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Also, from Eq. (14),

a'"( rpt) ~21 rnb. (31)

Unfortunately, these cross sections are not particularly
easy to measure at high energies.

OP rule( would have a much broader peak than that
for the 7rX, EcV, jt/E, and Eg reactions. In fact, we

can now predict

d. (.p -~p)/«=-I ~» exp(kV»t)7
=30 exp(3.6t) mb (BeV/c) '. (30)

Finally, if two differential cross sections for reactions
of the type P+B~P'+hyper on (e g ., s. p —+E+Z,
E p —+ z Z+, etc ) . were measured, then a similar
search would yield, enough information to determine
all five constants in Eq. (14), so that all PB total cross
sections could be predicted.
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The modified Cheng representation (MCR) is evaluated for S, P, and D waves with the potentials
—1.8e "/r and —5e "/r, the former being strong enough to have one bound state near the S-wave threshold,
while the latter is nearly strong enough to have a 2'-wave resonance. We find good agreement with exact
results with only one trajectory input, the agreement being better than the Cheng representation (CR) with
three trajectories. Although both representations, the MCR and the CR, are automatically unitary, the
results are a considerable imporvement over the earlier modified Khuri representation, which was not
unitary —especially for the more attractive potential —5e "/r. Residues above threshold are also calculated
and compared with the exact results, while reduced residues both above and below threshold are calculated
via the MCR, and in all cases good agreement with exact results is obtained. Finally, a simple approximation
to the reduced residue below threshold is noted to be quite accurate in potential theory, and may provide a
simple and accurate means of estimating high-energy total cross sections and di6'raction widths.

I. INTRODUCTION

HE remarkable success of quantum electrody-
namics (QED) in understanding electromagnetic

interactions has unfortunately not greatly aided in the
calculation of strong-interaction cross sections, although
physical analogies are often made. For example, in the
same sense that one envisions the force between an
electron and a proton in an hydrogen atom as being a
consequence of the exchange of virtual photons, one may
think of the force between a proton and a neutron in a
deuteron as resulting from the exchange of x mesons. If
one were to follow a strict analogy with QED, insofar as
calculating strong-interaction energy levels is con-
cerned, then one might approximate the force between

*Institute of Science R Technology Fellow on leave from the
University of Georgia, Athens, Georgia.

two strongly interacting particles by a single virtual-
pion exchange, in the same sense that Coulomb's law
may be thought of as resulting from a single virtual
photon exchange between two electrically charged par-
ticjes. One would then insert this potential into a
Schrodinger equation and calculate the bound states of
the system. The relativistic corrections would then be
calculated via the relativistically invariant Born series
or Feynrnan technique as in QED.

However, three fundamental differences between the
electromagnetic force problem and the nuclear force
problem have precluded such a procedure:

(a) Since a single-particle exchange graph gives the
force between two particles to order g'/Ac where g' is the
coupling strength, the approximation is not a bad one
for electromagnetic (EM) interactions, since this ratio
is = 1/137; however, for strong interactions this ratio is
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= 1, so it is not clear that the first term is an adequate
approximation to the potential. '

(b) In contrast to EM interactions, where only the
photon can be exchanged, nuclear forces may arise via
the exchange of many particles; for example, the m-S
system can exchange z, p, fs, X, ~ ~ ~ to name but a few.
Thus the potential is, in general, orders of magnitude
more complicated.

(c) It is not clear how to construct a relativistic
generalization of the Schrodinger equation, which,
although it gave a good approximation to the hydrogen
energy levels because of the fairly low relative velocity
between electron and proton (s/c=1/137), cannot be
used reliably for calculating energy levels when the
relative velocity between particles is comparable to c,
the velocity of light, as it often is in high-energy
experiments.

In short, when one speaks of the "success of QED, "
one means in the calculation of corrections to the bound-
state problem, assuming that the latter has already been
solved approximately; it is just at the level of the bound-
state problem where one has stumbled in the case of the
hadrons or strongly interacting particles. The di%-
culties (a), (b), and (c) above do not include the various
renormalization problems with particular Feynman
graphs, which are still a subject for debate even for QED.

