2-particle unitarity cut.

From our discussion of the different approaches it will
be seen that one should include both left- and right-hand
cuts. The importance of the left-hand structure of the
2-body T matrix has also been shown by the arguments
of Basdevant and Omnes. ' They pointed out that in the
Faddeev equations one needs the 2-body T matrix in the
range of energy squared from a positive value to minus
infinity. Of course, none of our three approaches includes
all left-hand cuts, but there is shown how to incorporate
some of them without making additional singularities
for negative energies squared.

In Sec. 2 we start from the full Bethe-Salpeter equa-
tion and, with the help of the 2-particle unitarity condi-

i A. A. Lagunov and A. N. Tavkhelidze, Nuovo Cimento 29, 380
(1963); G. Tiktopoulos (unpublished); B. Lee and R. Sawyer
(unpublished); M. K. Polivanov and S. S. Khoruzhi, Zh. Eks-
perim. i Teor. Fiz. 46 339 (1963) LEnglish transl. : Soviet Phys. —
JETP 19, 232 (1964)j; R. Blankenbecler and R. Sugar, Phys.
Rev. 142, 1051 (1966).' H. P. Noyes and D. Y. Wong, Phys. Rev. Letters 3, 191 (1959);
G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); G.
Marchesini and D. Y. Wong, University of California, San Diego,
Report No. UCSD-10P10-9, 1966 (unpublished).' J. L. Basdevant and R. L. Omnes, Phys. Rev. Letters 17, 775
(&966).
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tion, derive a formula for the discontinuity of the whole
homogeneous term of the Bethe-Salpeter equation. That
formula is used in building up a reconstructed, reduced
Bethe-Salpeter equation in the 3-dimensional space.
This equation is discussed in Sec. 3, where we present
the three di6erent approaches. The differences among
these approaches lie in the particular arrangement of
variables and amount to different incorporations of the
left-hand cuts. In Sec. 3 we point out several good and
bad properties of each approach.

Section 4 provides an example of the ladder graphs
which serve as a tool for explaining some details and for
sharpening the differences among the three approaches.

In Sec. 5 and in the Appendix we present a covariant
formulation and deal with arbitrary masses. It turns out
that for handling such a problem it is best to use the
Wightman-GA. rding relative momentum. One of its
advantages is that the time-reversal invariance is auto-
matically maintained after reduction.

Section 6 is concerned with the partial-wave expan-
sion, and each approach is discussed separately. These
considerations are extended in Sec. 7, where a few
methods of solving the reduced equations are sketched.

The last section contains a brief summary and several
proposals for further investigations.

2. BETHE-SALPETER EQUATION AND THE
2-PARTICLE UNITAMTY

We start from the full Bethe-Salpeter equation
written in the following forms:

z

T(Kkf ') = I(K,P,P') d'P"—
(2s)4

XI(Kjj, ")G'(Kj")T(Kj,"j '), (»)
z

T(K,p,j')=I(E,p,p') d'j"—
(2rr)'

XT(E,P,P")G'(K,P")I(KP',j '), (1b)

where K is the total 4-momentum; p, p', p" are the usual

Ass

(0)

(b)

FIG. 1. Diagrams representing the Bethe-Salpeter equation (1).

relative 4-momenta in the initial, final, and intermediate
states respectively; I(E,p,p') is the in'teraction: a simple
example of it, for the ladder graph, is

g2

where g is the coupling constant and p the mass of the
exchanged particle; G'(K,p") is the 2-particle free
Green's function, given by

G'(K P")=C(sK+P")'—1?'t:(sK—P")'—1] '

where, for simplicity, we have assumed that the masses
of the initial, final, and propagating particles are set
equal to unity (the general mass case is presented in
Sec. 5); The signature is + ———.The above equa-
tions (1a) and (1b) are represented by graphs in Fig. 1.

We shall now use the 2-particle unitarity condition to
calculate the right-hand discontinuity of the +bott,'
homogeneous term in the total energy squared s=E2.
First we write a trivial relation obtained from (1):

Disc, t T(K,P,P') —I(K,p,p')] = Disc,
(2s)'

(2)

Then we make an assumption that I(K,P,P') does not have any right-hand singularity in s, so that the left-
hand side of (2) is simply Disc,LT(K,p,P )]. If I(K,p,p ) had a right-hand cut in s, then we could include it
explicitly.

Next, we write the usual 2-particle unitarity condition for T in the form

Disc.LT(X,j,j')]=
(2s)'

where B~ means that only the contributions of the "proper" roots of (rsK~p")'= 1 are to be taken.
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From (2) and (3) we obtain the following relation, keeping in mind the assumption about I(E',p,p ):

Dlscg
(2s.)'

(2s.)s
~'P TA,P,P")~.n:~+p-) »~-.~(:~ -P-)-»T-@,P-P) (4)

The relation (4) is an exact statement about the homo-
geneous term on the right-hand cut, if one assumes only
2-particle unitarity. Another way of obtaining (4) is by
applying Cutkosky's4 rules to the graphs representing
the homogeneous term. The result is exactly the same as
before, if one cuts in all possible ways only two inter-
mediate lines which correspond to the 2-particle cut in
s. We can simply illustrate this result in the example of
ladder graphs, as shown in Fig. 2. This figure is only an
illustration, and the derivation of (4) is not based on a
perturbation theory. However, Fig. 2 explains why we
have T in the two places on the right-hand side of the
relation (4). In Fig. 3 we show that the higher-unitarity
cuts, which correspond to cutting more than two-
particle intermediate lines (for example, in the 6th-
order graph), are ignored by (4).

3. REDUCED EQUATIONS

A. Reconstruction Rule

(5)(IG'T),=
27ri s —slI

where r stands for "reconstructed. "The s" dependence

The purpose of reconstructing the Bethe-Salpeter
equation is to obtain an equation in a smaller number of
variables. This means that we have to redefine the homo-
geneous term of the integral equation (1).We shall use
the 2-particle unitarity condition (4) for obtaining a new
homogeneous term. Schematically, we write our recon-
struction rule in the following way:

1 " Disc.-(IG'T)
ds

T=I+ (IG'T), . (6)

The variables in (6) will be specified explicitly later, at
which time we will see that the relation (6) will be either
an equation for the half-on-shell or completely on-shell
amplitude, or the right-hand side of (6) will give the fully
off-shell continuation of the amplitude in terms of the
half-on-shell amplitudes.

in the right-hand side of (5) plays an essential role and
it will be discussed in detail.

From (4) and (5) we see that the reconstructed homo-
geneous term will be given by a 3-dimensional integral,
because of the two 5 functions in (4). The three integrals
will be in one radial and two angular variables. Com-
paring these integrals with the original ones in the
Bethe-Salpeter equation (1), we see that we have re-
duced the relative energy to only one value, p"'= 0, and
that the magnitude of the relative momentum is related
to the energy s" by p'"=4 (s"—4). Clarifying equation
(7)

Considering the inhomogeneous term and the left-
hand side of the Bethe-Salpeter equation (1), we see
that they are functions of the initial and final variables,
and that, u priori, these variables can take any values,
obeying only the constraint of total —4-momentum
conservation.

Leaving the left-hand side of (1) and the inhomogene-
ous term unchanged, except for setting some variables
to zero, we use (5) to define the approximate homogene-
ous term. ' Schematically, we write the reconstructed
Bethe-Salpeter equation in the form

~I
A

DISCI

+ ~ ~ ~

B. Expressions for Disc," (IG'T)

There are several ways of writing an expression for
Disc, . (IG T), depending on the choice of variables in
the right-hand side of (4); the problem lies in identifying
the s" dependence and distinguishing it from the s de-
pendence. This question is essential in Eq. (5) and will
lead to different relations of the form (6).

Let us first consider the external variables, i.e., initial
and/or final mornenta. Having satisfied total-momen-
tum conservation, we are left with three 4-vectors X, p,
and p . Considering the s dependence, we distinguish the
following four cases:

(a) Completely og shell:-
E, p, p' are independe'nt.

