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= v'B(s, l)g is

A(s, t) =—Ct sinPv. ~ &'& dl v'

Ps, '(l)]
2 sinful

&&/et, (s)—tjsp't( —s)aPt(s) j, (17)

A (s,t) —- Css~'&'&/(1ns) '+~.

This di8ers from the usual formula only by the presence
of p in the denominator. Other forms of 8 we have
studied lead to equally mild modiications, typically
involving powers of lnz, ln lnz, etc. An example of
asymptotic behavior like that of Eq. (12) is to be found

where s=1+t/2v, and a given cut, of course, contributes
to only one of the signatured amplitudes. Thy leading
behavior of Eq. (11) for large s is

in the Bethe-Salpeter amplitude in Kite theory. In the
ladder approximation, and with the masses of exchanged
mesons taken to be zero, a cut determines the asymp-
totic behavior, and P= t 's "

On the other hand, our results do not agree with pub-
lished expressions for moving Regge cuts. '~' However,
all these expressions are based on sums of perturbation
graphs, and while they have elastic cuts, they do not
satisfy elastic unitarity. It is therefore not surprising
that in such approximations y turns out to be infinite at
the end of the cut.

We point out that our results, that cut discontinuities
vanish and are singular, apply to inelastic thresholds
such as s;. Our conclusions agree with results in the
literature. "
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The validity of a simple approximate formula for the photoelectric counting probability in a thermal
optical field, which was proposed by one of us (L.M.) in 1959, is investigated. The formula is based on a
generalization of the Bose-Einstein distribution and should hold for light of arbitrary spectral density.
It, is shown by explicit calculation for three different spectral distributions that the formula holds with
good accuracy over a very wide range of conditions. It should therefore prove useful when the spectral
distribution of the light being studied is not known.
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HERE has recently been a good deal of interest in
measurements of the probability distribution of

photoelectric counts, when light falls on a photo-

detector. '—' For a plane, polarized, quasimonochro-

matic beam having the statistical properties of thermal

light, which is incident normally on the detector, the

general expression for the probability p(ts; T) that rt

photoelectrons will be registered in a time interval T
may be expressed in the form'~"
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and

V(x, t) = Q eg expi(k x—ckt).I3/2

of the spectral distribution. "As T becomes very large, s
tends to T/T„with

Here the vi, are the eigenvalues of the photon annihila-
tion operators 4&, 0, is the quantum efBciency of the
detector, x is any point on its sensitive surface of area S,
and m~ is the average photon occupation of the mode of
the radiation field labeled by the wave vector k. The
integral in (1) is usually very dificult to evaluate
analytically, and in general no closed form expressions
for p(N; T) are known.

An exception occurs for counting time intervals T
which are very short compared with the coherence
time T„or the reciprocal frequency spread c/d k, of the
light, when p(e; T«T,) has the well-known Bose-
Einstein form" ""

2. APPROXIMATE FORMULAS

The foregoing considerations suggest that one might
attempt to approximate the more general formula (1)
for an arbitrary time interval T by a generalization of
(3), corresponding to the distribution of n bosons over
a number of cells s of phase space. Thus we write"

Psr(e; T) =r(e+ s)

The parameter s, which remains to be determined, can
be adjusted so that the second moment of e given by
(4) agrees with the second inoment of m given by the
correct formula (1).This leads to a value of s which is
nonintegral in general and is given by

s= r 2 (r r)
I p(r) I'~r, — (5)

where y(r) is the normalized autocorrelation function
of the optical Q.eld amplitude, or the Fourier transform

' See, for example, L. Mandel and E. Wolf, Rev. Mod. Phys.
37, 231 (1965)."L.Mandel, Proc. Phys. Soc. (London) 74, 233 (1959).

p(~; T&&T,)= (3)
I.1+(I)jL1+1/() j"

where (e) is the expectation value of the number of
counts registered in the time interval T.