One feels intuitively that whatever form a complete
theory of strong interactions may ultimately take, at
least it should reduce to a Schrodinger equation with an

appropriate potential in a nonrelativistic or "corre-
spondence principle" limit. One may therefore attempt
to construct a relativistic theory by essentially reversing
the procedure; that is, one may construct a theory which
possesses those properties that the Schrodinger theory
possesses; for example, linear superposition of states,
unitarity of the 5 matrix, correct threshold behavior of
the phase shift, etc. This, then, provides the primary

' Not infrequently, one finds statements implying that since the
quantity Gm'/ho (where m is the mass involved in the self-
interaction of the particle) for gravitational interactions is about
10 ", therefore gravitation could not account for nuclear forces.
LM. Gell-Mann and Y. Ne'eman, The L'fghl Fold Wuy (W. A. -
Benjamin, Inc. , New York, 1964), p. 1; R. P. Feynman, Cali-
fornia Institute of Technology report (unpublished). g However,
the gravitational problem is fundamentally different from the
electromagnetic problem, the difference arising from the non-
linearity of the vacuum gravitational field equations, in contrast
to the corresponding Maxwell equations which are linear. The
truth of such statements that gravitation is necessarily a weak
force is therefore not evident, especially when they are based on
a perturbation expansion and not on a complete solution of the
gravitational field equations. Indeed, Efinger LH. J. Efinger, Acta
Phys. Austriaca 17, 348 (1964); 19, 264 (1965)g has shown, by
solving the full nonlinear gravitational field equations exactly,
that one can construct a stable charged particle wherein gravita-
tional attraction balances electrical repulsion; as he has stressed,
however, if a perturbation expansion in powers of G has been
made, no solution would have obtained LH. J. Efinger (private
communication); Nuovo Cimento (to be published) g. Other
authors have also obtained a self-consistent solution, although
from a somewhat different point of view. PR. Arnowitt, S. Deser,
and C. W. Misner, Gravitation, An Introduction to Current Research
(John Wiley 8z Sons, Inc., New York, 1962), Chap. 5, p. 227.
Relevant references are given here. g

motivation for studying the solutions of the Schrodinger
equation for classes of short-range potentials.

The connection with the relativistic problem is then
made via the Miffller rules for constructing a relativisti-
cally invariant scattering amplitude, ' along with the
crossing relations, or relations connecting particle and
antiparticle amplitudes, which in turn have given rise to
the bootstrap hypothesis. ' One could have proceeded
more directly by constructing relativistically invariant
Lagrangian 6eld theories in a 6rst- or second-quantized
form, the variation of which yields the relativistic
"Schrodinger" equations which, in general, turn out to
be complicated nonlinear differential equations for the
probability amplitudes or field operators. However, the
crossing relations, when written in terms of invariant
amplitudes, lead to nonlinear equations of an integral
form; the main advantage of the 5-matrix theory as
opposed to a Lagrangian theory appears to lie in the
fact that the boundary conditions have already been
imposed, as is usually the case with integral equations,
whereas they must be imposed on the differential equa-
tions. Moreover, with the S-matrix theory, since one is
working with directly measurable quantities, one can
"cheat" and relatively easily compare (preliminary)
results with experiment. However, both approaches lead
to complicated nonlinear equations, differential or
integral.

Recent attempts to construct a scattering amplitude
represented in terms of angular-momentum poles have
led to representations for the partial-wave amplitude4
and total scattering amplitude' which compared quite
well to exact results for a single Yukawa potential
—1.8e "/r; the exact results were calculated from a
direct integration of the Schrodinger equation per-
formed by Ahmadzadeh. ' The representation was then
further studied by developing some z-E phenomenology~
and an approximate bootstrap calculation of the p
meson, again yielding results in quite good agreement
with experiment; for example, the latter calculation
(Ref. 8) yielded a "best" width of the p of about 125
MeV, in contrast with other calculations which yield
widths as large as 600 MeV, ' while the experimental
value is known to be about 106 MeV. Finally, in a recent
calculation by Nath, Srivastava, and Vasavada, the
equations were used to bootstrap the IC* (891-MeV)

' C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.
22, No. 19 (1946); 23, No. 1 (1945).' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).