FIG 2. Diagrams representing the unitarity condition (4),
in the ladder approximation.

' P,.E, Cutirosiry, J. Math. Phys. 1, 429 (1960).

~ If there are any bound states, then we add the appropriate
poles to (5). These will take care of the point spectrum which is
not included iu (5),
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(b) Half on-sh-ell. Initial particles on sh-ell:

Ps=0, lyl'=xtss —1,
where s=Z'. We shall denote such p as p(s); L and p'
are independent.

(c) Half on -shell. Final particles on-shell:
p'= p'(s);

X and p are independent.
(d) FNily on shell-:

p= p(s), p'= p'(s).

This list of (a), (b), (c), and (d) indicates the different
s dependences, but does not yet answer our question,
because we have yet to distinguish between s and s"
dependences, keeping in mind Eq. (5). Our problem is
an off-energy-shell continuation, and three different
continuations can be proposed. In one of them, the s
dependence in formula (5) will be given only through the
denominator (s"—s). This implies that the recon-
structed. homogeneous term (IG'T)„will have only a
right-hand cut in s. The other two approaches will allow
a left-hand cut in s by preserving some s dependence in
the expression for Disc, (IGoT). In these cases it is
essential to distinguish between s" and s dependences.

The three different off-energy-shell continuations
will be defined by specifying the external variables in
the Eq. (4). Let us denote the whole right-hand side of
(4) by F; then we can indicate the three continuations
in the following way:

Continuation (n): Disc,"(IG'T) =F,(s",
I y I

',
I
y'

I
',

cos(y, y'), p', p"), where Iyl' and/or Iy'I' are equal to
(s"—4)/4, depending on the case, (a), (b), (c), or (d).
In this method we are working with fixed cos(y, y').

Continuation (P): Disc,"(IG'T)=Fs(s",f;„t,s), where
f'.= (P-P")', f' = (P'-P")'.

Continuation (y): Disc,"(IG'T)=Fs(s",t), where
~=(p p)'. —

By writing F&, F&, F3, we have pointed out different ex-
pressions for F, considered as a function of s". Each of
these approaches has some advantages and disadvan-
tages. These will be presented in the next section, where
w'e shall also describe results of adopting either con-
tinuation (n), or (p), or (p), together with Eqs. (5)
and (6).

C. Reduced Relations

where dots ".. ."in fmark the place for other variables.
All relations will have the following form:

T=I+
(2w)'

d3yII (8)
(ly" I

s+1)"sl 4(ly"
I
s+1)-s3

T=I+Z' 'Tt,

T I+TT
T'= I'+T' Tt,

T=I+T Tt.

(9a)

(9b)

(9c)

(9d)

The nice properties of relations (9a), (9b), (9c), and
(9d) are:

(i) Only one equation (9d) is quadratic and it de-
scribes the completely on-shell amplitude. Two equa-
tions (9b) and (9c) are linear integral equations for
'7 and T', correspondingly, with the kernel gives by the
completely on-shell amplitude. The relation (9a) is a
formula for finding the fully o6-shell amplitude in
terms of the solutions of (9b) and (9c).

The variables of T and I will be speci6ed later in full
detail. Relation (8) is of the form of the Low equation
and it will be either a Low-type equation for the half-
on-shell or the fully on-shell amplitude, or it will be an
expression for the completely off-shell amplitude in
terms of the half-on-shell amplitudes.

Now, we discuss the variables of T and I, according
to the continuations (u), (P), or (y) and show the differ-
ent aspects of each of them separately.

(tr) To present clearly the result of applying the ftrst
method, we use the following notation:

T= T(s,p,p—') —completely off-shell;

'T=T(s,p(s)—,p ) —half-on-shell, initial on-shell;

T'= T(s,p,p'(s)) —half-on-shell, ftnal on-shell;

I' = T(s,p(s); p'—(s))—completely on-shell,

where we have used the center-of-mass (c.m.) system,
i.e., K=O, and p(s) means p =0,

I yl '=4ts —1. In that
notation we get the following relations of the form (8)
)We shall write them only schematically because all
kinematical factors are the same as in (8).j:

Let us start by showing the corrunon features of all
relations which will be derived from continuation (a),
or (p), or (p), by using Eqs. (5) and (6). Each of them
will contain a 3-dimensional integral with the same
kinematical factor as a weighting factor. That factor
can be found from the following relation:

FIG. 3. The 6th-order graph in
the ladder approximation and the
3-particle cut.

d "dp"'V(" p"' ")&.r('&+p")' —1&

x~,L(-;~—p") -1j=(ly"
I
+1)-'

xA"'=«ly" I'+1), p"'=0, " ),

' We use the expressions: "of the form of the Low equation",
or "Low-type equation" to distinguish from the original Low
equation (F. E. Low, Phys. Rev. 97, 1392 (1953)g. It should be
noticed that the quantity (p', q, j~0;(x) ~p), for which Low has
written an integral .equation, is not the conventional T matrix
(clarifying Low's remark on p. 1395).The amplitude T which we
are dealing with originates from the conventional T matrix which

(7) satisfies Eq. (1}.
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(ii) In the case of the ladder approximation the corn-
pletely on-shell amplitude, corresponding to the box
graph, is given exactly in the forward direction for all
energies.

(iii) The partial-wave projection can be made in a
standard way.

The bad properties of (9a), (9b), (9c), and (9d)
are:

Relation (11) describes all four cases (a), (b), (c),
and (d), which can be obtained by a different on-shell
limits taken in (11). The reason for getting only one
relation is that in the second approach we have hidden
some s dependence in the variables t;„ t;0, and we have
used exactly that place for making the off-energy-shell
continuation.

The nice properties of (11) are:

(i) There is only one relation which describes all
cases corresponding to the different on-shell, off-shell
limits.

(ii) There are included some left-hand cuts through
the t variables.

(iii) The partial-wave projection can be made in a
standard way.

(i) The appropriate on-shell limits, taken in the
homogeneous terms, do not give the homogeneous terms
of the lower equations. This is due to the fact that only
the expression for Disc, (IG'T) is a continuous function
of s, for different on-shell cases. However, (IG'T)„does
not have this property, because by taking the on-shell
limits we get some left-hand cuts which are completely
ignored in the erst approach.

(ii) The box graph is given incorrectly for directions
other than the forward one.

The bad properties of (11) are:

(i) Beside the correct left-hand cuts, there are gen-
erated some additional left-hand cuts due to the pinch-
ing singularities. See Sec. 4.

(ii) The expression for the box graph, even at the
forward direction, at threshold Li.e., for cos(p, p')=1
and (s=4)7 differs from the exact answer by about 10%%uo.

Both of these difficulties are caused by some additional
left-hand cuts due to the pinch between the singularities
introduced by t;, or t;o and the fixed singularity coming
from the weighting factor (Ip" I'+1) ' '. For more
details see Sec. 4.

Both of these bad properties are caused by the lack of
the left-hand cut, and they indicate that it is not a good
enough approximation to take only the 2-particle right-
hand cut plus the inhomogeneous term. In some particu-
lar cases one could correct the inhomogeneous term by
adding an appropriate function with the left-hand cut,
but this has to be done by hand and it will vary from
case to case.

(8) In the second method we can remove the first
bad property by restricting the class of o6-shell ampli-
tudes to such, that the dependence on lyl and ly'I will

be only through t variables, which for p'= p"=p"'=0
are given by

(y) In the third approach we try to avoid both diK-
culties of the second method. Thus, we have to remove
the above-mentioned pinch of singularities. This can be
done by making the off-energy-shell continuation only
through the t variable, and not separately through t;,
and k;o. We have no problem in the left-hand side of (8)
or in the inhomogeneous term. The problem arises in the
homogeneous term. According to the third approach, we
have to write Disc, . (IG'T) as a function of s" and t.
To do it let us start from the following expression:

~=(p—P')'= —
I
pl' —

I
p'I'+2I pl I

p'I «s(p, p'),

&'.=(p—P")'= —
I
pl' —

I
p" I'

+2
I pl I

p"
I «s(p, p"), (10)

t,o (p' —p")'= ———
I
p'I '—

I
y"

I

'

+2 I
P'I

I
P"

I
c»(P', P")

2
ff

d4p"IG'T
2(4 )' (p"'+1)'"

2

Discs I

(2n.)'We have used p =p '=pa"=0 because it simplifies

(10) and does not produce any new s, s" dependence
through the variables p', p", p'". This is the case for
equal masses and it can be generalized for arbitrary
masses by working with the Wightman-Garding relative
momentum. This is discussed in Sec. 5.

