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It is shown how to relate the physical three-baryon scattering amplitude as given by a generalized Bethe-
Salpeter equation to the solution of an integral equation with an L? kernel. This is done by demonstrating
that the contours for the integration variables in a perturbation contribution to the amplitude may be
distorted so that no propagator vanishes. The method is an extension of techniques used earlier by Tikto-
poulos for the two-particle Bethe-Salpeter equation. The results hold for center-of-mass energies less than

half way to the threshold for production of a meson.

1. INTRODUCTION

MONG the difficulties encountered in connection

with the integral equations of relativistic, off-
mass-shell scattering theory is that caused by the van-
ishing of the propagators. This complicates a numerical
solution and stops the kernels from having useful
formal properties, such as being L? or compact. This
paper begins an investigation of the problem when
three-particle states are involved. For simplicity, we
assume that the three-particle channel is the one of
lowest mass (we call the particles “baryons”) and that
the next threshold is due to three baryons and a meson.
We hope to consider coupled two- and three-particle
channels later. Under certain assumptions, discussed
below, we show that the physical three-particle elastic
scattering amplitude may be written in terms of the
solution of an integral equation with an L? kernel.

We study generalized Bethe-Salpeter equations such
as those discussed by Taylor! where three-particle
intermediate states are exposed. The complete three-
body scattering amplitude is given in terms of the ir-
reducible three-body amplitude and the two-body
scattering amplitude, and our approach is to assume
that the last two amplitudes are known. We make use
of analytic properties that they would have in per-
turbation theory.

The technique employed is analogous to that used
in the nonrelativistic problem (Rubin, Sugar, and
Tiktopoulos,2 Nuttall®), where we investigate a contri-
bution to the amplitude obtained by iterating the inte-
gral equations. We must show that the contours of
integration for the variables appearing explicitly may
by distorted, without altering the integral, to positions
where the three-particle propagators do not vanish.
Moreover, the distortions must be such that the re-
sulting terms may be resummed by an integral equation.

We are able to find satisfactory displaced contours
so long as the center-of-mass (c.m.) energy does not
lie beyond half-way to the first inelastic threshold. If
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3 J. Nuttall (unpublished).

160

both the initial and final states correspond to points
lying within a region A of the Dalitz plot, the contour,
and corresponding integral equation, is simpler. We
found an analogous result in the nonrelativistic three-
body problem.?

For the two-particle Bethe-Salpeter equation, Tik-
topoulos? found that a satisfactory contour displace-
ment existed for c.m. energies below the first inelastic
threshold. The method that we describe here for the
three-body problem fails to work for a similar range
mainly because of the meson pole contribution to the
crossed channel of the two-body scattering amplitude.
To accommodate this, a more complicated contour dis-
tortion will be needed and we hope to return to this
question later.

Throughout we disregard all problems concerned
with large momentum behavior and renormalization.
We omit self-energy contributions to the propagators
in the exposed states—their inclusion would not affect
the substance of the argument. We assume that the
necessary amplitudes decrease fast enough to lead to
12 kernels.

It has already been demonstrated by Schwartz and
Zemach’ that a numerical solution of the two-body
Bethe-Salpeter equation is feasible if the equation is
first transformed into one with an L? kernel. Their co-
ordinate-space method of achieving this is actually
equivalent to the contour-distortion method of Tikto-
poulos.* In the same way we hope that the present work
may be useful in connection with the numerical solu-
tion of three-particle off-mass-shell equations.

We begin by studying under what conditions it is
possible to carry out the Wick rotation® of the internal
energy variables in a general Feynman integral. The
results are used later to demonstrate the necessary
analyticity of the “known” two-particle and three-
particle irreducible amplitudes. In Sec. 3 we obtain a
satisfactory distorted contour for a special choice of
the external variables, and the results are extended in
Sec. 4 to include all physical external variables. There
is a brief discussion of integral equations in Sec. S.

4 G. Tiktopoulos, Phys. Rev. 136, B275 (1964).
5 C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966).
6 G. C. Wick, Phys. Rev. 96, 1124 (1954).
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2. WICK ROTATIONS

Before analyzing the three-body scattering problem
we need a result concerning the Wick rotation® of all the
internal energy variables of the Feynman integral de-
rived from a connected diagram which may have any
number of external lines. Let the real external momenta
be denoted by £®, i=1, .-+, n, (X 29 =0), the loop
momenta to be integrated over p®, ¢=1, - -+, L and the
momenta of the internal lines ¢, =1, - - -, m. These
momenta are related by equations of the form

GO=ROLT; epD, 1)

where K@ is a linear combination of the external mo-
menta and e;=—1, 0 or 1. Suppose that the mass of
the particle corresponding to the 7th internal line is ..

