
PARTIAL CONSERVATION OF TENSOR CURRENT

magnitude and. sign of p„~, so that the Cabibbo angle
can be affected.

IV. SUMMARY

The partial conservation of tensor current (PCTC)
hypothesis has been introduced with a projection oper-
ator so that the partial derivative of the tensor current
connects the magnetic terms of (8

~
j„'~A) to the vector

mesons with the appropriate quantum numbers. With-
out this device, the PCTC combined with the asymp-
totic property of the tensor current at k —& 0 given by
the quark model leads to a vanishing charge form
factor. 4 There is no strong reason to preserve this
property of the quark model, but it appears desirable
to do so for consistency. The consequences of PCTC
are equivalent to those of the vector-meson dominance
models.

Sum rules of the magnetic moments of baryons are
obtained on the basis of PCTC. The value p-.

= —(1.4&1.S) nm is found from one of the sum rules,

pg 7 and pn
It is found that the requirement of reproducing the

magnetic-moment relations that result from SU(3) or
SU(6) synunetry, broken by electromagnetic inter-
action, leads to the D/Ii ratios (BBV coupling) of
D/F =3.4 in SU(3) and D/F = +s in SU (6).

Sum rules for the transition magnetic moments p~~
of A —+8+e +z are obtained as a consequence of
PCTC. The contribution of the magnetic terms of
(&

~
J„'~A) to various semileptonic decay rates of

hyperons were estimated on the basis of SU(3) sym-
metry and found to be negligible.
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The question of the existence of consistency conditions arising from the combination of sum rules with
internal symmetries is discussed further. The sum rules considered are the forward-scattering Compton and
photoproduction rules. A new photoproduction rule is stated. The notion of the support of a sum rule is
introduced: viz. , the set of states such that saturation with these states does not generate null solutions
for low-energy parameters. Different sum rules generally have distinct supports because of differences in
the consistency conditions from rule to rule. Applications of saturation methods to the axial D/F ratio,
full and anomalous magnetic moments, and the ~ ~ 2y lifetime are discussed.

I. INTRODUCTION

T has been clear for some time that higher symmetries
~ - of the SU(6) type cannot be of the kinematical
variety but must rather be looked, upon as dynamical
in nature. ' Thus, if symmetries such as SU(6) are to
be understood better than as a neat device to codify a
few empirical facts, one must find dynamical equations
such that SU(6) appears as a symmetry of some of their
approximate solutions. ' Because we have so far no idea
as to what are the equations of motion in the domain of
strong interactions, we are perforce obliged to take as
general a starting point as is pro6tably possible.

The saturation of equal-time charge commutators
was a erst attempt in this direction, '4 the idea being

' For the distinction between kinematical and dynamical
symmetry see A. Pais t Rev. Mod. Phys. M, 215 (1966)g espe-
cially Sec. II B.' See Ref. 1, Sec. IV I.' B.W. Lee, Phys. Rev. Letters 14, 676 (1965).

4 R. F. Dashen and M. Gell-Mann, Phys. Letters j.i, 142 (1965).

that dynamical symmetries could be induced, by re-

stricting the sum over intermediate states to a select
set. It is not clear, however, by what dynamical

principle such a selection can be justified, as the mass
of an intermediate state has no apparent bearing on its
importance in this sum over states.

An alternative procedure for the induction of dy-
namical symmetries consists" in applying the saturation
procedure to physical sum rules, i.e., relationships
between physical amplitudes (or continuations thereof)
and low-energy parameters such as coupling constants,
magnetic moments, etc. Since one is now making
approximations in the calculation of physical ampli-

tudes, there is perhaps more reason to expect that the
restriction to a few low-lying intermediate states may
be a genuine dynamical approximation.

~ V. A. Alessandrini, M. A. B. Beg, and L. S. Brown, Phys.
Rev. 144, 1137 (1966).
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In order to illustrate the procedure, we consider the
Adler-Weisberger sum rules' in the SU(3) limit.

c4
i=g~'+c —Lo(m

—
p) —o (e.+p)j,
Ao

1=gg'(1 —2a)'+ c —Lo (E ts) —o (E+e)j,
Ao

2 = 2g~'(1 —2a+-', n')+c —La (E—
p) —o.(E+p)].

c= 2M~sgz'/s G~&', g&=G@/Gv, (1.2)

a=gD/(gn+gF),

gD and gp being the D-type and J"'-type axial coupling
constants.

If we assume that the dispersion integrals are
saturated by a decuplet, we obtain~

r~' —3~= & i

gg'(1 —2a)'+-'A = 1

g~'2 (1 2n+—4ns)+-'6 =2,

where 6 measures the decuplet contributions. Hence,
we have the solutions

a= s» gn/gs'= z ~

ggs ——25/9, 6= (24/25)ggs

These are the standard SU(6) predictions' for D/Ii,
G~/Gv, and the Se width. The above derivation may
well provide us with a signiicant clue about the dy-
namical origins of SU(6), viz. , the tendency of the
low-lying baryon octet and decuplet to form a closed
system in a manner reminiscent of bootstrap ideas. '

It should be noted, however, that these SU(6)
results for axial-vector constants follow from the
prescription: saturate with a 10. It is not necessary,
in principle, to specify any further properties of this lo
such as mass or its spin. In this connection it is also
important to note that the D/F ratio —,

' (sot the value
for g~') is stable for saturation with a wider set of
states, as is discussed further in Sec. V.

On the other hand, no explanation exists so far for
the SU(6) ratio" p(p)/p(N) = —

z for the full magnetic
moments. Attempts were made' to get this result from
an algebra of magnetic-dipole operators with the

s S. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev. 140,
3736 (1965); W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965);Phys. Rev. 143, 1302 (1966).

r See, e.g., H. J. Schnitzer, Phys. Letters 20, 539 (1966).
F. GQrsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters,

13, 299 (1964);M. A. B.Bbg and A. Pais, ibid. 14, 51 (1965).
'The relationship between the bootstrap ideas and SU(6)

was noted by R. H. Capps, Phys. Rev. Letters 14, 31 (1965);I. G.
Belinfante and R. E. Cutkosky, ibid. 14, 33 (1965);V. Singh and
B. M. Udgaonkar, Phys. Rev. 139, B1585 (1965).' M. A. B. Beg, B. W. Lee, and A. Pais, Phys. Rev. Letters
13, 514 (1964); 13, 650(E) (1964);B.Sakita, tbjd 13, 643 (1966). .

additional assumption of closure between baryon octet
and decuplet states. However, closer scrutiny revealed"
that under these conditions one actually obtains the
null solution p(p) =p, (rc) =0. Such null solutions have
meanwhile turned up in a variety of saturation problems.

