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Estimate of the ~-~ Total Cross Section and Diffraction Width

W. J. AssE*
Physics Departr/terst, Unsverssty of Michigan, Artrt Arbor, Mschegars
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In this note we estimate the total m-m cross section and diBraction width at high energy via a simple
approximation procedure for the reduced residue which was recently noted in potential theory. Results con-
sistent with the present known facts on the ~-~ system are obtained, and it is concluded that this approxi-
mation procedure may provide a simple and yet accurate means of estimating total high-energy cross
sections and diffraction widths once the crossed-channel trajectories are known.

I. INTRODUCTION
' 'N potential theory, it has been noted that the reduced
i- residue, for the irst trajectory, may be approxi-
mated by'

y(v) =Cr, v=0,

where Ci is the "slope" of Imo, ; namely,

Imn(v) ~ C vRea(el+1/s
~0

the sr-sr system, s,= cos8, = 1+2t/(s —4), and

. S'(t, s) —1
ft'(s) =

2tp(s)

s—].) '/s~ ( v '/

p(s) =
s /

The quantity A r (s,t) satisfies the crossing relations

where v is the usual c.m. momentum squared. For
example, for a potential of —1.8e "/r a rough estimate
of Cr yields, in a one-trajectory approximation, p(0)
=0.58 while y,„(0)=0.60; for the stronger potential

5e "/r—we have y (0)= 1.03 while y, (0)=0.80.' It was
suggested' that this might make it possible to make
simple and fairly accurate estimates of total high-

energy cross sections and diQraction widths.
The purpose of this note is to demonstrate this for the

case of x-x scattering. We obtain values of the total x-m.

cross section and diffraction width which are consistent
both with the approximations made and with previous
estimates. '

where

Ar(s, t)= Q xi'Ar'(t, s),
I'=0
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while the diffraction width At is de6ned by

In terms of Ar (s,t), the total cross section is

(8)

II. EQUATIONS AND CALCULATIONS

The invariant amplitude Ar(s, t) for the sr-n. system
may be written4

(~/~t) I
A'(s, t) I

'

(at) r —
I
A'(s, t) I' —1=0

We now make the usual Watson-Sommerfeld trans-

Ar( ) + (2i+1)f r( )& ( )LI+( )r+,j (3)
formationon (3), along with the asymptoticformfor the
Legendre function

where I=0, 1, 2 is the total isospin quantum number for
1 r (v+-,')

E„(s) - (2s) ",-"4 r(,+1)
(10)
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~The exact reduced residues are given by A. Ahmadzadeh,
Ph.D. thesis, UCRL 11096, University of California, Berkeley,
California, 1963 (unpublished).

3 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, 81154 (1964).' We use units such that m =c=A = 1.Lengths are measured in
units of Re=he//(m, c') =2»' F and 1 GeV~=0.4 mb. The
variables s and t are, respectively, the total energy and the
momentum transfer squared or vice versa depending on whether
channel s or channel t is open. If channel s is open we have s&sth,
t &0; if channel t is open we have t) ttl„s(0.

and letting nr(t) represent the pole (with the greatest
real part) of the partial-wave amplitude ftr(t) at the
pole t=nr(t), with Pr(t) the corresponding residue, we
have the asymptotic form

r( '(t)+-;)
A r(t, s) —+ —srL2n'(t)+1jyr(t)
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where the reduced residue pi(t) is de6ned by

p'(t)
~'(t) = t=4v, +4.

v OI(t)
(12)

&(v) =p(v)/ (13)

is a real-analytic function of v in the v plane with only
a right-hand cut, and P(v) is the residue of

Once the quantities rrI(t) and yi(t) are given for each
I=O, 1, 2, the invariant amplitude I4I(s, t) may be
calculated via the crossing relations (6), and hence the
total cross section and diffraction width At from Eqs. (8)
and (9) for s~eo.

Before proceeding with the calculation, a word about
the reduced residue is appropriate. In potential theory
the reduced residue, dined by

the Grst term. Although this may seem inconsistent,
since we shall be using the result at v= —1 (zero total
energy), we are simply saying that y(v) is real analytic
to this order in the threshold expansion; indeed, if y(v)
is in fact a real analytic function of v, then it must be to
each order in v, and the approximation made here is to
retain only the erst term; note that it is very simply
obtained once the trajectory is given. This procedure
has the added advantage (over Cauchy's theorem) that
statements about the high-energy behavior of P(v) are
not required.

For the I=0 trajectory, we use the phenomenological
one which assumes that the f'(1250-MeV) resonance is
indeed the Pomeranchuk particle~

Imni~(v) ~ (1.15X10-')v '- ~")+'" t=4v+4 (20)~0

)(v) =S(l,v) —1

2igv
(14)

(dni='/dt) ( e=-' GeV ',
nI='(t=0) =1,

(21)

(22)

while for the I=1 channel we use the trajectory re-
at the pole l=n(v). This result follows immediately suiting from a recent approximate bootstrap calculation
from the Schrodinger equation. ' In the relativistic f th (75() M V) 8

problem, the reduced residue dehned by
o tep

V (v) =p(v)/""'
is comjectlred to be real analytic in the v plane' where
P(v) is now the residue of

Imnr '(v) ~=0.065v~I-'&")+'",

(daI='/dt) ~=a=1.06 GeV '

(23)

(24)

5(l, v) —1
fi(v) = (v+1)'"