The result specifies a region D of the space of the
external energy variables k¢ for which the Wick ro-
tation of the internal energy variables is possible. To
determine D we group the external momenta into two
sets {E®:iCI} and {ED:id T}, T a set of integers,
defining a channel, and find the mass my of the lowest
mass intermediate state in channel I. The region D
is the set of all 2o satisfying

| > koe@| <my forall I. )

icI
We demonstrate that a given set (ko) belongs to D
by showing that it is possible to find a set of loop

energies po?=45; and corresponding internal line ener-
gies qo¥=¢; such that

|gs| <ws, i=1,---,m. ©)
We transform po® to m; by
po P =Pitem; 4
and using (1) we have
Q9 =qite? X; ey ©)

Initially 6=0 and each m; runs from — 0 to .
The denominator associated with the ¢th line is
[P 2—u2+1ie which vanishes at

oD = [ pul+qD2—ie]'2. 6)

If each q remains real and 0 varies from 0 to i, it is
easy to see that no denominator vanishes so long as (3)
is obeyed. Thus the Wick rotation is possible and re-
sults in an integration contour

Re po@=p;, p® real, (7
with the corresponding relation for ¢
Re go@=q;, q@ real. (8)

We now must find the shape of the region D which
may be defined as the set of %, for which it is possible
to find ¢o®=g¢; satisfying (3). D is not empty, for it
includes the origin, ko =0_with §;=0. On the other
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hand, D cannot extend beyond the limit laid down by
(2), for if Q is the sum of the internal energies of an
intermediate state for channel I, then

Q=2 k', ©)

ier

and (3) shows that |Q| must be less than the sum of
the masses of the particles in the intermediate state.
Another useful property of D is that if a set (k,®)ED
then all sets of the form (tky®) with 0<¢<1 also be-
long to ®. To prove this we replace the (p;) which
correspond to (ko) by (¢p;), and (1) shows that all ¢;
are multiplied by ¢, so that (3) are still satisfied.

To determine whether or not a given set (k)ED
we consider moving along a straight line from the origin,
ko@=0 to the point (ko?) in the space & of all ky®.
For each set (ko) near enough to the origin there is a
region S(k) in the space @ of all po® in which all the
restrictions (3) are obeyed. In other words S(k) con-
tains all allowed (p;). X

When k=0 we know S(k) is not empty and we
take any (po‘?) inside S(k) which will satisfy our con-
ditions until (%”) moves in such a way as to make
(po®) lie on one of the edges of S(k). This implies
that for this set (ko®), for a certain set J of
internal lines

QW=xm;, €T,
xi==1 ) (10)

[q0®| <ms, €T, (11)

The region S(£) will still not be empty if we can change
0 by 8po® in such a way as to change ¢o® so that

x:0g0P<0 forall 1&J. (12)
Using (1) we deduce that
qo@8go P =qo ™ 3_; €;i0po P <0 forall &J. (13)

and

From this point the argument follows that of Stapp? to
the point where we see that it is possible to satisfy (12)
unless there exists a set of positive a; satisfying the
Landau equations?®

2 ag®=0

closed loops
and

gD =ckp; forall icJ. (14)

If these equations have no solution S(&) is still non-
empty and will remain so until (k,(¥) are chosen to
satisfy them.

The equations (14) that we have obtained are merely
those which give the location of singularities of Feyn-
man integrals in one-dimensional space-time. The only
singular surfaces in & space with positive a; are the

7H. P. Stapp, Phys. Rev. 125, 2139 (1962).

8 See, for instance, J. D. Bjorken and S. D. Drell, Relativistic
Quéagsmm Fields (McGraw-Hill Book Company, Inc., New York,
1965). i i
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normal thresholds that we have already stated are the
boundaries of D.

Assuming as always the convergence of all integrals
at infinity, our result shows that the Feynman integral
is an analytic function of its external variables in D.
This domain of analyticity may easily be extended in
two ways. First we may allow %, to be complex so
long as the real part of ko™ satisfy the requirements
(2). For after the Wick rotation we have Re po®=p;
and our previous argument shows that the real part of
(6) cannot hold.