It appears, therefore, that one is in a somewhat
erratic situation in regard to the applicability of
saturation methods to sum rules. We do not claim
to understand these problems in every respect. How-
ever, and this is the main purpose of this paper, we
would like to explain for a class of sum rules what is
the detailed nature of the saturation problems. We
shall also have to raise the question whether saturation
prescriptions may constitute sufhcient input to obtain
the full magnetic-moment ratio of the nucleons.

To start with, we recapitulate in Sec. II the sum
rules connected with Compton scattering and the
assumptions that go into their derivation. Amongst
these rules is the one obtained by Drell and Hearn. "
It was recently noted" that this rule, when apphed in
conjunction with an internal symmetry, implies the
existence of consistency conditions which hold rigor-
ously in the strong interactions and to order e' in the
electromagnetic interactions. In Sec. III these con-
siderations are extended to other Compton scattering
sum rules. We find that the different sum rules have
distinct consistency properties. In particular, it turns
out that the Cabibbo-Radicati sum rule, " unlike the
Drell-Hearn rule, is free of constraints. For the linear
magnetic-moment sum rule, "—' on the other hand, there
does exist a consistency condition which turns out to
be an integral form of a weak Johnson-Treiman
relation. "

We 6nd that the existence of null solutions generated
by nontrivial saturations is intimately connected with
the existence of these consistency conditions. In
particular for the Cabibbo-Radicati sum rule, where
no constraint exists, no null-saturations exist either.

It is noted that the Adler-Weisberger sum rule is
likewise of the constraint-free type. It should be
recalled that the derivation of this rule is based on more
assumptions than appear in the Compton case. In
particular, an extrapolation to zero mass for the external
pseudoscalar mesons is involved. The discussion of
constraints is in reference to this zero-mass limit. The

"B.W. Lee, Phys. Rev. Letters 14, 850(E) (1965)."S. D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966}.

"A. Pais, Phys. Rev. Letters 18, 17 (1967}.As in this paper,
we reserve the phrase "consistency condition" for linear and
homogeneous relationships between the real parts of scattering
amplitudes which are nontrivial, in the sense that they neither
follow from the internal symmetry alone nor from a low-energy
theorem alone.

r' N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966).
"M. A. B. Beg, Phys. Rev. 150, 1276 (1966), Eq. (1.2); see

also Ref. 17."K. Kawarabayashi and M. Suzuki, Phys. Rev. 150, 1181
(1966)."M. A. B.Beg, Phys. Rev. Letters 17, 333 (1966)."K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189
(1965).
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same is true for the treatment in Sec. IV of the photo-
production sum rules. In this category belong: (a) a
sum rule involving the anomalous magnetic moments. "
The consistency properties of this rule are such that one
of the two constraints of the Drell-Hearn sum rule
has a direct analog also in this case, while the other
has no photoproduction counterpart. (b) A new linear
sum rule intimately related to the Kroll-Ruderman
low-energy theorem. " The structure of this rule is
algebraically the same as that of the linear magnetic
moment sum rule. Accordingly, its consistency condi-
tion has again the structure of a weak Johnson-Treiman
relation.

In Sec. V we turn to a fairly detailed discussion of the
saturation in the SU(3) limit for all the sum rules
mentioned above. We introduce the notion of support
of a sum rule, by which we mean such selections of
saturating states that null solutions for low-energy
parameters are avoided. Of course, the idea is to find
su%ciently simple supports such that the dynamical
approximations implied thereby lead to speci6c values
for some of the physical parameters. In regard to
saturating states in the s and I channels we consider
only three-triplet states (10, 8, and 1) while for the t

channel we consider dominance by 1 and. 8 states only,
guided. by current ideas on quark mod, els and on Regge-
pole dominance.

We have attempted to hand a common support for
all the mentioned. sum rules which is simple enough to
have predictive power and. which gives reasonable
answers. To the best of our knowledge such a simple
common support does not exist and this appears to be
largely due to the distinct structure of the consistency
conditions for the various sum rules. We then divide
the sum rules into two groups. The 6rst group com-
prises those sum rules which are antisyrrnnetric under
the exchange of the unitary spin labels of the external
bosons. These we call the antisymmetric sum rules.
The remaining ones are denoted as symmetric sum
rules. Some degree of coherence was obtained by
examining the possibility of a coDUnon support for the
antisymrnetric rules and, likewise, but separately for
the symmetric ones.

(a) Antisyuuuetric case, Sec. VA. The simplest
couunon starting point turns out to be: use a 10 in
the s, I channels and an 8 in the t channel. Here one
finds the axial D/F ratio ss and we study the stability
of this number under inclusion of a further s, I channel
8, representative of the intermediate (X**) energy
region. The linear magnetic moment and photo-
production sum rules generate equalities between low-

energy D/Ii ratios and similar high-energy ones, the
latter referring to the t-channel octet; see Eqs. (5.9)
and (5.10) below. It appears that no further informa-
tion can be extracted from these rules, unless one

"S.Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
1171 (1965).

"N, Kroll and M. A. Riiderrnan, Phys. Rev. 93, 233 (1954).

supplements the saturation prescription with a dy-
namical assumption extraneous to the sum rules as
well as to the choice of support. We show in Sec. V A.
that if one assumes, for the forward. scattering ampli-
tudes concerned, that high-energy additivity hold. s
within the framevrork of a quark model vrith non-
relativistic "internal" motion, then the ratio p(p)/p, (n)
= —-', follows.

It should be stressed ilnmediately that the present
authors do not consider this derivation of the magnetic-
Tnoment ratio to be quite satisfactory. As will be
discussed in detail in Sec. V, the additional assumption
of additivity for these high-energy forward but spin-
dependent amplitudes appears to us to be too mod. el-
dependent. Ke believe that the conclusions dravrn in
this way may well be qualitatively correct, but would,

much prefer to see an eventual derivation based, on
weaker assumptions. It is our present conjecture,
however, that such assumptions will have to remain,
extraneous in the sense defined, above. At any rate, the
present derivation does not need to make use of the S6
structure of a baryon wave function as an input.

(b) Syuunetric case, Sec. V B.The simplest common
feature of the supports in these cases appears to be the
use of at least a 10 and a 1 in the s, I channels. The
anomalous baryon moments and a rr -+2y lifetime
formula are discussed under this heading.

Our results lead us to the conjecture that the dy-
namical basis for SU(6) is to be found in the anti-
symmetric sum rules referring to strictly forward
scattering. The symmetric sum rules appear to have
no obvious connection with SU(6).