For amplitudes T which have the following depend-
ence on variables

X 8 cos8 ZIp T(s cos(p p))

&&T'(~", c»(p",p'))—=I'(~", «s(p, p')). (12)

In this expression we have to make a rearrangement of
variables to get F(s",t) from F(s", cos(p, p')), which can
be achieved by the following substitution:

we get only ore relation of the form

T(~,
I PI, IP'I, c»(P,P'),p', p"))
= (, = —lpl' —Ip'I'+ lyl Ip'I o (y p') p'p") cos(py) —+1+&/2p2(z )=1+L—lyl2 —lp I

+2IPI Iy'l«s(P P')3/2p'(~"), (13)

T=I+T"rt.
where p'(s") —= (s"—4)/4, and we have taken

(11) p'= p"=0.
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Finally, we get the relation (8) in the following form:

T(s,t= —
I y I

'—
I
y'

I
'+ 2

I p I I

y'
I cos(y, p'), p', p")=I(s,t = —

I p I

'—
I
p'

I
'+ 2

I p I I
p'

I cos(p, p'), p', p")
l l2

(2s)'
ll

(p"'+ 1)'"L4(p"'+1)—s7-
d costt"dq "T(s",t;.=q( s"—4)I cos(p, p")—17, p', p"'=0)

XT'("', t, .= l("'—4)l c»(p",p') —17, p"'=o, p")
cos(p, p') ~1+[—Ipl —!p'I +2lplfp'leos(p, p')]/2y"

(14)

The function T depends on six variables, s, I pl Ip'I
cos(p, p'), p', p", but the dependence on

I pl, I p'I, and
cos(p, y') is allowed only through the variable t. The de-
pendence on po and po' does not cause any problem in
considering the s dependence, because the on-shell limit
of po and p" is equal to zero. In the covariant de-
scri tion, the variables po, p" are replaced by j Z,

, where g, j' are the Wightman-Girding relative
momenta.

The relation (14) is an integral equation, and in Sec.
7 we shall discuss some methods of solving it. Now let us
state its properties.

The nice properties of (14) are:

(i) There is only one relation which describes all on-

shell, o6-sheB limits.
(ii) There are included only the correct left-hand

cuts through the t variable.
(iii) The box graph calculated from (14) is given

exactly in any direction and arbitrary energy.

The bad properties of (14) are:

(i) The relation (14) has a rather complicated form
before the coso", q" integration is made explicitly.

(ii) The partial-wave projection has to be considered
with special care.

The above difhculties are induced by the special
procedure of properly including the left-hand cut, to-
gether with the 2-particle right-hand cut. These diS-
culties can be lessened by presenting some methods of
solving (14), which we shall do in Sec. 7.

Comparing the three approaches, we see that the first,
which included only the right-hand cut, swered from
the most serious diseases. The second and third ap-
proaches are quite similar, and both include the left-
hand cut. The argument of simplicity is certainly in
favor of the second approach. However, in the third
approach the left-hand cuts are treated more correctly
than in the second. This is important if we are to use
the 2-pody T matrix as an input in a 3-body problem.
In the Faddeev equation we need the 2-body T matrix
in the range of energy squared from a positive value to
minus inanity. See a discussion of this point in Ref. 3.

4. LADDER GRAPHS

Ke discuss ladder graphs to show explicitly several
details of the three diGerent approaches presented in.

the previous section. For simplicity, we shall retain the
assumption of equal masses (m~= m2=1) and carry out
calculations in the c.m. system. Ke denote by p the mass
of the exchanged particle and write the Yukawa poten-
tial in the form

I(pp ) =
(p p')' t"— — (15)

It is obvious that in all three approaches the inhomo-
geneous term is the same. We can write (15) in two other
forms:

=g'E&p' p")' ly-I'- lp-'I'

+2ly I I y'lc»(y, y') —t '7 ' (16)

how do we continue it o8 the energy shellP To continue
I(s, cos(y, p')) off the energy shell, i.e., when the magni-
tudes of the relative momenta Iyl and ly'I are not
determined by s, we use the following replacement:

cos(p y') ~1+L—lyl' —ly'I'
+2I pl ly'Icos(p, p')7/2p'(s), (»)

where

Substituting (18) in (17), we get for the off-energy-shell
Yukawa potential

I(s, I p I, I
p' I, cos(y, p'))

=g'C —
I y I

'—
I
p'

I
'+2

I p I I
p'

I cos(p, p') —ti, '7 '. (19)

That result coincides with (16) or (15) if we consider
p'= p"=0. The last condition for unequal masses reads
q'=q"=0, where j is the %ightman-66, rding relative
momentum. From (19), (16), and (18) we see that the
prescription used in the third approach gives us the
correct off-shell continuation of the Yukawa potential.

The next problem to consider is the box graph. Let us
start by loo»ng at the Disc,"(Box).According to the

Let us now consider the following problem. Having
I(s, cos(y, p')), i.e., on-shell,

g2

I(s, cos(y, p')) = , (17)
-', (s—4)Leos(y, y') —17—y'
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coming through the t variable gives the correct left-hand.
cut in s of the Box, considered as a function of s andcos8'.

5. COVARIANT FORMULATION)
ARBITRARY MASSES

This section has two aims: firstly, we would like to
set up a covariant framework of invariant variables;
secondly, we would like to rederive some of the results
from the previous sections in a manifestly covariant way
and for arbitrary masses.

A. Invariants and Accessible Region

We are dealing with a relativistic problem, so it will
be appropriate to have our relations written explicitly
in a covariant form. To do this we introduce several in-
variants which we shall use as variables in our formulas.

Let us 6rst dehne several 4-momenta which we shall
need to construct invariants. We take a graph corre-
sponding to the homogeneous term in the Bethe-Sal-

/4 A

peter equation and denote in it the 4-momenta k&, ~ .k6
(see Fig. 4).

In terms of k~, , k6, there are defined the usual
total and relative momenta

X=k,+k2= ks+k4 k,+——ks,
(25)

/ 4 A

m2k1 mlk2 m2ks mlk4

mt+mstent+ mt

m,k,—mtk,
II

m1+ m2

Besides these momenta we shall also need the Wight-
man-Girding relative momentum q) defined by'

~12 22
j=-', (k1—ks)—

2E'
(26)

similarly, for j' and j".
Using these momenta, we introduce several sets of

invariants. Invariants, corresponding to the interme-
diate particles, are grouped in the following sets:

$=X )

S=X')
$=X

S5—k5 )

A

s6 ~6 )

p//2

y//2

s14——(k1—ks)',

p p/

'9')

ss, ——(k,—k,)',
p// p/

O' 'Q)

(27a)

(27b)

(27c)

where p" X, for example, denotes the scalar product of
two 4-vectors p"and X.For initial and/or ftnal particles
we can easily de6ne sets of invariants similar to those
given by (27), except for one of the last two invariants
in each set, which are connected with angles. The reason
for this is that we need an additional 4-vector which is
not the one corresponding to the intermediate particles.
The lacking 4-vector can be either one of the previously
introduced 4-vectors, (in which case we get two of the
invariants being identical, a condition that corresponds
to choosing a special axis to de6ne the angle), or, if we
use the 2-particle theory as an input in a 3-, or many-
particle system, we can introduce a completely new
4-vector, (for example, the relative momentum of 2-
particle subsystem with respect to another particle).

