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Gribov-Pomeranchuk Poles in Scattering Amylitudes*
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It is shown that the argument of Gribov and Pomeranchuk for the existence of fixed poles in the J plane
at "nonsense" values of J goes through in the presence of cuts, even though their argument for an essential
singularity then fails. Such poles have no eRect on the asymptotic behavior but, in cases where the con-
tribution of the third double-spectral function is large, they will invalidate both the Schwarz supercon-
vergence relations and the presence of dips in the asymptotic region. A Regge trajectory will not choose
sense or nonsense at a point where it passes through an integer of the wrong signature.

1. INTRODUCTION
'N a well-known paper, Gribov and Pomeranchuk'

~- pointed out that a partial-wave amplitude neces-
sarily has singularities in the J plane at "nonsense"
values of J, i.e., at all negative integral values of J,
and at positive integral values satisfying the inequality
J&max(X, V), where X and X' are the incoming and
outgoing total helicities. They examined the left-hand
cut of the partial-wave amplitude in the s plane, and
showed that it had a pole as a function of J, when J
assumed a nonsense value. A sense-nonsense matrix
element would have a one-over-square-root singularity. '
It might therefore be expected that the whole amplitude
would have a pole in the Jplane. However, a unitary am-
plitude is bounded for real s and J, and it cannot have
a axed pole in the J plane. Gribov and Pomeranchuk
showed that the amplitude therefore has an accumula-
tion of poles about nonsense values of J, or, in other
words, an essential singularity. Such singularities only
occur at integral values of J of the wrong signature, at
odd integral values of J for even-signature partial
waves and at even integral values of J for odd-signature
partial waves.

It was subsequently shown by Mandelstam' that the
arguments of Gribov and Pomeranchuk must be
modified if cuts are present in the J plane, and that
the essential singularities do not occur on the physical
sheet of the J plane.

Renewed interest in singularities at nonsense in-

tegers has recently arisen as a result of the Schwarz'
superconvergence relations, which we shall mention
below. Jones and Teplitz' have suggested that a pole
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'V. N. Gribov and I. Va. Pomeranchuk, Phys. Letters 2,
232 (1962).

2 Throughout this paper we shall regard an amplitude as free
from singularities at an integer 7=n if the sense-sense and non-
sense-nonsense elements are finite while the sense-nonsense
elements behave like (J—n)»'. A singular amplitude will be an
amplitude where the nonsense-nonsense amplitudes behave like
(J—n) ' and the sense-nonsense amplitudes like (J—n) 'l'.
Though we shall not mention the distinction each time, a behavior
of the latter type is always implied when we speak of poles at
J=n.

3 S. Mandelstam, Nuovo Cimento 30, 1148 (1963).' J. H. Schwarz, Phys. Rev. 159, 1269, (1967).' C. E. Jones and V. L, Teplitz, Phys. Rev. 159, 1271 (1967).
Jones and Teplitz (private communication) have shown that
their arguments can in fact be used to prove their result.
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is present even when there are cuts in the J plane.
They gave arguments which made their suggestion
very plausible.

In this paper we wish to point out that the arguments
of Gribov and Pomeranchuk for poles (or one-over-
square-root singularities) at nonsense integers go
through even in the presence of cuts. We thus con-
firm the suggestion of Jones and Teplitz, but we believe
our arguments to be simpler than theirs. We shall
contrast our argument for the pole with the subsequent
arguments for the essential singularity, which fails in
the presence of cuts.

We begin by reminding the reader that a 6xed pole
in the partial-wave amplitude at a nonsense value of J
with the wrong signature has no eGect on the asymptotic
behavior of the amplitude. We shall not restate the
reasons for this fact, which have been given several
times before. In essence the full amplitude acquires
zeros both from the factor associated with the nonsense
value of J and from the signature factor, these zeros
cancel the pole in the amplitude and in the factor
1/sinsrJ. The infinite accumulation of poles csrolrtd
nonsense values of J with the wrong signature does
contribute to the asymptotic behavior.

The absence of poles in the scattering amplitude at
the values of J under consideration would place a
restriction on the scattering amplitude, as was pointed
out by Schwarz. He showed that the superconvergence
relations in the crossed channel would then be valid for
the left- and right-hand cut considered separately. He
attempted to fit such relations by truncating at low
values of the energy and found that the relations were
not satisfied, even in cases where the complete super-
convergence relations held.