We conclude the Introduction with the following
remarks:

(1) The present treatment is limited to the case of
SU(3) symmetry. Our discussion of the full and the
anomalous magnetic moments is of some physical
interest only if this symmetry limit does not introduce
qualitative deviations for these quantities.

Until we have a means of discussing support questions
in the presence of syrrimetry breaking, a detailed
comparison cannot be made between saturation methods
on the one hand and the "experimental" evaluation of
dispersion integrals on the other. Nevertheless, it is
somewhat encouraging to note (see Sec. V) that at
least some qualitative features of the "experimental"
method appear to have their counterparts in the
saturation approach.

(2) The saturations discussed do not depend on
narrow-vridth approximations for the continuum states.
Also, in what follows a statement such as: "saturate
with a 10"may in principle be taken to refer to any set
of states with transformation properties of a 10.

(3) The saturation arguments given here do not
involve a full specihcation of the spins of the saturating
states. For this purpose one vrill have to distinguish
between "spin-symmetric" (non-spin-flip) rules for
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which the saturation is formally independent of spin;
and "spin-antisyrnmetric" (not quite correctly called
spin-flip) rules, where the spin of the saturating states
does play a role. A few brief comments on spin aspects
will be found in Sec. V.

(4) Our treatment does not include a full discussion
of overlapping between saturating states with distinct
SU(3) properties.

(5) A crucial assumption made in the derivation of
all sum rules considered here is that the respective
amplitudes each satisfy an unsubtracted dispersion
relation. No proof of this is known for any of these
amplitudes. If the ansatz turns out to be false for
some of them, then much of the subsequent argument
will need revision. In particular, it may be recalled'7
that the linear magnetic-moment rule LEq. (2.17)
belowj is incompatible with a power-series expansion
in the strong couplings. The same is true for the linear
photoproduction rule, Eq. (4.9), below. It is true that
this incompatibility would be eliminated if one sub-
traction were made. But, of course, that does not prove
that a subtraction is indeed necessary. In this connection
it should be noted that Singh has shown" the following:

(a) The dispersion integral in the linear magnetic-
moment rule has the same convergence properties as the
one in the Cabibbo-Radicati rule if a Regge-pole model
for high-energy behavior is used in both cases. At this
point it may also be appropriate to recall an earlier
remark' that the nucleon magnetic moment ratio —

~

is hard to understand from any weak-coupling approach.
(b) Further sum rules, based like the present ones on
low-energy theorems, may be obtained by diff er-
entiation of amplitudes with respect to the momentum
transfer. We have no complete answer as to whether
the supports discussed in the present paper are also of
use for such additional rules. However, one such case
will be discussed in Sec. V. This is a sum rule due to
Pagels"; we shall discuss the saturation for this rule
and its connection with an approximate formula for
the x'0 ~ 2p lifetime.

Finally we note the following. It will be obvious
that the concept of support is at best meaningful only
within a framework of dynamical approximations, and
that it plays no role when one employs a sum rule in
order to verify whether experimental information on
low-energy parameters can be properly correlated with
experimental information on the cross sections which
appear in the dispersion integrals.

II. COMPTON SCATTERING SUM RULES

The topic of this section is a group of sum rules which
we call the Compton scattering rules. They comprise:

(a) the Drell-Hearn (DH) sum rule" for anomalous

~' V. Singh (private communication).
~' H. R. Pagels, Phys. Rev. (to be published).

magnetic moments as well as the intimately related
rules for the separate isoscalar and isovector parts of
these moments''; (b) the Cabibbo-Radicati (CR) rule";
(c) the "linear rule" for full magnetic moments. '5—'7

This group of rules stands out amongst the many
recently derived sum rules because of the relatively
minimal nature of the assumptions that go into their
derivation. These are:

(n) The low-energy theorem for Compton scatter-
ing."This theorem is rigorously valid to all orders in
the strong interactions and to order e' in electro-
magnetic couplings. (In this paper we shall not be
concerned with the interesting question whether the
theorem can be extended to higher orders in e'. Weak
interactions are of course neglected. )

(P) The validity of unsubtracted dispersion relations
for each of those parts of the Compton scattering
amplitude which enters in the respective sum rules
mentioned above.

(p) Where an internal symmetry is brought to bear

l either isospin SU(2) or SU(3)], it is further assumed.
that the no-subtraction ansatz remains valid in the
symmetry limit. There is at least no logical objection
to such an assumption. As we shall discuss in Sec. III,
the simultaneous implementation of the conditions o.-y
leads to new kinds of constraints on the theory.

Before we come to this, it is helpful to discuss briefly
erst the case in which one disregards any internal
symmetry. Consider, for example, proton Compton
scattering, described by a covariant amplitude'4
3f„„(k',k). Here k and v are the initial photon rno-
mentum and polarization in the laboratory system. k'
and p refer likewise to the outgoing photon. The
relations

k„'3f„„(k',k) =3f„,(k', k)k, = 0 (2.1)

are readily seen to follow from current conservation.
In the forward direction (co= ~k~),

e'(2m)'&& ill„„(k,k)
=Sg((u')5„„+a)S2((o')&(-,'(O, a.„j. (2.2)

The DH rule follows" from the low-energy theorem for
S2(0) and an unsubtracted dispersion relation for
S2((v').

In order to extend Eqs. (2.1) and, (2.2) so as to
include internal synmnetry, it is convenient to intro-
duce" ' the device of a multiplet of massless vector
mesons, a triplet for SU(2) or an octet for SU(3),
coupled to the respective vector currents which are
conserved in the symmetry limit. The purpose of
this device is the following: Consider the Compton

+ F. E. Low, Phys. Rev. 96, 1428 (1954); M. Qell-Mann and
M. L. Goldberger, ibid. 96, 1433 (1954).

~ M„„is the scattering amplitude apart from an over-all energy-
momentum 5 function and some numerical factors. The precise
structure of M„„can be read o8 for example from Eq. (1) in Ref.
17 by dropping all 0., J9 superscripts.
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scattering of these "photons" on some target baryon.
As these "photons" are only used to lowest non-
vanishing (i.e., second) order, they appear only ex-
ter22ally. (For 222ter22al virtual vector mesons, zero-mass
extrapolations are neither necessary nor are they ever
used. ) Because of the zero-mass nature of these external
particles, it now becomes possible, just as was done in
Eq. (2.2) to consider the zero-frequency limit &o

—+0
and to derive low-energy theorems by a straight-
forward extension" ' of known methods. We state the
analogs of Eqs. (2.1) and (2.2) for this more general
situation:

k„'M„„e(k',k) =M,y e(k', k)kg

=2f"(P'I I'(0) lP) (2 3)

Here P(n) denotes the internal symmetry index of the
incoming (outgoing) photon, a, P, y=1—3 for SU(2),
1—8 for SU(3). f ~& are the structure constants of the

symmetry group. The U, & are the conserved vector
currents. p and p' are the incoming (outgoing) baryon
momenta.