It is also possible to allow some of the k® to become
complex under the transformation

k® — ¢k | (15)

with ¢ small, without making © much smaller, so long
as the k® that remain real astisfy

[k®|<L, (16)

where L is some fixed limit. To show this, we rotate at
the same time all the internal p® by the same transfor-
mation as (15). Any q will now have the form

q®O=K+e#P, @17

where K and P are real and K is bounded. It is easy
to see that
Re[[q®@ 2> — K2 sin?p/cos? (18)

which may be made as small as we please by choosing
small enough ¢. Consequently Re[u24q®?]V2 is not
much less than u;. The new D is therefore specified by
(2) with each u; replaced by u;—e;, where ¢; is some
small quantity.

3. CONTOUR DISTORTIONS

In this section we begin the program we have out-
lined in the Introduction by studying contour deforma-
tions for diagrams contributing to the physical three-
baryon elastic scattering amplitude [Fig. 1(a)] with
the external variables fixed at special values. In addi-
tion we impose the condition maintained throughout
this paper, that the total c.m. energy is not beyond
half-way to the first inelastic threshold.

More explicitly, we investigate the structure of the
three-baryon intermediate states in a perturbation-
theory contribution to the amplitude. An arbitrary
term must consist of a chain of two-body scattering
diagrams and three-body irreducible diagrams linked
together in any order, except that the same pair of
particles must not interact twice in succession. An ex-

Fic. 2. Typical contribution to three-
baryon scattering amplitude with three-
baryon states exposed.
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(@)
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F16. 1. (a) Three-baryon scattering amplitude; (b) Two-baryon
scattering amplitude; (c) Irreducible three-baryon scattering
amplitude; (d) Irreducible two-baryon scattering amplitude.

ample is shown in Fig. 2. In this figure we have used the
symbol of Fig. 1(b) to represent the sum of all connected
contributions to the two-baryon scattering amplitude
while that of Fig. 1(c) denotes the three-baryon ir-
reducible part of the three-baryon scattering amplitude.
This is defined, following Taylor,! as the sum of all
connected contributions to the three-body amplitude
which do not contain three-particle intermediate states.

We shall need to make use of certain analyticity
properties as functions of their external momentum
variables possessed by the amplitudes of Figs. 1(b)
and 1(c). These properties will be derived on the as-
sumption that Fig. 1(c) is a finite sum of perturbation
contributions. For the two-body scattering amplitude
we shall make use of the iteration of the ordinary
Bethe-Salpeter equation, which states that the ampli-
tude is the sum of chains of any number of two-baryon
irreducible amplitudes, Fig. 1(d). Again we shall make
use of analyticity properties of Fig. 1(d) deduced from
perturbation theory.

Each of the internal lines in Fig. 2 corresponds.to
a propagator which we shall take to be (§2—m?+i¢)7,
with m the baryon mass, disregarding self-energy effects.
The inclusion of these terms, apart from renormaliza-
tion problems, would not lead to any serious modifi-
cations of our argument.

Our approach is to assume that the irreducible
amplitudes of Figs. 1(b) and 1(d) are known and
study the problem of finding the complete three-body
scattering amplitude in terms of them. Our scheme will
not calculate some terms of the type of Fig. 2 with a
small number of links in them, and these must be
evaluated separately. ‘

We shall work in the c.m. frame where the total

P ﬁ(u) Pe Q“) ™ &(I)

pag ) P.g® Ped



1462 T.

energy is 3P and we label the external momenta as
shown in Fig. 1(a). Thus the following 4-vector equa-
tions hold:

EOLEOFEO=RO4ROJLR® =0, 19)

For simplicity in this section let us only consider a
special set of values of the external variables with

k=K 9=0, i=1,2,3
and (20)

|k@|=|K®|=Fk say,i=1,2,3,

where £ is fixed.

For physical scattering we need P*=Fk?-+m?, but we
first assume that P is real and less than m. In this case
the external energies are clearly within the region D of
Sec. 2 for any connected three-body diagram and we
may therefore perform the Wick rotation on all the
internal energies in each of the parts of Fig. 2. After the
rotation each ¢o® has a fixed real part, and if P<m,
these may all be taken to be zero. With this choice the
requirements of (3) are met for all lines shown ex-
plicitly in Fig. 2. For the other lines we may apply the
result of Sec. 2 to the different amplitudes making up
the chain of Fig. 2, with the particles in the exposed
three-baryon states playing the role of the external lines.