We have introduced three sets of invariants (27a),
(27b), and (27c), because the first two sets are commonly
used, while the third one, with the Wightman-Girding
relative momentum, turns out to be the most appro-
priate one both for making the reduction from 4- to
3-dimensional space and for performing partial-wave
decomposition in a manifestly covariant way. The ad-
vantage of using the set (27c) over the others in making

ks

ke

FIG. 4. Diagram representing the homogeneous term in
the Bethe-Salpeter equation.

the reduction will be explained in this section, while the
discussion of partial-wave decomposition will be pre-
sented in the next section.

The invariants (27a) can be expressed in terms of
(27b) or (27c) and, for further discussion, we need the
following relations:

m1 )' 2mt
ss ——

i s+ p" X+p"',
mr+ ms/ m1+ ms

t/ m1 ) ' 2ms
ss ——

/ I
s— p" X+p'",

(mt+ms/ mt+ms

s+m12 ms'—
ss=—(s+m —ms ) + g 'E+rI

4s s

s—mrs+ms'
s,=—(s—m '+m2')'— g 'E+g

4g s

(29)

Having de6ned 3 sets of invariants which will be used
as variables in our formulas, we have to Gnd out the
appropriate domain of these variables, hereafter called
the accessible region in the space of invariants. The
accessible region is the image of the 4-dimensional space
of a rea/ four-vector k5. For the 6rst set of invariants
(27a), an extensive discussion of the accessible region

A. S. Wightman, "Lectures on Invariance in Relativistic
Quantum Mechanics" (Les Houches, 1960), in the book by C.
De Witt and R. Omnes, Dispersion Relations and Elementary
Particles t',Hermann R Cie. , Paris, 1960). A reduction procedure
using Wightman-Ga, rding relative momentum was proposed in
the summer of 1965 by R. Stora (private communication).
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can be found in Taylor's' paper and we shall use several
of his results. Let us illustrate the accessible region in a
very simple case by considering two subspaces, namely,
(~ ks ~,ks ) and (ss,ss). Using the definitions of ss, ss, it is
easy to prove that the right-hand half-plane in variables

(~ks~, kss) is mapped into an accessible region in the
(ss,ss) plane, bounded by a parabola

(ss—ss)'= sf 2(ss+ss) —sj. (30a)

This is illustrated in Fig. 5. In the subspaces (1//". X,p"'),
and (j" X,j"'), corresponding to sets (27b) and (27c),
the accessible region is also bounded by parabolas, given

by equations
p//s (p// g) s (30b)

sj"'= (j" E')', (30c)

B. Mass-She11 Conditions and Reduction Hyperylane

The mass-shell conditions corresponding to sets (27a),
(27b), and (27c) have the following forms:

(31a)$$—mg p

s6= mg )

and shown in Fig. 6. Comparing Fig. 6 with Fig. 5, we
see that the sets of invariants (27b) or (27c) would be
more appropriate candidates for our variables than
(27a), because for these sets the boundary of the acces-
sible region is given by a more simple and symmetrical
expression. Two other properties of the set (27c) will be
shown which make it the most appropriate system of
invariant variables. These properties are connected with
reduction (see the Subsec. 5 3) and with partial-wave
analysis (see Sec. 6).

To complete the discussion of accessible region in the
whole 4-dimensional space of invariants we have to in-

clude the remaining two invariants which are connected
with angles. We present this problem in the Appendix.
There we repeat some of the results of Taylor' for sets
(27a) and (27c). It turns out that conditions giving the
boundary of the accessible region in the 4-dimensional

space corresponding to (27c) look much simpler than
those for the set (27a); in the Appendix compare Eq.
(A3) with (A6).

be suitable for the reduction procedure which explores
the s dependence, which is hidden in the (ss,ss) variables.
The other two sets L31b) and (31c)j give us explicit ex-
pressions in terms of s.

The reduction procedure can be looked at as an ap-
proximation of the integrals over a 4-dimensional mani-
fold by an integral over a 3-dimensional subspace. To
explain some details we shall simplify the problem of
reduction by discussing only a 2-dimensional subspace of
the whole 4-dimensional space of invariants. In that
simplified picture, the reduction procedure means an
approximation of the integrals over a 2-dimensional
manifold by an integral along a line, called hereafter the
reduction line. Generally, i.e., in the whole 4-dimen-
sional space, the "reduction line" is actually a 3-dimen-
sional manifold, which we will call the reduction
hyperplane.

In our simpli6ed picture of 2-dimensional subpsace we
get froin (31b) the following equation for the reduction
line in the subspace of (P" X,P"s) variables:

mg —m2
p//. g p//s

2mlm2
(32)

This is a straight line in these variables passing through
the origin. We show a few examples of this reduction
line in Fig. 7(a). The dashed line depicts that part of the
reduction line which passes through the forbidden
region.

The reduction line as well as the reduction hyperplane
look simplest in the variables of the set (27c). We have
a very nice and simple equation, namely,

j"X=O. (33)

In the picture of 2-dimensional subspace of (j" X,j"')
variables, the reduction line is simply the negative half
thy j"' axis" )see Fig. 7(b)] and in the whole 4-dimen-
sional space, the reduction hyperplane is a 3-dimensional
manifold, given by the intersection of the hyperplane
(33) with the accessible region defined in the Appendix.

It is worthwhile to notice that the reduction line in
th!e subspace (j"X,j"') always stays in the region
where j"'(0,while in the subspace of (p" X,p"') we get

m 2 m22
ll

S

(mt+ms)'
(31b)

mI m2p".E=
S +j"E,

(//4+///2) s

"Qn the basis of the following relation among invariants:

p =mims 1
(mt+ms)'j".A =0

mi +ms $ (ml ms )
ef/o

4 4s

(31c)

I'ormally, th'e first set (31a)looks simplest, but, it will not

9 J. G. Taylor, Nuovo Cimento, Suppl. 1, 988 (1963).

the image of the reduction line g" E'=0, in the plane (f/" IC, .
p "), is a straight line parallel to the p"' axis. This line is given by

SE1 8$2 S

p '.E=
2 (///&+///r)'

Thus, the reduction condition given by (33) diGers from that
given by (32). A comparison between these two covariant reduc-
tion conditions will be discussed separately in connection with the
Ida-Maki-Wanders representation of the Bethe-Salpeter ampli-
tudes. LSee G. Wanders, Phys. Rev. 104, 1'782 (1956); M. Ida and
K. Maki, Progr Theoret. Phys. (Kyoto) 26, 4'/0 (1961)g.
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FIG. 5. Accessible regions in the planes ( ~
k5 ~,ks') and (rs, rs).

a piece of the reduction line in the region P"2&0, except
in the case of equal masses, when the rnomenta p and j
coincide and the reduction line is the negative half of
the p"2 axis. We shall use this fact in the section dealing
with partial-wave decomposition.

Considering the initial and/or final particles, one can
also draw the boundary of the accessible region in the
(j E,P) and/or (f E,f') planes. On such figures the
reduction line corresponds to the set of physical points,
i.e., particles being put on-mass-shells. Depending on
the energy s, the physical points will be staying at dif-
ferent points, but always at the negative half of j'
and/or j"axes.

If one uses the usual relative momentum p, then, by
looking at Fig. 7(a) and at the mass-shell conditions
(31b), one sees that the physical points s& (mr+ms)'
are only on those parts of reduction lines which are in

FIG. 6, Accessible regions in the planes (p" K,P"') and (j" E,q"').

the lower half-plane, so that p' and/or p" are less than
zero.

C. Covariant Bethe-Salyeter Equation and
On-Shell Equation

In this section we shall sketch, as an example, a few
steps for obtaining a manifestly covariant formulation
of the previously derived relations (7) and (9d). Here,
we shall only emphasize those points which are new in
thee covariant formulation and make our considerations
very schematic, because the main ideas are exactly the
same as those presented in Secs. 2 and 3.