Instead of the previous M„„(k',k) we now must deal
with quantities M„„(k',k), where n, P are internal
sytnmetry indices. Put

M„„e(k',k) =M„.~ ~I (k',k)+M„„~ ~j (k',k), (2.4)

where the erst and second terms on the right-hand side
are syxrunetric and antisymrnetric in (n,P), respectively.
The extension of (2.2) is

e'(2g)2M „(~ P) =S,~P(($2)$ +(gS2~P(4p)

X-',(0,0 „7, (2.5)

e'(2 )2r' M~„&~ ~' =coA2~~(oP)b „+A2~~(&o')

&&K~-,0-7 (2 6)

Thus M has now been decomposed into its even and
odd. parts with respect to both spin and internal spin.
The separate parts play the following roles:

(1) (Even, even), S2 e. This is the Thomson-type
scattering amplitude. As is well known, the dispersion
relation for S2 needs a subtraction. The assumptions p,
y stated earlier refer to no subtractions for 52, A~, A2.

(2) (Odd, even), S2 e. This is the amplitude which
gives rise to the DH rules.

(3) (Even, odd), A q~~. This gives the CR rule.
(4) (Odd, odd), A2 ~. This gives the linear rule.

To conclude this section, we give the various sum
rules in their SU(3) form.

DH rules.

where the meaning of the symbols is as follows. 3f is
the baryon mass, ~p and ~D are the F and D parts of
the anomalous moments; in particular,

K =Kg 3KD,

K(N) = 2«n.

(2 8)

Further, D =-', d pYFpF~ and normalizations are such
that F2——D2——

2 (—-', ) for the proton (neutron). y
denotes a "photon" of unitary kind n with F-type
coupling strength eF, . 0 (or) is the total cross section for
the scattering of a p photon on the baryon in question.
The subscript P (A) means, that the photon helicity is
parallel (antiparallel) to the baryon spin.

Equation (2.7) is to be read as an 8&(8 diagonal
matrix equation in baryon octet space. The same is
true for the additional sum rules to follow.

Examples. To get the isovector moments, put o, =3,
p3 is the isovector photon. To get the isoscalar mo-
ments, put n=8 and multiply both sides of Eq. (2.7)
by —', . One gets

27PA 2«D /
P'2 F —2

«F I'+
i
I(I+1)

M' 3E 4 3

=4Xp(v') —4X~(v'), (2 9)

222n 2«D / Q2 F2q —2

"O-
I

U(U+1)——
I

M2 3 3)
=xp(7) —x, (&), (2.10)

where U is the U-spin and y is "the" photon.
The isovector sum rule is

2' Q

$~FF2+KnD2 j2= Xp(p') Xg(p')—
M'

= 2LXp(p+)+Xp(p ) X~(p+) X~(p—)j, (2 1—1)

where p + means that we deal with the scattering of
a massless external vector meson of the p'+ variety.

CE rule.

where y~ is the isoscalar photon with F-type coupling
strength I'/2. F=hypercharge, I= isospin, F= unitary
spin. For the representation (P,q) of SU(3), F'
= (p2+q2 —pq+3p)/3. )For the octet, (P,q) = (2,1) and
F'= 3.j

The~total moments are obtained by putting the
linear combinations F2+F2/v3 on the left-hand side
of (2.7), and one gets"

(2g202/M2)(«FF +«nD. )2=xp(V ) Xg(p ), (2.7)—
2' Q

$AF2+BD2+2C8g2)=X(p+) —X(p ),M'
X(p+) =Xg (p")+X~(p+).

(2.12)
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(aG
I3= 2' I Isn+ 8M'I

4 ag' ), ,
'

C= 3@~ .

(2.14)

(2.15)

p, p, p,~ are the E, D parts of the total magnetic mo-
ments, and G~", Gg~ are the P, D parts of the charge
form factor. Both the p and. the G quantities are
related to the corresponding nucleon quantities by
relations of the type Eq. (2.8). 8,s is de6ned by

The symbols X are as defined in Eq. (2.7). Furthermore,

(BG&b'q
A =IsI.s+Isns 1+—8MsI I, (2.13)

4 abets i, =s

k„'M„„t P~ (k', k) =M„„~ s~ (k', k)k, =0, (3.1)

k„'M„„~a ~~ (k', k) =M„b&" ~~ (k', k)kb
= f"(p'll' "(o) lp) (3 2)

when intercombined. In general, the implications of
Compton sum rules can be understood only when these
consistency conditions are taken into account along
with the rules themselves. In this section we shall
extend the previous considerations by discussing also
the consistency conditions for the CR and the linear
rules.

In order to get a clear picture of the origin of these
conditions, it is useful to return to Eq. (2.4). The n, P
syxrunetric and antisymmetric parts of M satisfy
distinct divergence conditions:

(2.16) We consider first the case of isospin o»y.L&»f5=sf pvI'v sf p

(gas)ab= ~aa~Pb ~ab~Pa ~

The only baryon state for which 0» has nonvanishing
expectation are Z+ and Z for which i8qs ———1 and +1,
respectively.

Internal symmetry SU(Z). The amplitude M ~ &~ (k,k)
contains the (odd, even) amplitude Ss(~s) which enters
in the DH rule. Consider the case of a target with
arbitrary isospin and corresponding isospin operator
t . The low-energy theorem tells us that

L,i~ear rute»

4x'o.
(ps'Ps+PDDs) =Z

b

M
(2.17)

~~ is proportional to fta, t~'f= T P+S ~, (3.3)
T p= (p, t~) ss5 ~(t&t'), —-
S-~=-'b.~t7t~,3

Z=Z(p+) Z(p )

z(p') = L~~(p') ~~(p—')5d (2.18)

Finally, it should again be stressed that the introduc-
tion of a photon octet is nothing but a formal trick. For
example, in Eqs. (2.12) and (2.18), any reference to a
massless p+ can be eliminated by noting the identity
o (p+) —o (p

—
)= o (-,') —2o (-', ), if the target has isospin —',,

where o ($) and o.(-';) are total cross sections for absorp-
tion of a conventional isovector photon in the total
isospin states 2 and —„respectively.