After the Wick rotation none of the denominators for
the three particles states vanish, and the amplitudes of
Figs. 1(b) and 1(c) are analytic functions of their ex-
ternal variables where they are required. Moreover, all
the ¢ are integrated over the same contour, Rego® =0
and q@ real, so that it is straightforward to sum all
diagrams of the type of Fig. 2 by means of an integral
equation. The equation will be a generalization of the
Watson-Faddeev equations® to include the effects of
the three-body irreducible amplitude, but the variables
will lie on the contour mentioned above.

We must investigate whether this situation still
holds for values of P>m. Of course we know that, as
long as the three-body amplitude Fig. 1(a) is not
singular, it must be possible to distort the contours
over which the internal variables are integrated to make
the denominators nonvanishing. However, there is no
certainty that the distorted contour will be a topological
product of the same contour for each of the ¢ vari-
ables, independent of the order of the term considered.
We shall show that this is indeed the case for a range of
values of P>m, providing that 2@, K® are also re-
stricted. It is then quite easy to write the required
integral equations. In the next section we show that a
more complicated contour distortion is necessary to
deal with the values of the external momenta, but that
if 3P is less than half-way to the energy of the next
threshold, an integral equation may still be derived.

We shall prove that all the terms of Fig. 2 are con-
tinued analytically to values of P>m by distorting
each ¢o? contour from the imaginary axis to the one

? See, for instance, K. M, Watson and J. Nuttall, Topics in Several
Particle Dynamics (Holden-Day, San Francisco, California, 1967).
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F16. 3. Standard distorted go® contour C.

shown in Fig. 3, which we call contour C. In this figure,
a and b are small, with ¢>b, and the exact shape of C
near real, negative ¢ will be discussed later. If the e
in each denominator is allowed to approach zero, we
shall also have to distort the ‘9 contours slightly, and
we shall use a rotation

q — gD, (21)
with ¢ a small positive angle.

Let us first verify that none of the denominators
corresponding to particles in the exposed three-baryon
states of Fig. 2 vanishes. The types of denominator
involved are

(P4-§)2—m2+ie, (22a)
(P—§—P)2—mi+ie, (22b)
(P—G—E)—mi+ie, (22¢)

where o, po lie on C, q, p obey (21), and £ is one of the
4-vectors associated with an external particle, which
means that k is real and for the moment ky=0. The
denominators vanish when the following equations are
satisfied :

go=— (Px[g?+m?—ie]'?), (23a)
qot+po=P=+[ (q+p)*+m?—ie]'2, (23b)
go=P—kot[ (q+k)>+m2—ic]V2.  (23c)

The small parameters ¢, ¢, and & must be chosen so
that none of these equations is satisfied. Suppose we
first take the positive sign in (23a) and (23b) . With g,
and po on C, it is clear that the real parts of these
equations cannot hold if

4(P—m)<P+m,
ie.,

3P<5m. (24)

We shall henceforth assume this requirement, which
means that the c.m. energy is below that needed for
production of a baryon-antibaryon pair.

If we take the negative signs in (23a) and (23b), we
must study the imaginary parts of ¢go and go+po given
by these equations. From (23a) we find, using (21)
with ¢ small,

Imgo=~ —¢g*/ (*+mH'2, (25)
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so that g lies on the curve = of Fig. 3. Having fixed ¢,
we choose a and the shape of C near real, negative go
to make C lie just above Z in this region, which means
that

a=¢(P*—m?)/P—3, (26)

where § is small and positive. With this choice (23a)
will never hold.