This formula is encountered in statistical mechanics,
in connection with the Quctuations of boson numbers
within one cell of phase space. The following heuristic
argument may indicate why it arises here. The fre-
quency spread hk/c of each photon of the beam leads
to a fundamental uncertainty in the "localization
time" of each photon of order T, c/Ak, which defines
the "length" of the unit cell of phase space. Since the
observations are limited to a time interval T which is
much less than T„ the measurements correspond to
counts of photons within one unit cell of phase space.

le(r) I'«,

which appears here as a natural measure of coherence
time.

Equation (4) with s given by (5)was proposed's in 1959
as an approximation to p(rr; T), partly on the basis of
a mathematical conjecture due to Rice.' The formula
can be shown to hold in the asymptotic limit T—&~,
but, since s= 1 for T«T, according to (5), it is at the
same time valid also for T(&T,. This suggests that
pj's(e; T) is unlikely to depart too far from the correct
probability p(e; T) for any T. Moreover, the second
moinent of ri given by Eq. (4) is necessarily correct,
and since no particular form of the spectral distri-
bution was assumed, the formula (4) might be thought
to be a reasonable first approximation to p(n; T) over
a wide range of conditions. The equation has, however,
tended to remain virtually unknown and unused in
practice. In the following we shall give several examples
illustrating its validity.

More recently, Glauber" ' has given an asymptotic
formula for p(N; T) when T is large, for the special case
in which the spectral profile is Lorentzian, when
ly(r) I

has the well-known form exp( —Irl/T. ). His
expression may be written

and
C= P1/T '+2(e)/Tr, )'~s

s„(x)= e (2x/m)'"E„ i)s(x),

where E„ t~s(x) is the modified Hankel function of
half-integral order. Some experimental measurements of
p(rr; T) obtained with a laser operating below threshold
have recently' been checked against this formula,
although it is not clear how well the spectral distri-
bution in the experiment was approximated by a
Lorentzian form. Yet another asymptotic expression
for p(e; T) has been suggested by McLean and Pike. 's

Since experimental measurements of photoelectric
counting distributions are now becoming more fre-
quent, and checks against a formula are desirable, it is
of interest to examine the accuracies of the approxi-
mations (4) and (7). Fortunately& Bedard's has recently

"S.O. Rice, Bell System Tech. J.23, 1 (1944};23, 282 (l944) ~

24, 46 (1945).
~ R. J, Glauber, in Physics of QmuntNes Electronics, edited by

P. L. K.elley, B.Lax, and P. E.Tannenwald, (McGraw-Hill Book
Company, Inc. , New York, 1966), 1st ed. , p. 788."T.P. McLean and E. k. Pike, Phys. Letters 15, 318 (1965}.
The accuracy of this approximate formula appears to be some-
what worse than that of the other two."G. Bsdard, Phys. Rev. 151, 1038 (1966).

1 (n)q"
Pg(n; T) =—

I
s„(CT) expl —(C—1/T, )Tj, (7)

~! Crg
with
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3 or 4. Since the approximate equations were derived
for large T/T„good agreement for small T/T, is not of
course to be expected. However, it is interesting to note
that psr(n; T) tends to follow the correct curve almost
everywhere, as was suggested by the simple argument
above.

It is worth noting that, despite the very diGerent
structures of the relations (4) and (7), they agree in
the asymptotic limit T~~. This becomes clear when
we examine the factorial moment generating functions
de6ned by

(n) l~)

Q(x T)—= ((1—*)")=Z (—*)",
p|

Io

IO6-

EXACT FORMU

""""MANDEL S F

---- GLAUBER S F

I

Io 2
I

IO-I

T/ Tc

I

I.o Io IO2

r (r+s)
(n& "&)sr——(n)'

I'(s)s"
(12)

so that
- s(s+1)" (s+»—1) x(n) "

QM(*; T)=Z (13)
x=0 S

where (n&"&) is the rth factorial moment of n. From.
Eq. (4) we readily find

Fig. 1. A comparison of the probability distributions Psr(n; &l
aud pg(n; Tl with the exact values calculated from Bedard's
recurrence relation. The spectral density is Lorentzian. Where
the broken curves are not shown they coincide with the full
curves.