III. CONSISTENCY CONDITIONS

In a recent discussion'3 of the DH rules it was noted
that the requirements o,-y stated in Sec. II lead to
consistency conditions which take the form of integral
relations between cross sections. From the formulation
of the assumption O.-y it follows, in particular, that
these conditions are exact to all orders in the strong
interactions and to order e' in electromagnetism. It is
an unusual situation that conditions n and P which
have reference to space-time aspects on the one hand
and conditions p which refer essentially to internal
synunetry aspects on the other constrain each other

'5 Equations (2.12) and (2.17) each are members of correspond-
ing larger sets, just as the isovector DH rule is a special case of
Eq. (5). VFe do not write out these larger sets because in the
present context one learns nothing new that way.

where T and S are tensor operators for isospin 2 and 0,
respectively. Thus the proportionality given in Eq. (3.3)
means that the photon-target scattering can be con-
sidered as coming about by transmitting a prescribed
mixture of isospin 2 and 0 in the t channel. It is the axed
proportion of this mixture which causes consistency
conditions to arise, except if the target has isospin —,

or 0. For then the I= 2 transmission in the t channel is
forbidden anyway and I=O transmission is in fact the
most general case. This then gives an alternative way
of seeing how the SU(2) conditions given before" come
about.

Consider next the antisymmetric part of M. We have

M „&»' proportional to $t",tP5=ib P&V, (3.4)

corresponding to pure I= 1 transmission in the
channel. This is at once seen to be the most general
situation for the antisymmetric part. We have there-
fore the:

Theorem. The conditions e-y for the case of isospin
symmetry do not imply any constraints for the CR
or the linear sum rules, regardless of the isospin of the
target.

Remark. Here and in the following we restrict
ourselves to the forward amplitude, i.e., k'=k. The
present considerations can of course be extended also
to the nonforward case.

Internal symmetry SU(3). The origin of the con-
straints can be stated in similar terms. We have a
prescribed mixture of 1, 8, 27 in the t channel for the
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symmetric part and of 8, 10, 10* for the antisymmetric
part of M. The antisymmetric part generates the CR
and linear rules. We next discuss the consistency
conditions for these cases, always for a baryon octet
target.

CE. rule. One 6nds the conditions by eliminating the
three parameters A, 8, C in Eq. (2.12). Delne

R= X(p+)—X(p—
) . (3 5)

Let R(p) denote the cross-section integral for scattering
on a proton, etc:

R(u)+R( ')=2R(H), P=-', (Z' —AV3). (3.6)

However, Eq. (3.6) is a consequence of U spin itself.
Indeed ', B, and e are the U3=1, 0, —1 members,
respectively, of a U-spin triplet, while p+ may in part
be characterized by U= U3= —,'and p by V= —'„
US= ——,'. It is then readily checked that Eq. (3.6) is
nothing but a combination of triangular relations
between U-spin scattering amplitudes. Thus, unlike
the DH case, the combination of the assumptions o.-y
of Sec. II does not impose any constraints at all for an
octet target.

At this point we digress to point out that the same
is true for the Adler-Weisberger (AW) rule. For this
purpose it is convenient to recast Eq. (1.1) in an
equivalent form which is closely similar to Eq. (2.12).

for massless vector mesons. One can verify that this
relation comes about because the left-hand side of the
linear rule corresponds to pure octet transmission in
the t channel.
g.Remark. The corresponding integral form of the
strong Johnson-Treiman relation, namely, Eq. (3.10)
aud Z(E*+,u) —Z (E*,u) =Z(p+, p) —Z(p, p), cannot
be true as it would imply a vanishing magnetic moment
for the neutron.

2&v
" Imfsv (~')

fs"( ) = d—o)'-
X' p CO

—
GO

—Z6

(4.2)

IV. PHOTOPRODUCTION SUM RULES

We discuss these sum rules first on the level of
isospin and thereafter cast them into SU(3) form. The
forward amplitude for photoproduction of massless
pions by isovector photons may be written as

M ~= fb &fsv((u)+ ,'[r, r~-jfgv(u)))i(a" s), (4.1)

where a is the photon-polarization vector, co the photon
frequency, and nucleon spinors are understood, but
not displayed, on the right-hand side. The amplitude
fs(~) is an odd function of ~, whereas fg(~) is an even
function. "Under the assumption of no subtractions,
these functions satisfy the dispersion relations

A'Fg+8'D3+~C'8g2 ——-', c/X(s+) —X(s-)j. (3.7)

The notations are as follows: c is given by Eq. (1.2).

2 " co' Im fg~(o)')
fg ~((o)= d(o'—

7l" o M —co —zc
(4.3)

X(~+)= do) (o-'0 (m-+),

cf., Eqs. (2.7), (2.12), and

2'= gg'+gD2 —1, 8 = 2g gg~, C = sgD . (3.8)

From the algebraic similarity between Eqs. (2.12) and
(3.7), it follows at once that the AW rule is likewise
constraint free.

Linear rule. From a comparison of Eqs. (2.12) and
(2.17) one sees that the linear rule has a similar struc-
ture as the CR rule but with C=O. Hence, the con-
straints are stronger for the linear rule. One Ands for
this case again an integral cross-section consistency
condition. It has the following form:

z(p) yz(=~) =z(z+). (3.9)

This condition can be written in an alternative form by
using SU(3) transformations. Introduce "photons" of
the type E*+.Then Eq. (3.9) is equivalent to

Z(E*+,p) —Z(E*-,p)
=Z(K*+,u) —Z(E*—,u)+Z(p+, p) —Z(p—,p) . (3.10)

That is to say, the consistency condition (3.9) or
(3.10) which is a consequence of the linear rule is an
integral form of a weak Johnson-Treiman relation"

eG ~ 2 "Im tv((o)
dco .

X'
p

(4.5)

This sum rule may be compared with the symmetric
sum rules of Fubini et at.'

e(~(P) —a(N)) 2 "Imfsv(~)
~7rN— do), (4.6)

2M m. o

e(~(p)+~(N)) 2 "Imfss((o)
Ao ~

7l p

(4 7)

where fs(cu) is the amplitude for photoproduction by
isoscalar photons. Eqs. (4.6) and (4.7) have been
derived in the literature by the prescription of taking
the limit: (massless) pion four-momentum-+0 in-
dependently of the limit: photon four-momentum —+ 0.

"For details on crossing properties of photoproduction ampli-
tudes see G. F. Chew, M. L. Goldberger, F. E. Low, and Y.
Nambu, Phys. Rev. 106, 1345 (1957).