With ¢o and po on C we observe that go+po must lie
in a region to the right of the contour shown in Fig. 4.
As above, we find that Im(go+po) determined from
(23b) will be large enough to make go+po of (23b)
avoid this region if

b<2P(P—m)p/(2P—m). @7)

Now we analyze Eq. (23c) in the same way, remem-
bering that we are working with 2y=0 and k%= P?—
Again the positive sign leads to no trouble, but with the
negative sign we find that ¢o has an imaginary part
given by

Imgo=¢(¢*+q-k)/[ (q+k)*+m*]2,

where q is now real. The values of g given by (23c)
with the negative sign lie in the region .S of Fig. 3.
We note that Img, may be negative for Rego between 0
and P—m corresponding to ¢ between [P2—m?]\2
and 0, but we may show that é may be chosen small
enough to ensure |Imgo|<a. Thus to show that no
go given by (23c) lies on C we need only investigate
values of Reqy near — (P—m) and make sure that here
Imgo>b. This will be so if (27) is replaced by a stronger
condition

(28)

b<x(x—E)p/(2P—m), (29)

where a2=4P(P—m). Clearly (26), (29), and the con-
dition a>b are easy to satisfy simultaneously.

So far we have proved that, with our particular
choice of external momenta, a distorted contour for
¢ may be found on which none of the denominators
(22) vanishes, even if e=0. To show that the amplitude
of Fig. 2 is analytically continued by this process we
must also demonstrate that the iterated amplitudes
that appear are analytic for the necessary values of
their external variables.

i . Take first the case of the three-baryon irreducible
amplitude of Fig. 1(c). The six external momenta
needed must be chosen from the following types

P+4, P+k, P—g®0—¢®, P—k—q®, (30)

depending on whether the amplitude appears at the
end or in_the middle of Fig. 2. We showed at the end of

CONTOUR DISTORTIONS

1463

D.,O ln

(P-m)

a-b—!

Vi /////////

F16. 4. Range of values taken on by (po+go), shown shaded.

Sec. 2 that a small rotation of some of the external
three-momenta did not affect the essential conclusions
of the analysis. Consequently we may deduce that the
irreducible amplitude is analytic in the region © de-
pending on the variables of the type

Re(P+qo), P-+ko, Re(P—go®W—qo®),
Re(P—ko—qo). (31)

We suppose the next threshold is due to a state con-
sisting of three baryons and a meson of mass u. In the
crossed channels the irreducible three-baryon amplitude
will have lowest-mass intermediate states of mass u and
p+m. Using the restrictions (2) we find that, wherever
they appear in Fig. 2, the irreducible amplitudes wil
be analytic so long as

6(P—m)<u,
ie.,
3P<3m+3iu. (32)

The critical restriction (32) comes for instance in
the crossed channel with momenta (into diagram)
of P—§W—4® and —P—§®.

Thus with our present contour we are able to con-
tinue only half-way to the next threshold at 3P=23m-+u
(we assume u<2m). The problem of how to modify
the contour to enable us to continue all the way to the
next threshold is deferred to another paper.

It remains to show that the two-particle scattering
amplitudes [Fig. 1(b)] entering into Fig. 2 are also
analytic on the distorted contours. The result of Sec. 2
does not immediately suffice, and we are forced to
analyze the two-baryon intermediate state structure of
Fig. 1(b), which may be written as a sum of terms in-
volving iterations of the irreducible two-body ampli-
tude Fig. 1(d). An example is shown in Fig. 5. We can-
not use the results’ of gTiktopoulos* on the Bethe-
Salpeter equation, for the external vectors are not real,
but we may apply the same technique that he used and
that we have used earlier in this section.

ped’
F1e. 5. A contribution to the two-
baryon scattering amplitude, formed by
iterating several irreducible two-baryon
amplitudes.
T
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P-m-1Re po

-(P-m-§Re py)

F16. 6. Distorted contour I for 7o,

The external momenta for the two-body scattering
amplitude are shown in Fig. 5. Here $, g, and ¢’ are
either on the distorted contour or are one of £, K@,
Suppose first that they all lie on the distorted contour.
We specify a distorted contour for the internal mo-
menta 7@ of Fig. 5 and show that the necessary de-
nominators do not vanish. We let each 7, lie on the
contour T of Fig. 6, whose shape depends on the value
of po. As before, we rotate each r®— ¢ "#r®, An
analysis analogous to the previous discussion shows
that none of the internal denominators of Fig. §,
[P£#®2—m2+-1e, vanishes with this choice of con-
tours. We now apply the result of Sec. 2 to demonstrate
the necessary analyticity of the two-baryon irreducible
amplitudes occurring in Fig. 5. The various types of
total energy appearing in the crossed channels are
7o®4+7® and got3iporo. With our choice of 7@
contour the requirements of (2) are satisfied if

3P<3m+u, (33)

and the same result follows from the direct channel
energy 2P— po. Thus this continuation works all the
way up to the next threshold, so long as the sum of all
terms of the Fig. 5 has the same analyticity as an indi-
vidual term. However; the restriction (32) again appears
when we study the contribution of just one irreducible
two-body amplitude. If any of p, ¢, §’ are £, K® the
above considerations certainly still hold when %¢®=0.