Another restriction imposed by the absence of poles
at nonsense values of J with the wrong signature is
the existence of "dips" in the asymptotic behavior.
Arbab and Chiu' have shown that a Regge trajectory
does not contribute to the asymptotic behavior of the
scattering amplitude at a value of s where it passes
through an integer of the wrong signature and chooses
nonsense. They were then able to explain several
striking minima in the high-energy scattering data. Ke
shall show that the residue associated with a Regge tra-
jectory has a pole as a function of s at the point where

'F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966).
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the trajectory passes through an integral value of J
of the wrong signature. As Jones and Teplitz pointed
out, it then follows that the contribution to the as-
ymptotic behavior is not strictly zero. We may still
have a minimum if e6ects due to the third double-
spectral function are small.

In Sec. 2 we show that a scattering amplitude with
a third double-spectral function has a pole but not an
essential singularity on the physical sheet of the Jplane
at the integers in question. This section really contains
nothing new, and its reasoning is implicit in previous
papers on essential singularities and on cuts in the J
plane. Nevertheless, we feel it worthwhile to go through
the reasoning, with emphasis on the points under
consideration, in the interests of clarity. In Sec. 3 we
examine the residues associated with a Regge trajectory
at a point where the trajectory passes through an integer
of the wrong signature at which nonsense states are
present. Ke show that the nonsense-nonsense elements
ha, ve poles in s, and the sense-nonsense elements have
one-over-square-root singularities in s, at such values.
Residues associated with all trajectories have a similar
behavior, and the distinction between those which
choose sense and those which choose nonsense no
longer exists at an integer of the wrong signature. In
Sec. 4 we add a few concluding remarks, with special
reference to the significance of "dips."

2. THE GRIGOV-POMERANCHUK POLE

We now show that the discontinuity of a partial-
wave amplitude across the left-hand cut in the s plane
has a pole in Jat nonsense values of the wrong signn, ture.
What we shall give is nothing more than a restatement
of the argument of Gribov and Pomeranchuk, but we
shall emphasize that it is true even in the presence of
cuts in the J plane. We shall contrast this argument
with the argument for an infinite accumulation of poles
on the physical sheet of the J plane, which is invalid in
the presence of moving cuts.

The discontinuity across the left-hand cut in the s
plane can be expressed as the sum of two terms. One
is an entire function of J, the other is given by the
formula

fa),i. (s,J)jr, = — df A,„(s,t)

(
&( e„„,~~ 1+ +(—1)hei q, ~ —1—,(2.1)

2q& 2g

where 2&„ is the third double-spectral function, q the
center-of-mass momentum, and the t,),), ~'s bear the
same relation to the Wigner d),q ~'s as the Legendre
Q~'s do to the E~'s. The & sign is positive for even
signature, negative for odd signature. The function
ezra. ~ has a pole at a nonsense value of J (or a squa, re root
pole for values of J satisfying (

X'
~

~J& ( X
~

or vice
versa). Thus aii, has a pole at a nonsense value of J.

The two terms in the curly bracket of (2.1) add when J'

has the wrong signature and cancel when J has the
right signature. It follows that the partial-wave
amplitude has a pole at a nonsense value of J with
the wrong signature. For values of s sufFiciently small
in magnitude the third double-spectral function is
known exactly, and the t integral in (1) does not vanish.
If the left-hand cut of an amplitude has a pole in J
for a range of values of s, it can be shown that the
complete amplitude has such a pole. The remainder of
the left-hand cut and the right-hand cut cannot give a
cancelling contribution except possibly at isolated
values of s.

It is now easy to see that the argument goes through
even in the presence of cuts. We begin at a value of J
sufficiently far to the right, where cuts play no part.
Equation (2.1) is then valid. We can now continue
analytically in J, and the left-hand side will continue
to be given by (2.1), which is an analytic function of J.
The only way in which such a conclusion could. be
altered would be for another cut in the s plane to move
onto the left-hand cut as J is varied. However, the
motion of cuts in the s plane was studied in Ref. 3,
and it was found that the moving cut did not overlap
the left-hand cut as Jwas varied from a large real value
to the first nonsense integer. (We have in mind proc-
esses where the dominating cuts are due to the tra-
jectories associated with the particles being scattered.
We feel that it is unlikely that a cancellation takes place
in some processes and not in others. )

Let us now contrast this argument with the argument
for an infinite accumulation of ploes. Gribov and
Pomeranchuk argue that a unitary scattering amplitude
is bounded when s and J are real with s above threshold,
and that it can therefore not have a pole at a 6xed
integral value of J. They show that the right-hand
discontinuity of the amplitude has an infinite accumula-
tion of poles around the value of J in question. This
argument of Gribov and Pomeranchuk, unlike the
original argument for the first pole, involves the right-
hand cut in the s plane. Now the moving cuts in the
s plane do overlap the right-ha, nd cut as the value of J
is decreased to the integer in question. The unitarity
equation in the form Im u=ak*u cannot therefore be
used if J is real and sufficiently small, and the argument
of Gribov and Pomeranchuk breaks down. In Ref. 3
it was shown that the singularity in question is in
fact absent from the simplest diagram where it would
be expected.