The low-energy behavior of f~ (co) is given by the Kroll-
Ruderman theorem" to be

tv(o)) = (eG ~/23II)+O(a)'). (4.4)

Equations (4.3) and (4.4) lead to the antisymmetric
sum rule
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Note that Eq. (4.5) contains only one power of pp

in the denominator of the integrand; at erst sight this
might lead one to believe that this sum rule is less
likely to converge than the last two. One observes,
however, that fa" (o&) is an isospin fhp amplitude and
is therefore expected to be damped faster than, say,
tv(co). No further statements about convergence are
possible without going into specialized models.

The SU(3) form of the sum rules (4.6), (4.7), and
(4.5) is

e—((~sF +~DD~)) (Gp~F +G&PD ))+
3f

2 —Imfs(~), (4 8)
GO

e 2
(GI F—+GD D )=— —Imfa(N), (4.9)

M 7i OP

where Gg~ and GD~ are, respectively, the F and D part
of the pseudoscalar coupling constant. Note that, in
the sense of a power-series expansion, fa(ca) develops
an imaginary part to order 6' only. Hence the linear
rule (4.9), like the linear rule (2.17), is incompatible
with a power-series expansion in 6, as was already
discussed in Sec. I.

The left-hand sides of Eqs. (2.17) and (4.9) have the
same algebraic structure. Correspondingly, the sum
rule (4.9) has a consistency condition similar to Eq.
(3.9). The left-hand side of Eq. (4.8) has a structure
similar to but not identical with that of the DH rule,
Eq. (2.7). The distinction lies in that the former
contains four, the latter only two low-energy parame-
ters. As a result, the consistency conditions for Eq (4.9)
are weaker than those for Eq. (2.7), as will be discussed
in more detail in the next section.

to 6nd satisfactory approximations to the various
low-energy parameters.

We therdore proceeded on what appears to be the
next most general approach. Namely, as already
mentioned in Sec. I, we treated the antisymmetric and
the symmetric sum rules separately. We next discuss
the results so obtained.

A'
—s,C&p+2yp

C~p+2vn

C/

8' Cgp+2yD

(5.1)

(5.2)

(where the possibility gD
——0 has been excluded). Cqp is

the decuplet contribution. yp and yD represent the
contributions from the 8 in the crossed channel inasfar
as its coupling to baryons is of the F and D type.

(1) For y~ ——yD
——0, ~g@~ =5/3 and

A. Antisym~etric Sum Rules

In an attempt to extract useful information from
the rules we start out by making the following dy-
namical approximation: (a) For low energies the
integrals are dominated by the decuplet in the s, I
channels. (b) The residual or "high-energy" contri-
bution may be adequately treated by putting octets in
the t channel. One may attempt to justify this high-
energy ansatz by an appeal to Regge-pole models.
Alternatively, within the framework of a quark model
in which one assumes additivity in the high-energy
region, one can only have 8's in the t channel for anti-
symmetric rules. After having discussed this saturation
we shall then ask for the degree of stability of the
results if a further saturating "8**octet" is introduced
to account for the intermediate energy region.

(I) AW rule. Using the notations of Eqs. (3.7) and
(3.8) we get

V. SUPPORT QUESTIONS AND
SATURATION PROBLEMS gD/gz= s. (5 3)

The various sum rules and consistency conditions
that we have met are formally valid independently of
the detailed dynamics of the dispersion integrals, as
long as the assumptions n—y of Sec. II are met. We
will discuss next a number of saturation approxi-
mations applied to these rules and their constraints.

It is important to note that the various sum rules
under consideration have distinct supports. By the
support of a sum rule we shall mean such sets of satur-
ating states which do not lead to a null solution for
the low-energy pa, rameters involved. As we shall
illustrate by a number of examples, the diGerences in
support are due to the fact that, as we have seen, the
respective rules have distinct constraint properties.

These distinctions indicate that one will not neces-
sarily Gnd a valid leading dynamical approximation by
seeking a common support for all sum rules. Indeed, a
fairly detailed search which we made did not enable us

(2) For this non-spin-fhp amplitude we find from a
quark model that my quark. -model wave function
leads to pD=O if additivity is assumed. In terms of
quark states Q", the antisymmetric boson coupling is
of the form

Q&OQ~PMc"37~~ 37'"~~cj—(5.4)

"See, e.j, , S. C. Frautschi, M. Gell-Mann, and F. Zachariasen,
Phys. Rev. 126, 2204 (1962).

where 3f and llf are the incoming and outgoing boson,
respectively. The structure of the operator 0 should
be appropriate to non-spin Qip, and hence it is essen-
tially a constant if one assumes nonrelativistic internal
quark motion. From this and the additivity ansatz
p&=0 follows. Observe that &D=O may also be justified
theoretically by considering the t-channel octet as a
Regge pole (with quantum numbers of the p) which
connects with the baryon without momentum transfer. '~



SOME CONNECTIONS BETWEEN SUM RULES AND SYM M ETRI ES 1487

We now observe that for yD ——0, ys/0, Eq. (5.3)
is still true but not

~
g~ ~

=5/3, because of the appear-
ance of p& in Eq. (5.1).This is a remark originally due
to Schnitzer. ~

However, it is known" that the 1V**(1520) region
contributes sizably to

~ g~ ~
and therefore it is physically

not justified to consider deviations from ~g&~ =5/3
to be due to the high-energy region only. " In this
connection we note that the inclusion of a 8**—8 in
the s, I channels changes Eqs. (5.1) and (5.2) (with
pic ——0) into

A' —4Cgg —4Cyy+-'sCio+2y p

gf —8C~y+Cio

C' —(8/3)Cgg+-,'Cio

—8C~y+ Cia

(5 5)

(5.6)

Here Cdq, Cff and C&f denote, respectively, the pure d,
pure f, and. df interference contributions from the
ad.ded 8. From Eq. (5.6) it follows that Eq. (5.3)
remains valid provided the d/f ratio of the 8**octet
in its coupling to the baryon —pseudoscalar-meson
system is equal to ss. A first attempt to obtain this d/f
ratio from experiment has recently been made. "On the
other hand, it follows from Eq. (5.5) that the 8**does
contribute to g~.

We conclude that the axial D/F ratio —,
' may well be

considerably more stable under inclusion of additional
saturating states than the ratio g~/gv. For later
purposes we note that Eq. (5.3) combined with the
Goldberger- Treiman relation yields

Gr ~/Gp~=-' (5.7)

(II) CR rule. With a similar saturation as for the AW
case, we again obtain equations of the form (5.1) and
(5.2) for the quantities A, 8, C defined in Eqs. (2.13)-
(2.15). The previous argument for pic ——0 applies here
as well. This yields C/8= —,

' or

I D(I D sl ~)(4~') '=—5(~G~ /~V')o'=o, (5.8)

which is not well obeyed. 's We next include a 8**8.
Then C/8 is given by an equation of the form (5.6).
But now the d/f ratio refers to a different process,
namely 8**—+8+y. Evidence has been quoted for
d/f=3 for this case (pure isovector radiative transi-
tion). Inserting this value we see that Eq. (5.8) is Not

stable for this d/f ratio. Thus dynamical approximation
methods appear to be less transparent for the CR than
for the AW case. The "experimental" method happens
to indicate likewise" a more complicated origin of the
contributions to the CR sum rule.