The generating function corresponding to the asymp-
totic formula (7) has been given by Glauber":

1 2(n)xq '~' T
Qg(x; T) =exp —T +

I
+-

T,' TT ) T,
(14)succeeded in obtaining an exact expression in closed

form for the factorial moment generating function of

p(n; T), when the spectral distribution of the light is
I.orentzian. This led to a recurrence relation for P(n; T) f w aPP' ach the limit T/T. ~~, while

in the form" keeping (n) fixed, Eq. (14) reduces to

where D, (x) is given by

(n)
D, (x)=

sT.

T sT)
coshs+ sinhsI +

&2ST. 2T)

i ( 1)n+r+r

p(n T) = Z 'D —(1)p("' T)
(n —r)!

Qg (x; T) = exp( —(n)x —-,'(n)'x'T, /T
+oLT /Tjs) (13)

On the other hand, from Eq. (5) with

I v(~) I
=exp( —

I ~ I/T.),
it follows that, for suKciently large T/T„

T T, (s'T,)
y, d, (s)+s 1+ e, i(s)+I Id, s(s)

-2T. 2T &2T)

s = T/T, +-', +T,/4T+0 LT,/T)',

so that Eq. (13) reduces to

(16)

with
z=

I 2x(n)T/T, + Ts/T s$r»

and g, (x) is the modified spherical Bessel function of
the erst kind of order s.

This formula, which is exact, allows us to examine

the accuracies of both the approximate formulas (4)
and (7). Such a comparison is illustrated in Fig. 1 for a
certain range of values of n and T/T, with (n) =1. It
will be seen that both psr(n; T) and pg(n; T) tend

rapidly towards p(n; T) when T/T, increases beyond

Qsr(x; T) = exp{—(n)x——,'(n)'x'T, /T
+oI:T./T7) . (17)

We see that the generating functions Qsr(x; T) and
Qg(x; T) coincide to the first order in T,/T in the
exponent.

If the limit T/T, —+eo is approached while the mean
light intensity is maintained constant, the situation
is a little different. Then the parameter (n)T,/T= o, —
which is a measure of the average number of counts
registered in a time equal te the coherence time,
remains constant. From Eqs. (13) and (16) we find,
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when T/T, be.comes large,

(T
QM(*; T)=exp —

I

—+s+ +ot T,/Tj'
Iir, 4r i

x8
XIn 1+

1+T /2 T+T '/4 T'+ 0[T./ Tj'')
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(T
+-',~asI ;+—O—pr—./T js I+OI ~sasj, (18)

T.
' lo '-.

while from Eq. (14),

(Tb
Qg(~; T)=e~ —»I —I+s*'~'I —I+OL*'ej . (19)

Erg

IO
-2

10
IO 2 lo-I l02

The parameter 8 is always very small for light from
typical thermal sources, and can be shown" to have an
upper bound given by (eE/sr 1) ', wh—ere E is the
mean photon energy and T the temperature. Under
the usual conditions 8 is much less than 10 ', so that
any dif'ference between (18) and (19) is unimportant.
However, if 8 should become larger, then (18) is the
slightly better approximation to the asymptotic form
of the true generating function given by Bedard, '
which may be shown to be

( T'i
Q(x; T) =exp —xbI —

I

Er,i
T

+ 'x'4' —-',)+0[x'-ll'] . (20)
~C

(e&"')M I'(r+S)

(n)" I'(s)s"
(21)

whereas, from the approximate formula (7), it follows
that"

3. FACTORIAL MOMENTS

Although the results shown in Fig. 1 are encouraging,
and suggest that pM(e; T) is a good approximation to
p(m; T) over a wide range of T/T„ they refer to only
one value of (e). Rather than repeat the calculations
over a wide range of values of (e), we shall consider a
simple test which is independent of (n). Such a test is
provided by the ratio (e&"&)/(e)', where (m'T') is the
rth factorial moment of e.