4 W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 140, B1595 (1965).

~ W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 141, 1513 (1966).' A. Ahmadzadeh, Phys. Rev. 133, B1074 (1964); A. Ahmad-
zadeh, P. G. Burke, and C. Tate, ibid. 1M, 1315 (1963); A.
Ahmadzadeh, Ph.D. thesis, University of California Radiation
Laboratory Report No. UCRL-11096, 1963 (unpublished).

~ W. J. Abbe, P. Nath, and Y. N. Srivastava, Nuovo Cimento
45, 675 (1966).

8 W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 154, 1515 (1967).' M. Bander and G. Shaw, Phys. Rev. 135, B267 (1964).
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resonance of the x-E system, with even better satis-
faction of the crossing relations than in Ref. 8."

The purpose of this paper is to study the representa-
tion further by exhaustively comparing it with the
exact results for a more attractive, and indeed the only
other, potential for which extensive exact results are
available at the present time: —Se '/r. This potential is
almost strong enough to produce a I'-wave resonance.
The relevant equations are discussed in the next section,
while results and graphs are discussed in Sec. III.
Again, we will 6nd favorable agreement between the
partial-wave amplitudes, residues, and reduced residues.
This evidence, coupled with that outlined above, may
therefore make one a little less hesitant about using the
representation for relativistic calculations of scattering
amplitudes and cross sections.

where

S(l,s)=exp{(igs/gs)Q~(cosh/)) g S (l,s), (5)
n=1

In a previous report, 4 the CR was studied in a one-

trajectory approximation )one term of the sum (1)],
and compared with exact results for the potential
—1.8e "/r; this potential is strong enough to produce
one bound state just below threshold. An attempt to
improve the comparison with the exact 5 matrix for 5
waves as well as for the residue was the primary motiva-
tion for the modified-Cheng representation (MCR), in
which the Born term for the phase shift is explicitly
exhibited. The MCR of the 5 matrix, which has been
derived in Ref. 4 and discovered independently by
Blue,"may be written for a single Yukawa potential

g'e —I"/r

II. DISCUSSION OF EQUATIONS

The Cheng representation (CR) for the single, elastic,
two-body S-matrix element S(l,s), written in terms of
angular momentum poles n„(s),has the form"

( ) g(~ ~)$

S„(l,s) = exp

"*expL(l' —l)Q
dl'

ig' expL —(l+rs) QP„i(cosh(), (6)

S(t,s) = exp
+=i ()

dr' —=exp{2i3,(s)), (1)

where cosh( = 1+p'/2s with p the lowest mass )0 in the
potential distribution, s is the nonrelativistic energy, / is
the usual angular momentum, and 8~(s) is the usual
phase shift. The CR has several important properties
required of an 5 matrix, namely:

(i) S(l,s)Se(l~,s) =1, independent of the number of
terms in the sum (1).

(ii) The phase shift 3~(s) ~, , s'+'~' has the correct
threshold behavior, also independent of the number of
terms of the sum (1).

The partial-wave amplitude fq(s) is defined as

s'~sP„(s)= Imn„(s)exp

"*expL(l' —n„)P]—1
dI'

igs exp' —( „+e)HP„i(cosh/)
gs n +rs

and the symbols are as defined above except that
cosh)=1+(2p)'/2s, and P„(s)and Q„(s)are, respec-
tively, Legendre functions of the first and second kinds.
The generalization of (5) for a general superposition of
Vukawa potentials, as well as one possible extension to
relativistic processes, has been given. ' '4 Again, as in (3)
above, the residue of the partial-wave amplitude may be
identihed for the MCR to be

fg (s) = (S(l,s) 1)/2ig—s, (2) Xe p{(g/C)Q-. (- h~)) rr S-(-.,s), (7)
mgn

and if we define P„(s)to be the residue of f~(s) at the
pole i=n„(s),we have for the CR

afn* g(l'—r2. e) $

dl's't'P„(s)= Imu„(s) exp

a + (l'—n )$

Xexp P dl'
l' —n„

the reduced residue being defined in (4), with the
residue now given by (7).

The MCR shares the important properties (i) and (ii)
above with the CR; however, at large energies it also
goes to its correct Born term, and there was a great

(3) improvement in, the subsequent comparison of the S

The reduced residue b„(s),which is real-analytic in the
s plane with only a right-hand cut for s&0, is dered
as"

f.()=~.()/"'.
"P. Nath, Y.N. Srivastava, and K. Vasavada (to be published);

Bull. Am. Phys. Soc. 12, 472 (196'7).
"H. Cheng, Phys. Rev. 144, $237 (1966).
"J.R. Taylor, Phys. Rev. 127, 2257 (1962).