» See, e.g., F. J. Gilman and H. J. Schnitzer, Phys. Rev. 150,
1362 (1966).

so Further deviation from ~gg( =5/3 due to the N~ region in
the broken SU(3) description cannot be discussed with the present
methods.

"M. Goldberg, J. Leitner, R. Musto, and L. O'Raifeartaigh,
Nuovo Cimento (to be published).

(III) The linear sum rules Eqs. (2.17) and (4.9) are
both of the antisymmetric type. Again we attempt to
saturate them with a 10 in the s, I channels and an 8 in
the 3 channel. We denote by pic/y~ the D/F ratio of the
coupling between this 8 and the baryons inasfar as the
Compton sum rule is concerned. . The corresponding
ratio in the photoproduction case will be called &D /pF'.
These saturations yield

and
PD/Ii E=7D/T s

GD /GF YD /VF

(5.9)

(5.10)

respectively. For these rules the consistency condition
(3.9) and its photoproduction analog must be enforced,
which gives

Cso=Cio =0& (5.11)

where C~o and C~o' denote the decuplet contributions
to the sum rules (2.17) and (4.9), respectively. Equa-
tion (5.11) implies that our approximation scheme puts
the principal contributions to these sum rules on the
"high-energy" region and Eqs. (5.9) and (5.10) relate
the D/F ratios for low-energy parameters to the high-
energy D/F ratios of t-channel octets. Preliminary
numerical estimates" indicate that indeed the high-
energy region (beyond the X**) is relatively more
important for the sum rule (2.17) than appears to be
the case for the AW and the CR rules. As before, we
have also examined what happens upon inclusion of an
additional s, I-channel octet but this does not appear
to lead to any clear-cut results.

We shall therefore concentrate on the Eqs. (5.9) and
(5.10). The next question is then what one can say
about the high-energy D/F ratios which appear on the
right-hand sides of these equations. For this purpose
we appeal once more to a quark model with additivity
and the corresponding unitary-spin-Qip coupling to
quarks given by Eq. (5.4). If one again assumes non-
relativistic internal motion, then the rest frame of the
nucleon is essentially the same as the rest frame of the
individual quark under consideration. As a result, the
operator 0 in Eq. (5.4) is essentially e (er&(e,) for
the Compton case and e a for the photoproduction
case, where the a's are the respective photon polari-
zation vectors in the problem. From this it follows that

v~/v~=vD /v~ . (5.12)

This relation when combined with Eqs. (5.7), (5.9),
and. (5.10) yields

liras!Iii = s ~ (5.13)

which is the SU(6) result.
At this point we would like to stress that we have

reservations about the derivation of Eq. (5.12), which
is an essential link to obtain the answer (5.13). We
believe that Eq. (5.12) may be substantially correct,
indicating a "universal" high-energy D/F ratio in the
t channel for spin Qip. However, it would clearly be
preferable to have a derivation for it which is less
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model-dependent. In this connection it should be
emphasized that it is out of the question to Gnd any
argument for Eq. (5.12) based on the Regge-pole
picture only. Indeed if we consider the t-channel
octets for these spin-Rip sum rules as actual Regge
octets, then these octets have opposite 6 parity for
the Compton as compared to the photoproduction case.

However this may be, no appeal has been found
necessary to the 56 structure of the baryons to arrive
at Eq. (5.13). In a baryon model with nonrelativistic
internal quark motion a general base is provided, by
a superposition of a 56, two kinds of 70, and a 20. One
can now ask a converse question. Considering the
magnetic moment ratio (5.13) as given, to what extent
does this constrain this general linear superposition?
Curiously enough, the answer is that one gets uniquely
a pure 56.

Finally we ad.d a corriment about the role of spin
in these saturation problems. As was noted in Sec. I,
the spin of the saturating states is irrelevant in the
"spin-symmetric" sum rules, i.e., the AW and the CR
rules. The saturation for the "spin-anti-symmetric"
linear magnetic-moment rule does depend on the spin
of these states as can be illustrated by the following
example: Assume a saturation of Z, Eq. (2.17) with
a spin--,' octet and a spin-~ decuplet, both in the s, I
channels. Then the condition (3.9) leads to the result
(all quantities referring to a proton-target)

8(~ l'
Z,.(&+)—Z„(P-)= —-I

I LZ.(t+)—Zo(D-)],
3 (d+f)

where d and f are the (relative) strengths of the d
and f coupling between the saturating octet, the baryon
octet, and the vector-meson octet. From the spin
properties of these multiplets it is seen that the right-
hand side of this relation is negative definite whereas
the left-hand side is positive definite. Both sides must
therefore be zero.

The spin situation with respect to photoproduction
sum rules can only be clarified on the basis of detailed
multipole expansions which will not be considered here.

3. Symmetric Sum Rules

We have attempted saturations with a 10 in the s, I
channels and an 8 in the t channel also for this group of
rules, but did not find satisfactory results this way. The
same is true if the saturations to be described. below are
applied, to the'antisymmetric rules.

Our starting approximation is here the following: (a)
The low-energy region is dominated by a 10 and a 1 in
the s, I channels. " (b) The high-energy region may be
treated, by putting a 8 and a 1 in the t channel. (The
t-channel contributions actually can often be dispensed
with. ) In addition we examine again the stability
under inclusion of a 8**octet.

(IV) DH rules. The three rules Eqs. (2.10), (2.9), and
(2.11) for the total, the isoscalar, and the isovector

anomalous moments can be obtained from each other
by rotations in the (J"o,J o) plane. They have therefore
a common support and we shall discuss Eq. (2.9) for
de6niteness.