Our conclusion is thus that a scattering amplitude
with a third double-spectral function possesses simple
poles at nonsense values of J with the wrong signature,
but no accumulation of poles.

Having shown that the scattering amplitude has a
pole on the first sheet of the J plane, we can easily
find its value on the second sheet by unitarity. ~ When

7 Our argument at this point parallels that of Jones and Teplitr.
in their X/D formalism.
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J is equal to the value under consideration, the Axed
unitarity cut and the moving cut in the s plane will
both lie along the real axis starting from threshold. The
amplitude on the second sheet of the J plane will cor-
respond to the amplitude between these two cuts in the
s plane. Now the change of the amplitude across the
fixed cut in the J plane is still given by the unitarity
condition

$1+2ikai(s, J))$1+2ika2(s, J))=1, (2.2)

where the kinematical factor k is de6ned to be positive
just above the 6xed right-hand cut on the first sheet,
and therefore negative just below the cut on the first
sheet. If we first consider a negative value of J, where all
states are nonsense states and all matrix elements of
ai have a pole, we see from (2.2) that

a2(s,J)= —1//2ik, J=n. (2.3)

There is thus no singularity at J=n. At a value of J
where sense and nonsense states are present, the matrix
elements involving the nonsense states will have the
behavior (2.3), while those involving only sense states
will have an arbitrary finite value (unless a Regge
trajectory passes through J=e on the second sheet at
the value of s under consideration). There is no Gribov-
Pomeranchuk essential singularity on either the first
or the second sheet. We thus confirm the suggestions
of Jones and Teplitz regarding the behavior of a(s,J)
on the second sheet.

order in the third double-spectral function we would not
be able to use Eq. (3.2).

To Q.rst order in the third double-spectral function,
we may write

[a(s J))I=kai"&(s,J)a2&" (s J')+kai&'&(s, J)a2&'&(s,J'),

(3.3)

where the superscripts refer to the order of smallness
in the third double-spectral function. Let us examine
the first term of (3.3).The factor ai&') will have a Regge
pole at J=n(s):

~("()
ai"& (s,J)= +nonsingular terms. (3.4)J n(s—)

Since there is no third double-spectral function involved
in P('), the elements will have one of the two behaviors

P-'"-ci P '"-C2(s—»)'" P-'"-c2(s—si) (3 5a)

or

P ~C1 (S—Si), Pea ~C2 (S Si) —P a ~C2 ~

(3.5b)

The quantity a2&'&(s,J) will have no pole at J=n(s),
since we are on the second sheet in the s plane, but it
will have the behavior

a2a (1)~cl a2 (1)~C2 (1 I)—1/2

a, „&'&-c2"(j—22)
—'. (3.6)

3. SINGULARITIES OF THE REGGE RESIDUE Thus, combining Eqs. (3.3)-(3.6), we find that

We now show that the residue associated with a
Regge trajectory has the behavior

SS—&X

P,„=c2(s—si) '",

P c2 (s—si)

(3.1a)

(3.1b)

(3.1c)

where s& is the value at which the trajectory goes
through an integral value of J of the wrong signature.
The subscripts s and n refer to the sense and nonsense
channels, respectively.

Our method will be to examine a case in which the
third double-spectral function is small, so that terms
involving the square of the third double-spectral
function may be neglected. The result will then be a
direct consequence of those already established. By
working with an example with a small third double-
spectral function we are able to avoid complications due
to cuts in the angular-momentum plane, since diagrams
with cuts contain the third double-spectral function
at least twice. We can therefore use the unitarity
condition for nonintegral J:

Pa(S,J))=kai(s, J)a2(s,J), (3.2)

where the subscripts 1 and 2 refer to the first and second
sheets in the s plane. If we were working to second

~"'( )
La(S,J))"'=

J n(s)— (3 7)

where

p (la)~k p (la)~k (s—s ) 1/2 p (la)~k (3 8a)

or

P„" & ki' P,„"a) k2'(S —Si) "'
P„„(") k2'(s —s,)

—'. (3.8b)

The superscript a indicates that we are examining the
first term of (3.3). Equations (3.8a) and (3.8b) cor-
respond to (3.5a) and (3.5b), respectively. Since the
amplitude a(s,J) on the second sheet in the s plane
has no pole at J=n(s), we can conclude from (3.7)
that the amplitude a(s,J) on the first sheet has a pole
at J=u(s) whose residue P has the behavior (3.8).