This completes the discussion of the contour dis-
tortions for the special case when the external variables
satisfy the conditions (20) and (32). In Sec. 5 we dis-
cuss how to use our results to obtain integral equations

(3),
Kg

Ks’a)
Fic. 7. The Dalitz plot
A showing the physical region
Kf,” and the region A.
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leading to the three-body amplitude but first we in-
vestigate the problem of extending the values of the
external variables for which our method works.

4. EXTERNAL OTHER MOMENTA

We now consider whether our previous analysis may
be extended when we allow the ko, K¢ to vary from
zero, but maintain the condition 3P<3m-+3u. It is
convenient to use a Dalitz plot™ to describe the values
of ko and a similar one for the K,®. So far we have
been working with both (2®) and (K@) at O, the
center of the physical region in the plot of Fig. 7. The
boundary of the physical region is given by the equation

(DYt (RD)tf (R ®Y— 2 (RO D)2
+ (FOROY4 (EOEW)]=0  (34)

and the extreme allowed values of any particular %, are

ky=—(P—m), (P—m)(P+m)/2P. (35)
If ko varies from zero, with %2 given by
Rmi= (P+ko)?, (36)

then the values of go given by (23c) are changed, and in
particular the shape of the region S of Fig. 3 alters.
From (28) we may deduce that Img, from (23c) may be
negative for values of go in the range

We must ensure that S never intersects C, which from
(37) certainly means that ko must lie within range

— (P—m)+§'<ko<3(P—m)—?¢, (38)

with ¢’ small. In fact a little algebra shows us that
if ko satisfies (28), § and b may be chosen small enough
to ensure that .S actually does not intersect C.

The result is that, if (38) holds for all £,‘?, K@, the
denominators of the exposed three-particle states do not
vanish on the distorted contour, but we must still
verify that the component amplitudes of Fig. 2 are
analytic. Our previous analysis applies except where an
external momentum variable is involved. This case is

_~(P-m)

F16. 8. Contour C’, useful for nonzero e.

1 See, for instance, G. Killén, Elementary Particle Physics
(Addison-Wesley . Publishing Company, Inc., Reading, Massa-
chusetts, 1964). .
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easily treated by the method of the previous section and
again leads to the condition 3P < 3m+%p.

Consequently, as long as both (k@) and (K,®) lie
inside a region contained in the triangular part A of the
physical region in Fig. 7, all terms of the Fig. 2 type
may be written as integrals over the distorted contours
we have described, on which no denominator vanishes.

We have obtained an analogous result in the non-
relativistic case,® and, to find a satisfactory contour
distortion for ky®, Ko,@ lying outside A, we shall
follow the procedure that worked before. It is not now
possible to distort all the integration contours in the
same way. Instead we continue to displace in the way
we have described all § except the two nearest the
ends of the diagram of Fig. 2, §® and ¢™. We shall
show that for a given £®, K@, other displacements of
the §®, ¢ contours may be found which provide the
required continuation.

To start this task we consider a term such as Fig. 2
before the € in each Feynman propagator has been al-
lowed to tend to zero. A study of Egs. (23) shows that
no denominator will vanish (with nonzero €) if each
g0 lies on the contour C’ of Fig. 8, while the q‘? are
all real. Let us assume that the initial part of the term
we are considering consists of two-particle scattering
amplitudes as shown in Fig. 9. As ¢e— 0 we displace
the ¢o® contour to C and q@® — ¢~*q® and for each
d® consider whether a satisfactory distortion of
W exists.

Let us use the notation of Egs. (23) and set

(39)

so that the three denominators we must study are those
of (22). If Imp, is not near zero, then (23b) cannot be
satisfied and we need only find a distortion that avoids
(23a) and (23c). Of course, any distortion need only be
small and we may use the familiar argument leading to
the Landau equations (see Stapp’) to show that a §
displacement exists unless there is a pinch between
(23a2) and (23c). This can only happen at the normal
threshold

(9=q, 9@=p, k9=k,

(2P—E)*=4m?
> ko= (P*—m?)/2P (40)

which lies on the edge of the physical region and must
be avoided.