2igv
(16)

p(v) -+ Imn(v)/Qv
7I-+0

(17)

and, therefore, since Imn(v) —+ Civa' &"+'", then

b(v) —+ Ci,
u—+0

at the corresponding pole l=n(v). Now it is obvious
that if the residue of f)(v) at the pole l=n(v) is to be
real analytic in the v plane, then there must be singu-
larities in 5(l, v) to cancel that arising from the factor
(v+1)'" at v= —1. The usual procedure for continuing
(16) to v(0 is to force the statement of its analyticity
via Cauchy's theorem. However, as noted above, our
purpose here is to test the approximation from potential
theory

rii=i(t=0) =-' (25)

The I= 2 channel will be neglected; since no meson has
been (at the present time) observed with I= 2, the force
in this state is presumably repulsive, and hence Reni='(t)
&O. Consequently the I= 2 state will contribute a term
of order O(s"' I="")to the crossing relations (6) which
will presumably be negligible. However, as will be seen
below, with the trajectories given by (20)—(25), the
I=1 channel cannot be neglected even at laboratory
energies of 20 GeV corresponding to S=S scattering.

Since the functions &I(t) and ni(t) are slowly varying
functions of t (for t(0), we make the further ap-
proximation that the entire t dependence of the in-
variant amplitude AI(t, s) in (11) resides in the factor
s ('&, the remaining factors being evaluated at t=0.
With these approximations, and the trajectories given
above, Eq. (11) for II I(t,s) then becomes

Eq. (18) being approximately valid even for v(0 in
potential theory since b(v) is roughly constant over
quite a wide range. ' In the relativistic case we shall also
approximate p(v) by

g I 0(t,s): ixz+IM(())saIM(t)

t(0
Ai '(t, s) —

& =4(1+i)yI-'(0)s ' '(t).
$ (0

(26)

(27)

&(v) =Ci (19)

' J. R. Taylor, Phys. Rev. 127, 2257 (1962).
~ G. F. Chew, Phys. Rev. 129, 2363 (1963).

where again Ci is defined as in (18).This is tantamount
to expanding (v+1)'"about threshold (v=O) and taking

After a few lines of algebra, using (26), (27), the
crossing relations (6), and deinitions of the total cross

7 A. Ahmadzadeh and I.A. Sakmar, Phys. Letters 5, 145 (1963).
W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.

Rev. 154, 1515 (1967).
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section (8) and diffraction width (9), we have tion width we 6nd

64 v' '(o)x"
~ '() - ' ™(o)+ P.8) a11d

(At) '=14.5 GeV ' for I=O

(ht) '=13.0 GeV ' for I=1. (35)

( 1 l at+ ass'~'+ ass
i
—

I
=(21ns)

Eht/ r bt+2bss'"+bss
(29)

These results compare favorably with a previous
estimate of the total m-~ cross section and diffraction
width, ' made with the help of the factorization theorem'.

where o, =(o ~)'/o~~=10mb, (36)
b =2L4y'='(0)x"7,
b =2wV'='(0)7'='(0)X"

b, = 4m'Ly™(0)g',

at bt (dn——'='/dt), o,

b,t dnr~/dt+dn

as bs(d—n—' /dt)( p

(30)

y'='(0) = 1.15X10 ',
7r='(0) =65 0X10-'

For the purpose of comparison with other calculations, '
(28) and (29) will be evaluated at the 1V=S lab energy
of 20 GeV or a c.m. energy squared of about s=41 GeV'
(=2100 pion mass units). Evaluating (28) and (29)
under these conditions then gives for the total cross
section:

I'=0 I'= 1
or,tr=' ——1.82 mb+5. 68 mb = 7.5 mb,

ot tr '=1.82 mb+2. 84 mb=4. 7 mb. (33)

here the contributions from the respective crossed
channels are indicated by I'. It would, of course, not be
meaningful to calculate the I=2 channel since it has
been neglected in the crossed channel. For the diffrac-

From the trajectories (20)—(25) and sta, ted approxi-
rnation for the reduced residue yr(t) discussed above,
we have

(31)

Ekt), (ht/
(37)

where in the estimates (36) and (37), differences in
charge states have been neglected. Our results indicate a
cross section somewhat lower than that predicted by
the factorization theorem (36), while the diffraction
width is smaller by a factor of about 3. Unfortunately,
there are no direct experimental results for the m-m

scattering yet. However, if the reduced residues y(t)
behave for t& ttb as in potential theory, then we expect
the approximation (28) to underestimate the total cross
section, since in potential theory the reduced residue
increases as the energy t becomes more negative. The
magnitude of the diffraction widths (34) and (35) can be
seen to be a consequence of the fairly low ratio Vr='(0)/
y ='(0), and if the factorization theorem is valid, this
ratio will hopefully increase when the trajectories are
given more accurately.

It appears therefore that the above procedure of
approximating the reduced residue yr(t) is not incon-
sistent with any known facts for the x-~ system, and
may provide a fairly accurate and yet simple means of
estimating high-energy diffraction widths and total
cross sections. "

' V. N. Gribov and I. Pomeranchuk, Phys. Rev. Letters 8, 343
(1962); M. Gell-Mann, tbtd 8, 263 (1.962).

'0 The approximation ti(v) —+„0Ima(v)/gv also follows from
the early unitarity arguments of Gribov and Pomeranchuk (V. N.
Gribov and I. Y. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 43, 308
(1962) /English transl. : Soviet Phys. —JETP 16, 220 (1963)$).


