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We examine the constraints imposed on Regge-cut discontinuities by elastic unitarity. We hand that
discontinuities must be singular at their endpoints, and, contrary to published examples, must vanish
there. We give particular attention to "wrong-signature" negative integer angular momenta in the spinless
problem. There, one Regge cut must exactly mask the elastic unitarity cut; its discontinuity contains a
pole in the angular momentum. Our results modify the usual expression for the contribution of a cut to
high-energy scattering in crossed channels.

ECENTLY there has been interest in the use of
Regge cuts as well as poles for the fitting of high-

energy data. ' Cuts were originally proposed by Mandel-
stam for the purpose of removing the Gribov-Pomeran-
chuk essential singularity from the physical sheet of the
complex angular-momentum plane, and Mandlestam
found such cuts in a certain class of diagrams with three-
particle intermediate states. '' At present, not very
much is known about the discontinuity across Regge
cuts; for instance, only recently has it been realized that
the discontinuity need not contain the Gribov-Pomeran-
chuk singularity. ' '

In this note we establish two endpoint properties of
the discontinuity which follow from elastic unitarity.
These are that the discontinuity is singular at the end of
the cut, and that it vanishes there. We point out here-
and later discuss —that an endpoint behavior of this
kind is not found in expressions given in the literature
for discontinuities. ' ' ' We give particular attention to
Regge-cut discontinuities at "wrong-signature" nega-
tive integers. At these points, where Regge cuts serve
to remove the Gribov-Pomeranchuk essential singular-

ity, we find that exactly one Regge cut on the physical
sheet of the energy plane has a fixed pole in its discon-
tinuity, and we examine the behavior of the residue of
the Q.xed pole at threshold. In what follows, we consider
spinless, equal-mass particles, but the form of the argu-
ments is quite general.

Regge cuts in the angular-momentum plane manifest
themselves in partial-wave amplitudes as cuts in the
s plane whose branch points are functions of /. In par-
ticular, as l is reduced from large, real values, a branch
point s, (l) emerges from the first inelastic threshold
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FIG. 1. Cuts and points in the s plane related
by discontinuity formulas.

s=s; of the partial-wave amplitude and moves toward
the elastic threshold s=s,. In Fig. 1, we display this
cut and the sheets entered by passing its branch point.
We denote the discontinuity across the Regge cut by

B(st)—B(st') = 2iy(s, l) . (1)

Here the amplitude

B(s,l) = (gs/v'+'") e'"&'& sinbt(s) (4v = s—s,),
is a real analytic function of s because of v '. We sup-
press superfluous variables, including signature indices,
although of course we are dealing with signatured
amplitudes.

Elastic unitarity, continued in s for real /, is

L1/B(»')3 —L1/B(»)]= —»v'+"'/V's (2)

Combining Eqs. (1) and (2), we obtain

B(»)—B(»)—(»v'+"'/V's) B(»)B(»)
=2 vL1 —(»v""'/v')B( s)j ( )

It is interesting to note that yL1 —(2iv'+'t'/gs)B(ss))
must be real, thus linking the phases of 8 and y. Sup-
pose now that y(s, l) are analytic in s at s=s, (l). Then
we find

B(s)= —(1/sr)y(s)ln(s, —s)+b(s), (4)

where b(s) is analytic at s, . However, these amplitudes
cannot possibly satisfy Eq. (3) as s —+ s„because the
left side of the equation would be quadratic in ln(s, —s),
and the right side only linear. We conclude that p is
singular at s,.

We can be more specific about the behavior of y at
s, if we adopt the representation

B(s,l) = LW(s, l)+ I'(s, l)j ',
W(s, l) = —ie ' 'v'+' '/L(coss. l)gsj.

Here I' is a real, analytic function of s for real /. It
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The bracket in the denominator cannot vanish at s, be-
cause the 6rst two terms, which are positive, dominate
the last two terms in magnitude. The discontinuity,

y, therefore, vanishes at s„ independent of the behavior
of ImI' there. Similar methods yield the same conclu-
sions about y when s,&s,.

A special discussion must be given for angular-
momentum ls, where s,(ls) =s,. Calculations" ' of s,(l)
for spinless particles invariably determine lo to be a
negative integer. This 6ts in neatly with the requirement
that the elastic unitarity cut be masked at wrong-
signature negative-integer angular momentum, thereby
permitting the Gribov-Pomeranchuk essential singu-
larity to be absent from B(s,l). To analyze the behavior
of y(s, l) in the neighborhood of ls, consider the example
of the even-signature amplitude, B+(s,l). We focus at-
tention on the cut in the energy plane at s,(l) that just
masks the elastic unitarity cut at the 6rst wrong-signa-
ture negative integer l= —1. Since the thresholds of g
and F are coincident at l= —1, it is possible for these
functions to cancel. In fact, such a cancellation must
occur, because B+(s,l) is known to have a fixed simple
pole at l= —1."(The 6xed pole is all that remains of
the Gribov-Pomeranchuk essential singularity when the
Regge cut is present. ) Without loss of generality, we

may write

Y+(si, l) =2i( ss[s,(l)])—' +tsF+—(s &li),

and then we 6nd

(8)

B+(s„l)= [(—ie-*'i '+'t'/(corri)gs)
+2i{s[s—s, (l)$)

—"'+F+(si,l) J
—' (9)

where the argument s~ de6nes the sheet of the functions
as in Fig. 1. For s&s„we Gnd

B+(»,i), —,= (-['(l+1)/v (»)j
X (lni —iz.—[s.'(—1)/8vg)

+F+(si,l)+0[(l+1)sj) '. (10)