%e have to start from the full Bethe-Salpeter equa-
tion, i.e., before reduction, written in terms of the vari-
ables corresponding to the set (27c). The Bethe-Salpeter
equation takes the form

T(E2 g2 f2 g. g/ j,E tt/, E)—I(E2 I72 f2 j,f j,E I7/, E)—
/ / / / / / / / /

( )
dj" E

(v" .K)'l ~

dj'"

fp(q" K,q K,&2,K2)

dg 'g

A g Af2(e" K, V' K, tI'2, K2) g(q
//

q
//

~
// ~//II)

dg 'g
~(f' E,f"8".4f' f)

I(E',js,f",j j",j E,j"E)T(E2,j"2,j",j" f,f' E,j' E)
(34)

[ss(j" E',f")—mrs][ss(f' E,f")—m22j

Z

T(s,rI2 f'0 0'q 2 j.'E)=I(s,js f2,0,0',j X,f E)—
2(22r) 'Qs

dy// g'

where the upper limits fi(It" E,j E,p,E2) and fs(f' E,j' E',j"),as well as (f' E)2/s, take care of the accessible
region; they are explicitly defined in the Appendix. In the Appendix there is also an expression for the appropriate
Jacobian. The propagators, marked in (34) as (ss—mt2) (ss—m22), can be written explicitly in terms of the appropri-
ate variables by using the right-hand sides of formula (29). The Bethe-Salpeter equation, written in the form (34)
(with all necessary remarks being postponed to the Appendix) looks rather lengthy and it would be difficult to pre-
sent clearly the main ideas of covariant reduction while retaining all details. Therefore we shall show our scheme of
covariant reduction in a slightly simplified way, by dealing in a manifestly covariant way only with the energy
and radial variables and considering, instead of the variables j" j and j" j', the angles 8", y". As it concerns the
method of reduction, the use of angles is solely a notational simplification, while in partial-wave analysis it deserves
more attention; we shall come back to this point in the next section.

In the simplified, semicovariant variables, the full Bethe-Salpeter equation takes the form

oo (q".K)2/s

d cose"
I(s/js/j"2/0/0"/j 1,j E")T(s,f"j"0"'0' j" X j' IC)

[ss(j".k,f")—mrs][ss(f' g,j"2)—m22]

where 0, 0', 0"stand for the appropriate pairs of angles Eqs. (35) and (34) with Eq. (1),we see that the essential
8, p, 8', q', 0", y" of the vectors q, q', q". Comparing novelties of the covariant formulation, which are: The
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From Kq. (41) we can easily obtain in the c.m. system a general form of Eq. (9d) for arbitrary masses. The re-
duction condition q" 2=0 takes the form (in the c.m. system)

qs&IL( f&2+~ s)1/s+ ( f&2+AN s)1/sj 0 (42)

which is equivalent to q "=0.We can also replace the variable j'" by its value on the reduction line, which is
—

~

sl" ~s because of the condition (42). We shall denote q"'=—
~

q" ~s and write the generalization of (9d) for arbi-
trary masses in the form

T(s) q =q =q (s), 0, 0 q =q =0)=I

+ dq
2(27r)'

2m quis[(q~&2+rN s) 1/2+ (q&12+r/r 2)1/2j
d cos8 dy

0 I (q 2+//rls)(q 2+r/r22)$1/2

2'(s", q'= q"'= q'(s"), 0, 0", q'= q"' = 0)1't(s", q"'= q"= q'(s"), 0", 0', q"'= q"=0)
(43)

( [(q&12+ran/ 2)1/2+ (quis+~ 2) 1/s)2 s}

where

q'(s) = ,' (m—,—'+ms') +-',s+ (1/4s) (mr' m2—') ',
s(q2) L(q2+yg 2)1/2+(q2+~ 2)1/2)2

We have sketched only a few steps of making a co-
variant formulation of some of the relations of Sec. 3.
In a similar way one can proceed with all other relations.
The t variable should be de6ned as a square of the differ-
ence of two Wightman-Garding's relative momenta.
This will enable us to consider arbitrary masses.

6. PARTIAL-WAVE DECOMPOSITIO5'

To make the partial-wave decomposition in a rela-
tivistically correct way it is necessary to have two 4-
vectors q and q' which are spacelike, i.e., P(0 and
j"&0.Having two spacelike 4-vectors, one for incoming
and another for outgoing particles, we can define a scalar
variable which provides a relativistic generalization of
the barycentric scattering angle to a reference system
wherein

~
K~ WO. We refer here to a paper by Macfar-

lane. "The necessity of having a spacelike 4-vector in
the partial-wave analysis is rather obvious since we

would like to extract the rotatioeu/ invariance of the full
T matrix. Having a spacelike 4-vector, we can always
get to the frame of reference where its time component
is zero, thus in that frame we can build a most general
function of the three space-components by using the
eigenfunctions of the rotation group.

We have already shown several advantages of using
the Wightman-Girding relative momentum j; here we

shall use the property that on the reduction line, as well

as in the whole lower half-plane (q Z,q'), that vector is
spacelike. Our momentum q, defined by (26), differs
from that of Macfarlane"" only by a normalization
factor.
~The Macfarlane results of the relativistic partial-wave
analysis were obtained for the completely on-shell am-

plitude. We can generalize them for cases corresponding

' A. J. Macfarlane, Rev. Mod. Phys. 34, 4l (T962).
's A. J. Macfarlane, J. Math. Phys. 4, 490 11963l.

T(s,qs=q"=P(s), q q', q X=q' X=O)

= & (2t+1)~/( —
q q'/(q'q") "')q'/(s)

1=0

2I
I

' 2
p K

&THE
f.K

REDUCTION
LINE

(o) (b)

Fro. 7 (a) Reduction lines in the subspace (p" Xp,"'), (b) The
reduction line in the subspace (q" E,q"'), for arbitrary masses.
This line also represents the set of physical points, i,e., when both
particles are on their mass shells.

to points on the lower half-plane (q X,qs), but we cannot
use the same method to obtain the partial-wave decom-
position in the full Bethe-Salpeter equation before re-
duction, since the accessible region contains domains
where q" is timelike, i.e., q"') 0 (see Fig. 6). It should be
noticed that we can restrict the external momenta to
stay within the lower half-planes (q E',qs) and (q' E',q"),
but we cannot put such a restriction in the full Bethe-
Salpeter equation on the ieternat momenta which can be
anywhere in the accessible region.

If we 6rst make the reduction and thus have the in-
ternal momenta restricted to the reduction hyperplane,
then we can use Macfarlane's" method of relativistic
partial-wave expansion, allowing the external mo-
menta to be only in the lower half-planes (q X,q') and
(q' K,q"). This is why we have postponed the partial-
wave decomposition until after we had established the
reconstructed (reduced) Bethe-Salpeter equation.

We shall now consider some details of the partial-
wave expansion and present them in the three ap-
proaches separately. In the 6rst two approaches one can
make the partial-wave expansion in a standard way. To
illustrate it, let us start from the 6rst approach and
concentrate on the completely on-shell amplitude. We
de6ne the following decomposition:
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and use the same formula to define I(s) i. The argument
of the Legendre polynomials is the relativistic generali-
zation of the barycentric scattering angle, which is

"cos8"= —
g g/(g'q") "'. (45)

T/(s) =I/(s)—
2(2v.)'

It is easy to check that in the c.m. system the right-
hand side of (45) gives the cosine of the scattering angle
if we have jX=j'E=O.

The partial-wave equation for the completely on-shell
amplitude in the 6rst approach takes the following form:

for the completely off-shell case, if we imposed the con-
dition q X'=q' Z=O on the external momenta. How-
ever, the on-shell limit of (49) does not coincide with
(46). Looking at the homogeneous terms of (46) and
(49), we see that the first one does not have any left-
hand cut in s, while in the second one we can obtain such
a cut, for example, in the ladder approximation, (see
Sec. 4).