If Imp, is near zero we must also consider the possi-
bility of a pinch involving all three denominators. This

Psg® p+k®
p+§l@ ? p+R®®

F1c. 9. Beginning of a particular contribution to the three-
baryon amplitude.
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2P-p 2P-k

k-p

Fi16. 10. Equivalent triangle diagram.

is a definite danger, for we know? that there exist real
b, E for which the triangle graph of Fig. 10 (wihch is
equivalent to what we are studying) is singular on the
physical sheet—i.e. with all the Feynman €’s approach-
ing zero through positive values. We must study par-
ticularly those values of / with real parts near this
singularity and show that a small displacement to the
£ on our contour does not lie in the complex part of
the singular surface. Since the equation of the singular
surface has real coefficients this may be done by study-
ing the directions of tangents to its real section, as
described by Eden.!

Since the displacement p— ¢~*p may be thought of
as one where the direction of p remains unchanged but
2= |p| develops an imaginary part, we assume that the
angle between p and k is fixed and study the shape of
the singular curve in (po,p) space with fixed £. In terms
of the invariants « and 8 given by

a=Q"~p*, B=Qz—pke, (41)
Q=2P—py, 2=2P—ky, c=p-k/pk, (42)

the singular surface is given by
K?%?—2K%B+ (K2—4m?) K2a+-4m?62=0, (43)

with K?=z2—F2,
In «, B space this is the hyperbola shown in Fig. 11.

robs,

B = a(22-k2¢?)

\ 4m? K2

F16. 11. The singular hyperbola in («,8) space, with 4B singu-
lar on the physical sheet. The region to the left of the parabola
2= (22— k%?) corresponds to real (Q,p).

B R. J. Eden, Brandeis University Summer Institute, Lect
Notes 1, 1961 (W. A. Benjamin, Inc., New York, 1962). coire
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It is well known, as described by Polkinghorne,’? that
only the part of the curve lying between 4 and B corre-
sponds to a physical sheet singularity. Not all of this
curve will transform into a real curve in (po,p)
[or (Q,p)] space. For a given «, 3 we may solve (41)
for Q to give

Q= (22— k)Y aB+ k[ B —a(2— k) ]2}, (44)
which will be real only if
B2>a(z2—k%?). (45)

Thus (a,8) must lie to the left of the parabola shown
in Fig. 11.

Each point of the interesting part of the singular
curve transforms into two points in (Q,#) space, and for
values of k¢ lying in the range not dealt with by our
earlier method,

L(P—m)<k< (P*—m?)/2P,

we have the situation shown in Fig. 12. The branch of
the singular curve of interest lies within the hyperbola
a=4m?, touching it on two points 4’ and A", both
corresponding to 4. Only the part between A’ and 4”
is singular on the physical sheet, and this may not exist
at all if ¢ is too small. If ¢ is negative, 4’4" lies below
the Q axis and corresponds to negative p, of no interest.
It may be shown that A’ and 4" have Qs lying be-
tween 2m and 3P—m, which means that

— (P—m) < po<2(P—m),

i.e., within the range of Repo on the contour C.

(46)

(47)

Now suppose that the singular curve is given l?y the
equation f(po,p)=0, and that (po,p) is a real point on

P

F16. 12. The singular curves in (Q,p) space. The part between
A’A" is singular on the physical sheet.

27, C. Polkinghorne, Brandeis University Summer Institute,
Lecture Notes 1, 1961 (W. A. Benjamin, Inc., New York, 1962).
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this curve. A nearby point (po-+4dpo, p+i6p) will also
be on the curve if

iLpo(d/0p°)+-8p(3/9p)] =0. (48)

Except when po is near to —(P—m) or 2(P—m),
points on our contour C have real negative 6p, and 8p,
or correspondingly positive 6Q and negative §p. They
clearly do not satisfy (48), for Fig. 12 shows that
tangent vectors to the singular curve have both §Q
and 8 positive.

The special case of kg=2%(P—m) must be considered
separately, for then 4’=D and if c=1, A”=E, and dp,
may be positive. Near D, the singular curve has the
approximate form

po=2(P—m)—\p*

and with p — e=%p, the values of p, given by (49) do
not intersect C (see Fig. 13). In the same way, for
small enough b, we find that the singular values of po
near po=— (P—m) lie above C.