We have already found from Eq. (4) that

FIG. 2. A comparison of the factorial moments calculated from
the approximate probabilities pM(22; 7') and p42(22; T) with the
exact values calculated from Bedard's recurrence relation. The
spectral density is Lorentzian. Where the broken curves are not
shown they coincide with the full curves.

moments can be compared with the values calculated
from Bedard's exact recurrence formula

r—1 (r
(~'"')= Z(—1)'+'+'I ID.—.(o)(~").

8M si
(23)

The results of this comparison are shown in normalized
form in Fig. 2. Once again it will be seen that the
moments calculated from the formula (4) tend to agree
very closely with the correct values. Good agreement
is therefore not confined to any particular value of
(n).

4. OTHER SPECTRAL DISTMBUTIONS

All the foregoing tests refer to thermal light having a
Lorentzian spectral distribution, whereas the argu-
ments leading to Eq. (4) suggest that the formula
should hold for an arbitrary spectral distribution.
Accordingly we shall now examine the validity of
Eq. (21) giving the normalized factorial moments for
two other spectral distributions, for which the parameter
s takes on values determined by Eq. (5).

In practice the Gaussian spectral density is of
particular importance. For a Gaussian spectral density
the normalized correlation function is itself Gaussian,
and we have

(nt"&)0 (T~
()" &» y (r) = eXpL —m' r'/2T, '—22Ti2 sr],(22)

where vo is the midfrequency of the light. The other
Both ratios are independent of (e). The factorial spectral density we shall consider is the rectangular
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F&G. 3. A comparison of the factorial moments calculated from
the approximate probability Psr(n; T) with the exact values
calculated from the cumulants. The spectral density is Gaussian.
Where the broken curves are not shown they coincide with the
full curves.

FIG. 4. A comparison of the factorial moments calculated from
the approximate probability p~(e; T) with the exact values
calculated from the cumulants. The spectral density is rectangular.
Where the broken curves are not shown they coincide with the
full curves.

distribution, not because it has any practical import-
ance, but because it represents a rather extreme
departure from the I orentzian form. For a rectangular
distribution we 6nd, on taking the Fourier transform,

sin(x r/T, )
7(r) = exp( —2x.ivpr).

(m r/T, )
(25)

(rt &'&)

= 1+as,
(e)s

(e&'&)
= 1+3xs+xs,

(e)s

(rs&'l)
= 1+6Ks+3Ks +4Ks+K4, etc.,

(e)'

(26)

(28)

"D.Slepiau, Bell System Tech. J. 87, 163 (1958).
2' L. Mandel, in Progess ie Optics, edited by E. Wolf (North-

Holland Publishing Company, Amsterdam, 1963), Vol. II p. 181.

These equations can now be used to determine s from
Kq. (5). The parameters have been adjusted so that
both Eqs. (24) and (25) automatically satisfy Kq. (6).

There remains the problem of calculating the fac-
torial moments exactly, for comparison with Eq. (21).
To do this we shall make use of some results of Slepian'
for the cumulants of the random variable U given by
Eq. (2), together with some expansions" " which
relate the cumulants of U with those of n. It can be
shown'4 that, for any spectral distribution,

where ~„ is closely related to the rth cumulant of U
and is given by"

T —(1/2) T
7(tr —ts)y(ts —ts)

Xy(tr —tr)dtrdts dt„(29).
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These relations allow us to compute the normalized
factorial moments directly for the two spectral distri-
butions in question, and to compare them with the
corresponding moments derived from the approximate
formula (4).

The results of such a computation are shown in
Figs. 3 and 4. Once again it will be seen that there is
good agreement between the results calculated from the
exact and from the approximate formula, for both
Gaussian and rectangular spectral distributions. These
conclusions again hold for all values of (m).

Our conjecture that the formula (4) holds generally
as a good approximation to the counting probability
is therefore supported for three different spectral
distributions. Moreover, since the expression for
psr(n; T) contains only one parameter s that is not
directly measurable (approximated by T/T, for long
time intervals), the formula may prove to be particu-
larly useful in connection with photoelectric counting
experiments when the spectral distribution is not
known precisely.