Finally, let us discuss the partial-wave expansion
within the third approach. We have to make the partial
zoave decomposition of the already continmed og shell -fmnc
tion. If we start from a given expression for an on-shtell
amplitude T(s, cos(q, q')}, we define its off-shell con-
tinuation by

where

( f / sll)i/'iT ( ll)tP t( /I)X,(46)
( q~~2+. rN 2)1/2( q~~&+m22)&/2(s~~ —s)

T(s, I ql, I q'I, cos(q, q')}—=T(s, cos(q, q') ~ I
+L—

I ql
'—

I
q'I '+2

I «I I
«'I cos(q,q')g/2q'(s)), (50)

I ( q~~2+m 2)1/2+. ( q~~2+rm 2)1/2$& assuming that

j E=j' E=O,
Four the equal-mass case (mi ——m2 ——1) we get

Ti(s) =I)(s}+ ds"
(4v-)'

(s" 4)"'T/(s—")T gi(s")
X (s")"'(s"-s)

Equation (47) is a well-known equation, ' obtained from
the 2-particle unitarity condition. In order to solve it we
can repeat the standard E/D method and obtain a
linearized integral equation. Thus, if we are concerned
with the partial-wave amplitudes, we are able to linear-
ize the only quadratic equation of the 6rst approach.

In the second approach we do the partial-wave ex-

pansion in the same way as in the 6rst one. We can han-
dle at once all on-shell, oR-shell cases because we have
only one equation, written schematically in (11).Let us
define the off-energy-sheH partial-wave amplitudes by
the following expansion:

T(s,P, q", q q', q.E=q' X=O)

= Z (2l+1)&~(—q q'/(q'q")"'}Ti(»q' q")
0

= p (2iy1)&i(cos(«, «'))Ti(s, l«l', lq'I') .-. ..
)~0

Using (4g) we get the following partial-wave equation
in the second approach:

T/(s, q' q")= Ii(s,q', q")—
2(2v)'

( /Is II))/2T ( ll *2 ll2( ll)}Tt(s ~g&&2(s ) f2)

(—q"2+mi'i) '/'( —q'"+mP) '/'(s" —s)

We would also obtain Eq. (49) from the first approach

and then make the following partial-wave decomposi-
tion:

T(s, lql Iq'I cos(q, q'))=P (2l+1)
L=O

XI'~(cos(«,«'))Ti(s, I«I, lq'I) (»)
The above procedure does not cause any trouble because
the series (51) is convergent for any values of s, I q I, and

I
q'I, since

I cos(q, q')
I
(1 is always satisfied because we

consider q E=q' E=O. We can define T~(s, I«I, Iq'I)
using (50) and (51), and write it in the form

I

T~(s, I ql, I q'I) =- d cos(«,«')&~(cos(«, «'))
2 —I

XT(s, cos(q, q') ~1+I —lql' —lq'I'

+2
I ql I

q'I c»(q q') j/2q'(s)) (52)

The substitution for cos(q, q') in (50) and (52) defines
the oG-energy-shell continuation.

Ke would get a quite different result if we had started
from the partial-wave expansion of the on-shell ampli-
tude, and in this expansion had made the substitution
for cos(q,q'). In this case we would have gotten the fol-
lowing series:

2 (2l+1)&i(I+I:—I «I '—
I
«'I '+2l ql I q'I

0

Xcos(q, q') $/2q'(s)) Ti(s) . (53)

This series (53) can diverge for such values of s, I q I, I
q' I,

and cos(q, q') for which the argument of Ipi gets out of
the Lehmann ellipse. It should be noticed, however, that
the incorrect series (53) is completely different from the
series (51). We can see immediately that in (51)we have
the radial part of the amplitude continued oQ-shell,
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while in (53) the radial part remains the same as it was
in the expansion of the on-shell amplitude.

Looking at the definition (52) of the radial part of an
oQ-shell amplitude, and having in mind an expansion of
the on-shell amplitude, we see that a given Ti(s, I q I, I

q'
I )

is obta, ined from many Ti(s) which have to be summed
before we make the ofI'-shell continuation. However, the
on-shell limit of Ti(s, I ql, lq'I) coincides with the only
0/2e T/(s). We write it

lim Ti(s, I ql, I
q'I)=T/(s g(s), q'(s)) = T&(s), (54)

lql lq'l~q(&)

and we can see that (54) is true by taking the on-shell
limits in (52) or (51).

One can look at an example of the Yukawa potential
and see explicitly that (50), (51), (52), and (54) give
familiar results, "while (53) does not.

Considering the homogeneous term of Eq. (14), let us
start from the expression, for Disc, (IGsT)—=F(s",
cos(q, q')), defined by (12). In this expression we have
to make the substitution for cos(q, q'), and then make
the partial-wave decomposition of such a continued
function. This procedure can be written as follows:

1

F,(s",
I q I, I

q'I) =- d cos(q, q')P&(cos(«, q'))
2 —1

dQ"T(s", cos(q, q"))Tt(s", cos(q",q'))
co8(q,q') ~1+[-Iql -fq'I +2lql fq'tC08(q, q')) /2q" 2(8")

~ (55)

From (55) and (14) we get the following partial-wave equation:

Ti(s, lql, lq'I) =I/(s, l«l, lq'I)—
4(22) 2

(—f"s")"'F(s",
I «I, I

«'I)

(—j"'+2m ')"'(—j"'+2/2 ') '"(S"—S)
(56)

dQ"T(s", cos(q, q"))Tt(s", cos(q",q'))

=4' P (2l'+1)P/ (cos(q.q'))
lt-0

&& Ti (s",
I
«(s") I, I

«"("')I)

X T,,'(.",
I
q"("') I, l«(s") I). (57)

Comparing (56) with its analog (49) in the second ap- over Q" in (55) and obtain
proach, we see that on the right-hand side of (56) we
have all partial-wave amplitudes, because of the de6ni-
tion (55). To calculate any Fi we have to consider the
whole T, i.e., all its partial waves. If in (55) one first
decomposes T(s", cos(q, q")) and Tt(s", cos(q",q')) into
partial waves, then one should sum the whole series be-
fore making the substitution for cos(q, q'). To show this
explicitly we write the partial-wave decomposition of
the on-shell T and Tt in the form (51).We have

T(s", cos(q, q"))=T(s"
I
q(s")

I
lq"(s")

I cos(q, q"))

= 2 (»'+1)P/ (cos(««"))Ti ("'
I
q(s")

I I
q"(s")I)

$f—0

and a similar expression for Tt(s", cos(q",q')). Using
these formulas we can easily perform the integration

Then we make the substitution for cos(q, q'), however
not in the argument of Pi (cos(q, q')), but in the expres-
sion which results after summation on the right-hand
side of (57).

Finally, after substituting for cos(q.q'), we make the
partial-wave projection as indicated in (55), and get the
following set of equations, written shortly as (56):

T,(s, lql, lq'I) =I,(s, lql, lq'I)
(42r)'

ir
/r(2

( f~2+2/2 2) i/2( gris+2/2 2)i/2

d cos(q, q')Pi(cos(q, q')) P (2l'+1)P& (cos(q, q'))Ti (s",
I
q(s") I, Iq"(s") I)

0

XT '(s",
I
q"(s") I, I

q'(s") I) . (58)
c08(q,q') ~1+[—lql —lq'I +2lqtiq'!C08(q, q')] /2q" (8")

We see that (58) represents a set of infinitely many
coupled partial-wave equations.

One of the immediate applications of Eq. (58) is that
it can be used for obtaining the o6'-energy-shell con-
tinuation of the on-shell partial-wave amplitudes, which

can be expressed in terms of the phase-shifts by

Ti ("',
I «(s"),

I
q"("')I)Ti'(s",

I
q"("')I, I

«'(s") I)
—=

I
Ti (s")

I
'=/'(s")»n'&2 (s"),

"B.W. Lee and R. Sawyer, Phys. Rev. 127, 2266 (1962).
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where
$$~~(q~~2+st 2) (q~~2+rit 2)]1

p(s") =
q "Pq"'+ '(-m '+m ')j

7. METHODS OF SOLVING REDUCED
EQUATIONS

We shall consider several methods of solving the re-
duced equations (9), (11), and (14), according to the
three approaches.