Denote by X the right-hand side of Eq. (2.9) and by
X(1V) the case of a nucleon target, etc. Then we have
(excluding the uninteresting case K p ——0)

X(Z)

Kp X(Ã)—X(")
(5.14)

KD Cyo+Vl+oVD——3
~g C1P—2yg

Cx——C~o+ oVD,

(5.17)

(5.18)

(Vi—oVD)'=4(Vi+V p —oVD)

X(C o+V —
V

——',V ), (5.19)

where Cio, C~, (VD,Vp), and V~, respectively, measure
the contributions of the states in the order mentioned
above. We are interested in saturations which yield

KD 3Kp -+ K(——p)+K(N) =0. (5.20)

(1) Equation (5.20) follows from a saturation with a
10 and a 1 only. In that case (5.18) reduces to Cx= Cio
and (5.19) is identically satisfied. This is the case
discussed before. "

The DH rule is of the "spin-antisymmetric" type, so
that the spins of the saturating states do come into
play. We note that the saturation with 10 and 1 is of
the non-null kind if and only if the spins of both 10
and. 1 are larger than o.

(2) More generally, Eq. (5.19) is satisfmd provided

VD+V p 0i Vl oVD y (5.21)

together with Eq. (5.18).
(3) The inclusion of the B*o octet with" d/f=3—

leaves Eq. (5.20) stable. Thus, K(p)+K(N) =0 remains
a good approximation when we include these inter-
Inediate-energy contributions.

(U) The photoproduction sum rule, Eq. (4.8). For
the same reasons as under (IV) we can confme our
attention to +=/=8. For this case write Eq. (4.8) as

(2e/M) (KpPo+KDDo) (GpPFo+GDPDo) = F (5.22)

and denote by F(N) the integral concerned if the target
is a nucleon, etc.

We now have the one and only consistency condition,

F(Z) = F(h.),
"See Ref. 28, p. 1370, and footnote 25.

(5.23)

The consistency conditions for this rule are

X(Z) =X(A), (5.15)

PX(&)+X(")—X(Z)]'=4X(N)X( ). (5.16)

Under the stated saturation, Eqs. (5.14)—(5.16)
become
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which is the analog of Eq. (5.15). The DH condition
(5.16) on the other hand has no analog for photo-
production. The reason for this weaker constraint
situation lies in the larger number of low-energy
parameters in the photoproduction case. Thus the
support for the DH sum rule is more limited. than for
Eq. (5.22) as can be illustrated by simple examples. "

Using the same saturation and a corresponding
notation as for the DH rule we have

Ct= Cto+ svz& (5.24)

as the only constraint. If we now furthermore use Eq.
(5.20) as input, we have in addition

and
mt+ vs —sva =0 (5.25)

2G P

3Gs +Gg)

C10 'y F+y D

)
C1p—2y p

(5.26)

(2Q«+«')+Z, (5.2'7)
4m

2 ImA s (s)ds
Z=—

3'Thus, a saturation of the DH rule with a pure F-type t-
channel octet yields a null solution, while the same saturation
applied to Eq. {5.22) gives ~DG~ =~gGg =0 which is not a null
solution.

~ S. L. Adler and F. J. Gilman, Phys. Rev. 152, 1460 (1966).
O'Alternatively one can use {C&0,p&,yz, pz) where 2G& =3'

implies 5' =—By@.For other discussions of this sum rule see M.
Cini, M. de Maria, and B.Taglienti (Rome report, unpublished).

which leads to the following situation:

(1) Using Cts only gives a null solution for the G's.
(2) Using Cte and Ct only gives the bad result

Gg) =3Gg"
(3) The experimental method applied to this rule

shows" that an important contribution arises from a
low-energy s-wave pion-production mechanism. In
SU(3) language, this is due to an octet transmission
in the ] channel, "including rescattering sects. Note
that we may put Eq. (5.26) to use for a qualitative
description of this situation provided we associate yD
and p& with such a low-energy octet. In particular, if we
saturate with (C&s,C»p&, p&) only, we have y&/y&=3
while furthermore Eq. (5.26) is compatible with (but
does not force us to) 2Gz&~=3G&~. One easily sees that
the same would not be true if we put C~=o. This then
is the closest to the simple (Cts,Ct) saturation for the
DH rule. ~

(VI) Pagels's sum rule" for s s -+ 2p decay. We shall
discuss the saturation problems for this sum rule in the
derivation of which the low-energy theorem once again
plays a crucial role, but now applied to not strictly
forward directions. We write the Pagels rule in the
following form, in the SU(3) limit:

~ fG~'Q —sG~ LU(U+1) —sQ' —13}+Tt

z is the anomalous magnetic moment of the baryons,

«= «sQ s—«g)$U(U+1) ,'—Q'—1—j
F is essentially the x'p+ 2p decay amplitude; for its
precise definition see Ref. 22, Eq. (2.13). As is the
U'-spin scalar member of the same Hearn-Leader
amplitude employed by Pagels. As is discussed in Ref.
22, this amplitude has Feynman poles in the t channel
because of the 2p decay of pseudoscalar mesons. The
term proportional to F on the left-hand side of Kq.
(5.24) is just that pole term which corresponds to this
decay mode for the neutral members x and g of the
usual pseudoscalar octet.

The T~ term which we have inserted on the left-hand
side of Eq. (5.24) represents a similar pole term (or set
of terms) which may arise from the existence of one
(or more) unitary singlet pseudoscalar mesons with an
important 2p decay mode. At least one possible candi-
date for contributions to T~ is the g' meson.

A main assumption which is made in the derivation
of Eq. (5.27) is that the amplitude As satisfies an
unsubtracted dispersion relation after all pole terms
corresponding to 2y decays have been isolated. . Let us
suppose that formally this has been done in Eq. (5.27).
Then we can make the following statements:

(1) A saturation of Zby10 and 1in thes, I channels
is again a simple example of a possible consistent
treatment of the dispersion integral.

(2) In particular, such a saturation is compatible
with

I(D = 3~p and 2Gg) P= 3GpP.

(3) With this saturation the Z integral does not
contribute to x'p ~ 2p decay as a result of which one
has the approximate formula

(ts~) s 4srrs m~
r(~') '=I

I L2«(p)+" (P)—«'(~) j'
(.m) G.y 64

—(2.2X10 "sec) ' (5.28)

which is in approximate agreement with experiment
as has been discussed by Pagels."

(4) The result (5.28) could be invalidated if along
with the term T& in Eq. (5.27) there would be a sizable
"T8" term corresponding to contributions of higher
pseudoscalar octets.

(VII) The sum rule for differences of Thomson
scatterings appears to give qualitatively reasonable
answers, too, if one saturates with 10 and 1 in the s, I
channels and if one uses the constraint imposed between
Cj& and C& by this saturation. '

"As was noted in Ref. 22, this leading term is also present in
the work of M. Goldberger and S. B.Treiman LNuovo Cimento
9, 451 (1958)j apart from some numerical corrections necessary
in that paper.

s' See H. R. Pagels, phys. Rev. Letters 18, 316 (1967);and the
closely related work by H. Harari, sbsd. 18, 319 (1967).