Finally we can consider the second term of (3.3).
The reasoning just given shows that the first factor
ai&'&(s,J) will have a pole at j=n(s), and the resisdue
of the pole will behave as indicated in (3.8). The second
factor a2&'& (s,J') will have the behavior

a2a a ~Ci y a2atL ~C2 (S Si) a2a ~C2 ~ (3 9)

We thus find that p('~) behaves like /5(ia). By use of the
factorization theorem, we then see that P„„must have
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a pole at s= st in higher orders. The alternative that P..
has such a pole is excluded by the reasoning of Ref. 3,
which shows that there are no fixed powers in the as-
ymptotic behavior. The factorization theorem is
valid in the presence of cuts, as may be shown by
analytic continuation from high values of J.

We can easily see by reductio ad absurdum that the
singularities contributed to P by the two terms in (3.3)
cannot cancel against one another. For, if we assume a
cancellation, we conclude that the P correspondingto
the first factor in the second term of (3.3) is finite at
j=n Th. e second factor again behaves as in (3.9).
Thus the second term of (3.3) gives a contribution to
P which is finite at j=e and the singularity of the first
term cannot be cancelled.

We have no proof that the singularity of the Regge
residue does not cancel through some mechanism as
yet unknown. However, in the absence of such an
unknown mechanism the P's would be expected to
behave as has been indicated above, and we have no
reason to believe that a cancellation exists.

It should be emphasized that multiple poles of the
scattering amplitude do not occur at the values of J
under consideration when higher-order terms in the
third double-spectral function are taken into account.
(We are assuming that no eleinentary particles are
present. ) This follows from the reasoning of Ref. 3,
where it is shown that the corresponding terms in the
asymptotic behavior are absent. It is important to
mention this point, since one familiar mechanism for
the cancellation of a pole is the occurrence of multiple
poles in higher terms of a perturbation series. In such
a case the pole may move from its original position
when the series is summed. Such a mechanism does not
occur in our example.

We thus conclude that P, has a one-over-square-root
singularity, and P„a pole, at a value of s where a
trajectory passes through an integer of the wrong
signa. ture. The residues P&'l have such a behavior
whether P"l has the behavior (3.5a) or (3.5b), so that
there is no precise distinction between trajectories
which choose sense and those which choose nonsense
at an integer of the wrong signature, There may still
be an approximate distinction if effects due to the
third double-spectral function are small.

Another point worth mentioning is that the Pomeran-
chuk trajectory now does contribute to forward
Compton scattering. It had been pointed out by Mur'

V. D. Mur, Zh. Eksperim. i Teor. Fix. 44, 2173 (1963};45, 1.051
(1963) LEnglish trsnsls. : Soviet Phys. —JETP 17, 1458 (1963);
18, 727 (1964)g.

and by Abarbanel and Nussinov' that only nonsense
states contributed to this process, so that the nonsense
wrong-signature dip reduced the contribution to zero.
According to the reasoning of this section, the contribu-
tion is no longer zero, and the difBculties pointed out
by Mur no longer exist, even if cuts in the J plane are
neglected.

4. CONCLUDING REMARKS

We erst observe that the scattering amplitude does
not have any effective singularities at integral values
of J of the wrong signature with nonsense channels. We
could rede6ne the scattering amplitude with an extra
factor (J—ts) "' in a sense-nonsense element and a
factor (J—ss) ' in a nonsense-nonsense element. Such
an amplitude would normally be 6nite at J=rI. A
zero in the amplitude would correspond to a restric-
tion, a pole to an observable term in the asymptotic
behavior.

One must now re-examine the significance of the
experimental "dips" in the asymptotic behavior of
scattering amplitudes at momentum transfers where
the Regge trajectory passes through an integer of the
wrong signature. In the presence of a third double-
spectral function the term in the asymptotic behavior
associated with a particular Regge pole will no longer
contain a zero at such a point. Nevertheless, if the
effects of the third double-spectral function are not too
large we might still expect a dip with a minimum not
too far from the point in question. If the contribution
of the third double-spectral function is large, one would
expect the cuts in the J plane to give appreciable
contributions, and one would not expect the scattering
amplitude to have a Regge asymptotic behavior. One
might therefore conclude that dips should still be
present in an amplitude which has a Regge asymptotic
behavior. One would probably expect dips in some
channels and not in others, but, if they occur in a
number of cases at the expected values, one would be
justi6ed in explaining them in the usual way. The gross
failure of the Schwarz superconvergence relation, while
it may well be due to truncation at too low a value,
should be taken as a warning against a consistent
neglect of effects of the third double-spectral function.
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