In the Grst approach the basic equation is the equa-
tion for the completely on-shell amplitude (9d) and we

can solve it by referring to the partial-wave Eq. (46).
This equation can be linearized by the usual 1V/D
method and solved in a standard way. Having the solu-
tion of (9d) we can solve the Hnear equations (9b) and

(9c) which have the on-shell amplitude as a part of the
kernel. We can do it for the partial-wave amplitudes by
writing equations of the form similar to (49). Finally,
using solutions of (9b) and (9c), we put them in (9a)
and get the fully oG-shell amplitude.

In the second approach, to solve Eq. (11) we use its
partial-wave projection given by (49). We can start
by considering the half-on-shell case, by putting either
q2=q'(s) or q"=q (s2), and use a symmetry property of
the following form

q'i(s, q'(s), q")= ~i(s,q' q"(s)),
lf Q =Q

The half-on-shell amplitude Ti(s,q'(s), q") is a function
of two continuous variables: energy s and the magnitude
of one of the relative momenta q'. If we want to solve
numerically Eq. (49), we get an equation for a matrix
where rows correspond to the discrete values of energy
and columns to the discrete values of the relative mo-
menta. We would then have to solve a matrix equation.
Having the solution of (49), we use (49) once more to
get the completely off-shell amplitude from the half-on-
shell amplitudes. Marchesini and Kong' have recently
discussed a similar method of solving Eq. (49), by re-
writing it as an integral equation in tzo variables for the
completely off-shell amplitude, with the help of one 8
function. They have used the matrix X/D method and
shown several numerical examples.

In the third approach we have to solve Eq. (14).Let
us discuss three topics related with this problem:

(1) Iteration in (14).
(2) An ansatz for a solution, with a given angular

dependence.

(3) Truncated partial-wave series.

For a giver inhomogeneous term I, either as a func-
tion of s and cos(q, q'), or already given as a function of
the off-shell variables, we can calculate any of the terms
in the iteration series. We have explained in Sec. 4 how

to obtain the inhomogeneous term in the oG-shell vari-
ables using the substitution for cos(p, p'). Of course to
obtain the on-shell limit of it does not produce any
problem, and the next-order term in the iteration series
can be calculated by explicitly evaluating the angular
integrals in (14) and afterwards making the substitution
for cos(tl, rl'). This substitution can be simplified by
utilizing the frame of reference where cos8=1 and
cos(tl, tl') = cos0'. This was done in Sec. 4, where we have
explained the example of a box graph. Thus, the itera-
tion series in (14) can be well defined term by term. The
convergence of such a series is an open question and may
be positively answered only for some class of the in-
homogeneous terms.

Let us now consider an arbitrary ansatz for a solution
of (14) which has a given angular dependence. The de-
pendence on angles can be assumed in any form, not
necessarily in a separable one. We can be guided by the
completely on-shell amplitude and check whether the
on-shell limit of our ansatz corresponds to the experi-
mentally observed situation. Having a justihed ansatz,
with an explicit angular dependence, we can perform
the angular integration in (14) and be left with only a
one-dimensional integral relation. This relation can be
used either for adjusting some parameters in the as-
sumed ansatz, or as an equation for a function of energy
and magnitudes of the relative momenta which was put
in the ansatz.

As a particular case of an ansatz with a given angular
dependence, we can consider a truncated partial-wave
series. We truncate the series (51),which is a convergent
series, or its on-shell limit which is also convergent. The
reason for truncating the series (51) is &sot to avoid a
divergence, but to simplify the partial-wave equations
(56) or (58), by making them a finite set of equations.
By dealing with a Gnite number of partial waves we
make it feasible to find a solution of (56) or (58). The
resummation of partial waves which is needed in (55)
is trivial if we have only a finite number of partial waves,
and usually it is a small number. The substitution for
cos(q, q') can be made term by term.

The assumption of a truncated partial-wave series is
reasonable for lower energies and rather dubious for
higher. However, in the higher-energy region we have
made serious approximations anyway be excluding all
higher unitarity cuts except the 2-particle cut. Our
formalism is an approximate one in the erst place.

The number of partial waves which will be left in the
series (51) should be chosen in such a way that they
correspond to the most dominant partial waves found
from the phase-shift analysis. This should be so, because
the on-shell limit of (51) exactly coincides with the
partial-wave decomposition of the on-shell amplitude.

We present an example where only the 5 and 8 waves

are kept. To simplify notation we consider equal masses

and denote the relative momentum by p. We take the
following ansatz for a solution of Eq. (14) (for the case
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P'=P"=o)

T(s,p,p', cos(p, p')) = T,(s,p,p')

+3Tt(s,p,p')cos(y, p'). (59)

Substituting (59) in (55), performing trivial angular in-
tegrations, and then making substitution for cos(p, p'),
we get'4

F~(s",p,p') = 2s. d cos(p, y')P~(cos(p, y'))

X{Ts(s// p// p//)+3T s(s /p/// p//)

&&{&+I:—P' —P"+2PP' (y y')1/2P'( "))) (6o)

Finally, we make the partial-wave projection in (60),
and get the following set of partly coupled equations:

T,(s, p, p') = It(s,p,p')+
27r2

oo T s(s// p// p//)

X dp", (61)
(p"'+1)' '(4(p"'+1)—sj

T,(s,p,p') = I,(s,p,p')+ — dp"
2X 0

p//sT Q(s// p// p//) P'+P"
X

(p"~+1)t&~L4(p"2+])—s) 2P"s

p//sT s($// p// p//)
dp" . (62)

(p"'+1)"'r4(p'"+1)-sj
To solve the set of equations (61) and (62) we start from

(61) and, having its solution, we substitute it into (62)
to get the full inhomogeneous term of (62). We then
solve (62).

If we include more than the 5 and P waves, then we

get a more complicated set of equations. Instead of solv-

ing them we can use these equations as an off-shell
continuation of the on-shell amplitudes. On the right-
hand side of these equations we have the radial parts of
the completely on-shell amplitudes which can be ex-
pressed in terms of the experimentally known phase-
shifts. For the equal-mass case we have

s"
)
Tt(s",p",p") ('=—

~

T/(s") ~'=16~ sin'8((s").
s"—4

approximate schemes and they took into account only
the 2-particle right-hand cut and some left-hand cuts.
These approaches can provide a erst step in an approxi-
mate calculation of the off-shell T matrix.

The three approaches differ in several details, but
they have the following common features: (1) 2-particle
unitarity; (2) manifestly covariant formulation; (3)
relativistic, kinematical weighting factors. The Grst ap-
proach ignores the left-hand cut except for the one
which could be included in the inhomogeneous term.
That approach is the most primitive one, and it shows
the necessity of including both left and right hand cuts.
The second approach is the simplest one in its form, arid
it takes into account the left-hand cuts. It develops,
however, some additional incorrect left-hand cuts, which
are removed in the third approach. The last approach
has built in the correct left-hand-cut structure, but at
the expense of some more complicated formulas. Thus,
in the third approach one can consider only a truncated
partial-wave series for any practical calculation.

In further investigations one can follow several paths:

(1) Three-particle theory.
(2) Comparison of the numerical results obtained.

from the full Bethe-Salpeter equation by Schwartz and
Zernach" with the results from the reduced equations.

(3) Investigation of different type of perturbed solu-
tions, to see how the off-shell amplitudes behave
under small perturbations of the completely on-shell
amplitude.

(4) Study of the variety of solutions due to the
Castillejo-Dalitz-Dyson-poles ambiguity.

(5) Bootstrap-type calculations for a different in-
homogeneous term as a driving force.
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8. SUMMARY AND FINAL REMARKS

We have discussed three approaches of formulating
an approximate scheme for calculating the 2-body off-
shell and on-shell T matrix. All these approaches led to

' It should be noticed that if we have a truncated series then
we can substitute for cos(p, p') term by term. Such a procedure is
incorrect only in the case of an infinite series.