'~ J.Blue, Ph.D. thesis, California Institute of Technology, 1966
(unpublished). Here the MCR was applied to an approximate
bootstrap calculation of the p meson, using a scheme of coupled
integral equations for trajectory parameters given previously
PS. C. Frautschi, P. E. Kaus, and F. Zachariasen, Phys. Rev. 133,
B1607 (1964)g and studied also by Hankins, Kaus, and Pearson.
I D. Hankins, P. Kaus, and C. J. Pearson, ibid. 137, B1034 (1965);
D. Hankins, Ph, D. thesis, University of California, Riverside,
California, 1965 (unpublished); C. J. Pearson, Ph.D. thesis, Uni-
versity of California, Riverside, California, 1965 (unpublished). g

'4 W. J. Abbe, Ph.D. thesis, University of California, Riverside,
California, 1966 (unpublished).
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other potential for which extensive exact results are at
th. e present time available. ' The relativistic calculation
of scattering amplitudes via angular-momentum poles
requires the reduced residue b„(s)for s(0, so we also
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calculate this in a one-trajectory approximation and
compare with, the exact results. Since the derivation of
the S matrix 5(l,s), and hence of b„(s),was made only
for s&0 [as the unitarity condition (i) is, strictly
speaking, valid only above threshold], we make the
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exact results, not only for the S matrix in a one-

trajectory approximation for S, I', and D waves, but
also for the residue and the reduced residue above
threshold (s)0) and for the reduced residue when s(0.
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FIG. 15.The same as Fig. 14, except that now the MCR residue
is evaluated with one trajectory and compared vrith the exact
value.
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FIG. 13. (a) The real part and (h) the imaginary part of S(2,s)
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FIG. 14. The imaginary part of s'/'p (s) is plotted versus the real
part of s'/'P(s) for both the Khuri representation and MKR as
discussed in the text, with one trajectory input and the energy s
given as a running parameter along the curves. The potential
is —3e "/r.

Good agreement with the exact results is obtained for
the potential —Se "/r, and it will be seen that one
trajectory of the MCR is better than three trajectories
of the CR. The purpose of making this last comparison
is that since the CR is considerably simpler than the
MCR, one is tempted to take more poles of the CR in
lieu of one pole of the mathematically more complicated
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III. RESULTS

The results are presented in Figs. 1—21; most of the
figures are self-explanatory. For example, all curves
labeled K are from the exact integration of the
Schrodinger equation. ' The curves labeled C&, C2, and
Cs are the CR from Eqs. (1) and (3), evaluated with 1,
2, and 3 trajectories, respectively, the exact trajectories
being used. The graphs are all labeled with the corre-
sponding coupling constant, either 1.8 or 5, with, several
residue plots being given for a coupling constant of 3.
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FIG. 20. The same as Fig. 18 for the imaginary part of b(e) except
that now the potential is Se "/r—

= MOD. CHENG EXACT

bl

IO

g2a5 O

1p2lp 2 IO-I

S

Pro. 21.The same as Fig. 18 for s below threshold except that now
the potential is —Se "/r.

MCR. However, we shall see that even three poles of the
CR cannot give an improvement over one pole of the
MCR."Finally, we also compare the S matrix for S, I',
and D waves as calculated from the MCR with the
earlier modified-Khuri representation (MKR) (Ref. 6
and S. C. Frautschi et aL cited in Ref. 13) for both
potentials —1.8e "/r and Se "/r, an—d we shall see that
the MCR is quite an improvement over the one-
trajectory MKR."