If B+(s,l) is to have a simple 6xed pole at l= —1, we

bears all the dynamical singularities of B other than the
elastic branch point, and it has a kinematic cut begin-
ning at s=o in order to cancel the kinematic cut of the
function lV. Among the singularities of I" is the branch
point s,(l); for 0(s(s„Y is real. In terms of Y,

y= —ImY/([ReY+W(si)$'+[ImY$'). (6)

H ImI' vanishes at s„so does y. To see this, one need
only note that W(si) has a nonzero imaginary part. If
ImI' is finite at s„ReI"has a logarithmic singularity
there, and y again vanishes at s,. Finally, if ImI' di-
verges at s„ it is convenient to write Eq. (6) in the form

y= —1/[1+(ReY/Im Y)'+(W(s)/Im Y)'
+2W(si)Re Y/(Im Y)')Im Y (7)

lim (l+1)y+(s,l) =b(s)/2i (13)

From these equations we verify that the 6xed pole is
missing from B+(si', l) =B+(si,l) —2'+(s, l), which is a
result obtained previously. 4 ' It is important to observe
that y+(si, —1) has a branch point at s=s,. Without
knowledge of dynamics it is therefore impossible to state
the nature of the singularity of b(s) at threshold. In par-
ticular there is no reason to believe that this singularity
has a square-root character, as has been asserted. ' It
should be noted that unless y+(si, —1) just cancels the
second term in Eq. (12) at threshold, b(s,) =0.

If Regge cuts other than s,(l) are on the physical sheet
when l= —1, they are contained in (l+1)y+(s,l), and
their discontinuities also contain 6xed poles. If B+(s,l) is
to have a fixed pole at l = —3, a second Regge cut, s,(l),
must be present with s, (—3)=s, to cancel W. This
result makes contact with previous work, 4 ' since the
Gribov-Pomeranchuk essential singularity is removed
from the amplitude only if the Regge cut cannot be
deformed away from the elastic unitarity cut. This re-
quires a coincidence of thresholds, and results in the
6xed pole in B+(s,l).

So far we have dealt with the singularity of p(s, l) at
s=s,(l) for 6xed l. If we write the cut of B(s,l) in the
angular-momentum plane as

1 " &'& dl'y(s, l')
B(s,l) =

7r p
(~.=s. '), (14)

then y(s, l)=y(s, l). Following from the conclusions in
the s plane, it is easy to see that the discontinuity is
singular and vanishes at the endpoint l= ts, (s) of the cut
in the angular-momentum plane.

It is interesting to obtain the consequences of our
findings for the asymptotic behavior in the crossed
ch'annel. For this purpose, suppose that

B(s,l) = Ci[s, (l)—s$e+ f(s), (15)

where p) 0 and f(s) is analytic at s, . Then

y(s, l) = —Ci sinvrP[s —s,(l)]~=—Ci sinzP

X[s.'(l)$[n. (s)—ije. (16)

After a Sornmerfeld-Watson transformation, the con-
tribution of the cut to the full amplitude A(s, t) [A(s,l)

s John H. Schwartz (unpubhshed).

require that
F+(si,l) = (l+1)y+(si,l).

The residue of the 6xed pole in B+(si,l) is

b(s) = lim (l+1)B+(si,l) = (y+(si, —1)—(i/Qsv)l~l
X (lnv —iz.—[s,'(—1)/8i 7)) '. (12)

By means of Eqs. (6), (8), and (11),we find that y+(s, l)
also has a fixed pole at l'= —1 with residue
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= v'B(s, l)g is

A(s, t) =—Ct sinPv. ~ &'& dl v'

Ps, '(l)]
2 sinful

&&/et, (s)—tjsp't( —s)aPt(s) j, (17)

A (s,t) —- Css~'&'&/(1ns) '+~.

This di8ers from the usual formula only by the presence
of p in the denominator. Other forms of 8 we have
studied lead to equally mild modiications, typically
involving powers of lnz, ln lnz, etc. An example of
asymptotic behavior like that of Eq. (12) is to be found

where s=1+t/2v, and a given cut, of course, contributes
to only one of the signatured amplitudes. Thy leading
behavior of Eq. (11) for large s is

in the Bethe-Salpeter amplitude in Kite theory. In the
ladder approximation, and with the masses of exchanged
mesons taken to be zero, a cut determines the asymp-
totic behavior, and P= t 's "

On the other hand, our results do not agree with pub-
lished expressions for moving Regge cuts. '~' However,
all these expressions are based on sums of perturbation
graphs, and while they have elastic cuts, they do not
satisfy elastic unitarity. It is therefore not surprising
that in such approximations y turns out to be infinite at
the end of the cut.

We point out that our results, that cut discontinuities
vanish and are singular, apply to inelastic thresholds
such as s;. Our conclusions agree with results in the
literature. "
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The validity of a simple approximate formula for the photoelectric counting probability in a thermal
optical field, which was proposed by one of us (L.M.) in 1959, is investigated. The formula is based on a
generalization of the Bose-Einstein distribution and should hold for light of arbitrary spectral density.
It, is shown by explicit calculation for three different spectral distributions that the formula holds with
good accuracy over a very wide range of conditions. It should therefore prove useful when the spectral
distribution of the light being studied is not known.
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1
p(rt T)=

1
Xexp( —

( vi, )
'/tvi ) —U"e , (1)-

nt
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HERE has recently been a good deal of interest in
measurements of the probability distribution of

photoelectric counts, when light falls on a photo-

detector. '—' For a plane, polarized, quasimonochro-

matic beam having the statistical properties of thermal

light, which is incident normally on the detector, the

general expression for the probability p(ts; T) that rt

photoelectrons will be registered in a time interval T
may be expressed in the form'~"