APPENDIX

$)S5)S6)S15)S35) (A1)

"C. Schwartz and C. Zemach/ Phys. Rev. 141, 1454 (1966).

To define the accessible region in the space of different
invariants we shall first repeat Taylor's' considerations
for invariants which he has introduced, namely,
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defined in Sec. 5 by (27a). Following Taylor's' paper, we write

where Z is given by

8(S5,$5,$15,$55) =8(—detZ) "',
8(k5, k5„,k5„k5')

(A2)

k(2
—,'(s—k15—k5')
-,'(s15—k15—k5')
2(kl +$5 $15)

sl (s—k15—k55)

k2

g (kl +k4 —S—$15)
—,'(s+s15—kls —s5)

—,
' (sl,—k, '—k5')
—', (k15+k4' —s—s15)

k3'
—,
'

(s55—k5' —s5)

-', (kl'+s, —s15)

2 (S+$15 k 1 —$5)
—,
'

(s55—k55—s5)
$5

(A3)

The region of integration in the Bethe-Salpeter equa-
tion, written in the invariant variables s, s5, s6, s~5, s35,
is the intersection of the region detZ(0 and the accessi-
bility region D. The region D is given by the intersection
of the regions D» and D34 where D34 is obtained from
D~2 by replacing the subscripts 1 and 2 by 3 and 4
everywhere in the condition for D~2. Finally, D~2 is the

union of the regions D»+ and D~2, with D»+ defined
by: detD~2)0, and at least one of k~', or k2', or s5
negative, or one of d (kl', k5', s), or 6(kl', $5,d15), or
6'(kl', k5', s5,s5,s,sl5) positive. D15 is defined by
detD15(0, kl', k5', $5,6(kl', k5', s), A(kl', $„.,$15), and
6'(kll, k55, $5,$5,$,$15) all negative. The notation is ex-
plained by

6($1)$5,S)=Sl +$5 +S —2$1$5—2$1$—2$5$ )

6 (Slq$5)$5)$5, $)$15) 4 (S+$15—$1 $6) $5$5 )

k15 —,
' (s—k15—k, ')

D15——det —,'(s—kl' —k5') k5'

5 (kl +$5 $15) g (S+$15 kl $5)

—',(k15+$5—sl5)

& (S+$15—k 1 —$5)

$5

We write
(A4)

8(j"',j"X,j" j,j" j')
=8(—detZ) '", (A5)

where Z is given by

i//2

f'X
'g

g X
E2
jE (A6)

Comparing (A6) with (A3), we can already see some
notational simplification, if working in terms of invari-
ants (A4) instead of (A1). One gets an essential simpli-
fication in (A6) if the reduction procedure is applied

Although these formulas look lengthy, they follow,
however, from straightforward considerations, pre-
sented in Appendix II of Taylor's' paper. The proof of
the above formulas is based on the theorem that a sym-
metric matrix is positive definite if and only if every
principal minor is positive.

Having the framework of Taylor's' arguments, we can
immediately extend it to the set of invariants which are
built up from the Wightman-Garding relative momenta

j, j', q", and the total momentum E:

which, in the covariant notation, means

j"E=O. (A7)

Also the diEerent limits, obtained by putting

j X=O and/or j' X=O,

significantly simplify the syinrnetric matrix (A6).
The other determinants, which correspond to D~2

and D34 are formed from the matrix Z and therefore
they simplify together with Z.

The upper limits in the integrals over the variablesj" j and j" j', which play the role of angles in the co-
variant formulation of the Bethe-Salpeter equation
(34), are given by equating to zero the determinants of
of submatrices corresponding to D~2 and D34. As an
example we shall write one of the limits

[f,(q" iv=0, rtie, P, iC')]'
w//2

Ã'i' —(i &)'3 (A9)
E2

It should be noticed that in (A9) we have written the
simplified form for the limit fl, assuming the reduction
condition j"X'=0.

The above remarks and Taylor's' arguments should
be suQicient to explain the accessible region in the full
4-dimensional space of different invariants.
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Finally, let us list three Jacobians which were used in our calculations:

c)(IksI,kso)

c)(ss,ss)

a(ss, ss)

r)(j"2,j"E')

— in the c.m. s. ;
4(v's)

I
I 2 I

4(v's) IP"
I

4(v's)
I
tl"

I

it(ss, ss) 2 m] m2

( f~2+rpt 2)l/2( g&~2+stt 2)l/2+2f ~.+
8(s",ct".E) 's" S
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Particle-Nucleus Interactions and the Regge Model~

P. B. JAMEs, R. K. LoGAN, AND H. D. D. WA'rsoN
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We propose that the Regge-pole model may be applied to the high-energy scattering of particles (~,E,X)'
by nuclei. The deuteron total cross sections are shown to be consistent with this hypothesis.

E suggest here that the Regge-pole model may be

~

~

applicable to the scattering of high-energy par-
ticles (2r,K,N) by nuclei. To examine this possibility
further it is proposed that the energy dependence of
nuclear total cross sections at high energies be investi-
gated experimentally. The present deuteron data are
shown to be consistent with the Regge model.

Total cross-section measurements' provide a good
test of the Regge-pole modeP since the total cross
section is related to the imaginary part of the forward
elastic-scattering amplitude by the optical theorem. The
total cross sections usually considered are m+, K+, p, and

p on protons and neutrons. ' The neutron cross sections
are obtained from the deuteron total cross sections using
the method of Glauber, ' in which corrections due to the
mutual screening of the two nucleons in the deuteron are
taken into account. The Glauber correction is only an
approximation and, since its contribution to the neutron
cross section can be as large as 20% Le.g. , a (prt) at 6
GeV), it is a potential source of a large systematic error.
This error can be extremely crucial when one is con-
sidering the diBerences of cross sections, as one often
does in trying to isolate the contribution of a single
trajectory.

In an attempt to avoid the difhculties of the Glauber
correction, we shall treat the deuteron as a system which
interacts at high energies by the exchange of Regge pole

* Work supported by the U. S. OKce of Naval Research under
Contract No. Task A-05-T and by the National Science Founda-
tion under Grant No. NSF GP 6198.

' W. Galbraith et al. , Phys. Rev. 138, 3913 (1965).' V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966);Phys.
Rev. Letters 16, 545 (1966); iMd. 15, 930 (1965).

2 R. J. Glauber, Phys. Rev. 100, 242 (1955);B.Udgaonkar and
M. Gell-Mann, Phys. Rev. Letters 8, 346 (1962); D. Harrington,
Phys. Rev. 1M, B358 (1964).

in much the same way as an elementary particle. It is
our hope that the structure of the deuteron will a8ect
only the t dependence of the residue function, leaving
the characteristic energy dependence of Regge exchange
unaffected.

The role of the deuteron in our study is similar to the
one it plays in the quark-model analysis of the deuteron
total cross sections recently performed by I.evinson,
Wall, and Lipkin. ' Their sum rules are obtained by
performing a quark decomposition of the incident par-
ticles (sr, E, and 1V), but rtot of the deuteron which is

regarded as a "black box."
We consider interactions of the form indicated

schematically in I ig. 1.Since the deuteron has I=a, we
are restricted to isoscalar trajectories. We therefore con-
sider the contribution of two L =+1 trajectories, the I'
and I", and one C= —1 trajectory, the co.'

FIG. 1. This diagram is a
schematic representation of the
type of elastic-scattering pro-
cess considered here.
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4C. A. Levinson, N. S. Wall, and H. J. Lipkin, Phys. Rev.
Letters 17, 1122 (1966).' We take the point of view that there are two C=+1 tra-
jectories contributing here, the Pomeranchuk trajectory I' and a
P'. A good fit may also be obtained with a single trajectory having
these quantum numbers and an intercept of 0.88. No additional
light is shed on how many vacuum trajectories are necessary,
however. The p trajectory has not been included here because of
the rapidly accumulating evidence that p does not couple to
nonstrange hadrons. A residual y contribution would, of course,
affect our Qts to the b, 's.