~e Preliminary results of this work have been reported: W. J.
Abbe and G. A. Gary, Bull. Am. Phys. Soc. 11, 901 (1966)."It has been noted in Ref. 6 that as the potential strength
increases, the residues become more difIjcult to calculate, and this
could account for the rather erratic results reported there for the
one-trajectory MKR when the potential is Se "/r. —
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The erst 13 figures give results for the S matrix for S,
E, and D waves. The real or imaginary part of the S
matrix is plotted versus the energy s, the latter being
plotted on a logarithmic scale. For example, in Fig. 1 the
real and imaginary parts of the CR, for the potential
—1.8t,' "/r and Eq. (1) above, are evaluated with 1, 2,
and 3 trajectories and compared with the exact results;
while in Fig. 2 the MCR is evaluated with one trajectory
and compared with the exact results, as well as with the
MKR (which is plotted as circles). Figures 1 and 2 are
for S waves. Figures 3 and 4 show similar results for the
stronger potential —Se "/r, again for S waves, while in
Fig. 5 the convergence of the MCR is illustrated for S
waves by evaluating it with 2 and 3 trajectories.
Figures 6—9 give corresponding results for I' waves,
while the results for D waves are presented in Figs. 10—
13. Except where otherwise noted, the MCR is always
evaluated with ore trajectory.

Since some exact residues have been calculated for the
potential —3e '/r, Fig. 14 contains a plot of what
corresponds to Eq. (3) for the quantity s'~'P(s), for both
the Khuri and modified-Khuri representations (D.
Hankins et al. cited in Ref. 13), so that a comparison
with the MCR and the exact results in Fig. 15 can be
made. In both of these graphs, Res'~'P(s) is plotted
versus Ims'"P(s) with the energy s as a running parame-
ter, one trajectory again being used. Similar results are
given in Fig. 16 for the stronger potential —Se "/r,
where the MCR with one trajectory is compared with
the exact residue.

In Fig. 17 the real and imaginary parts of the reduced
residue, defined in Eq. (4), are calculated above thresh-
old via the MCR in a one-trajectory approximation and
compared with the exact values for the potential
—1.8e "/r. Figure 18 shows the results of evaluating the
dispersion integral of Eq. (8) for s(0, again with the
MCR in a one-trajectory approximation. Figures 19—21
sh, ow the corresponding results for the stronger potential

Se "/r- —

The graphs speak pretty much for themselves, and
we conclude that the MCR, in a one-trajectory ap-
proximation, gives quite good results even when the
potential is almost strong enough to produce a 8-wave
resonance, as Se "/r is; th—e S matrix for the latter
potential is greatly improved over the earlier MKR.
Finally, the reduced residue b(s) agrees very well with
the exact value, both when the energy s is above
threshold and when it is below. This is important for

relativistic calculations in order that the high-energy
cross sections and diGraction widths be predicted
accurately.

We shall conclude by pointing out what may be a
useful approximation. In a one-trajectory approxima-
tion, the reduced residue of both the CR and the MCR
has the threshold behavior [from Eqs. (3), (4), and (7)j

Imni(s)
bi(s) ~

8-+0 SaI(s)+1/2

Now the threshold behavior of a trajectory with
n, (0))——', is known to be"

Ini~, (~) ~ g,q~&&o~+it2

s—+0

where ni(0) is the real part of ni(s) evaluated at s=0.
Therefore, to lowest order

bi(~) ~ Ci,
s—+0

and the reduced residue at threshold is essentially the
"slope" of Ime above threshold. In a one-trajectory
approximation, the slope may be roughly estimated to
be =0.58 for the potential —1.8e "/r and =1.03 for

Se '/r, to be—compared with the exact reduced resi-
dues at threshold of =0.60 and =0.80, respectively.
Since the graphs are dificult to read, ' accurate values
are diKcult to calculate. However, we see that the
simple one-trajectory reduced residue (11) provides
quite a good approximation to the exact value at s=0,
and indeed down to a substantial distance below
threshold (s(0), since the exact bi(s) are nearly con-
stant for s&0. This may provide a simple and yet fairly
accurate method of calculating total high-energy cross
sections and diffraction widths, which require b(s)
for s&0."

We therefore conclude that the modified-Cheng
representation, having been tested in a variety of
situations' '»' ""as well as in the present report, may
provide a "believable" method for calculating rela-
tivistic two-body elastic amplitudes. "

17 B.R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963).
' G. F. Chew and V. I.. Teplitz, Phys. Rev. 136, 31154 (1964).
"The extension of the MCR to inelastic processes has been

carried out, although unfortunately there are not yet any exact re-
sults to compare with. W. J. Abbe, P. Nath, and Y. N. Srivastava,
Nuovo Cimento (to be published).