We therefore have shown that for each (po,p) on our
distorted contour, a displacement of the ¢ contour
exists which makes the denominators of the graph Fig. 9
nonzero (the above argument must also be applied to
normal threshold singularities to complete the discus-
sion). It is necessary to point out that for large g, we
may take ¢o on C and q— e~*q, for (23a) and (23c)
cannot vanish while we have already shown (23b) does
not vanish in this case. Only for smaller ¢ do we need a
different displacement. This result is important when
we consider the analyticity of the two-body scattering
amplitudes in Fig. 9 on our distorted contour. The
arguments of Sec. 2 may be modified slightly to show
again that the two-body amplitudes are indeed analytic
where required so long as 3P <3m+%u.

If an irreducible three-body amplitude appears near
the ends of Fig. 2, the denominators involved will be
just a subset of those for a diagram containing a suc-
cession of two-body scatterings, so that the distortion
we have described above will work for all cases. It is
only necessary to distort ¢ and ¢ in a nonstand-
ard manner.

(49)

- 2f-m

F16. 13. The parts of the singular curve shown by dashed lines
near — (P—m) and 2(P—m), for the special case ko=3(P—m),
¢=1. Note that they do not intersect contour C.
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5. INTEGRAL EQUATIONS

It is a relatively straightforward matter to formally
sum all but a few contributions to the scattering ampli-
tude by means of an integral equation with variables
on our distorted contour. The kernel will be analytic
and, with satisfactory behavior for large momenta, will
be L?. We assume the baryons are not identical (the
equations could easily be symmetrized) and use an ob-
vious extension of the Watson-Faddeev® technique.

We define a set of amplitudes T:;¢® (5,4;,4") to
represent various contributions to the full three-baryon
scattering amplitude. Here a(8)=0, 1, 2, 3 describe the
nature of the last (first) part of Fig. 2, with =0
meaning a three-body irreducible amplitude and other
values indicating a two-body amplitude with particle «
not being scattered. The ith particle (3=1, 2, 3) in state
a has momentum P—p—g, and the other two have
P+p, P+§, and similarly for j, B and §', ¢’. fa=1,2, 3
then ¢ will not equal « and we take particle « to be the
one with momentum P+5. If =0, p and ¢ are assigned
in cyclic fashion. All the momenta , ¢, ', §’ lie on the
distorted contour py&C and p — ¢~*p. In addition we
shall need the amplitudes f; ($,4;$’,¢’) which de-
scribe two-body scattering (@=1, 2, 3) and the three-
body irreducible amplitude (@=0). For a5%0, ¢ will
contain a factor §*(p—p’).

The equations satisfied by T';©® are

Tii(aﬂ) (ﬁ;é; AI:QI) = aaﬂtij(a) (ZsygA) A,;Q“)

T [ e G 54
vla
Gd(ﬁ”; AI,) Tk](7ﬂ) (ﬁ”’gﬂ”; ﬁl’ A,) ) (50)

where
G ($,9) = {L(P+P)*—m* ][ (P+q)*—m*]

X[P—p—ar—my™, for a=0
G (5,9) = {[(P+q)*—m*]

[(P—p—q2—m*]}t, for a#0. (51)

The symbol under the sum over vy means that we in-
clude all values if @=0 but omit « if «20. We choose %
to be not equal to either a or v. If 50 and y=0 we
take k=3, 1, 2 for a=1, 2, 3.

The kernel of this equation consists of analytic func-
tions and its square will be L? just as in the nonrela-
tivistic case so long as the necessary integrals converge
at infinity. We must now relate the physical scattering
amplitude to the quantities T';©®. It is simplest to do
this when both the initial and final external variables
lie inside the region A of the Dalitz plot. We showed
in the previous section that a satisfactory continuation
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of a term was provided by distorting all internal mo-
menta in standard fashion. Consequently, the sum of
all contributions to the three-body scattering amplitude
except those containing up to four terms may be written

T=22 22 XX X t9G¢"G,

a B vla 8y vyla ¥I5 8/8
XT@OGyOG,» . (52)

For ease of writing we have not filled in the other
indices or the momentum variables, which are allotted
in a straightforward manner. The internal variables are
integrated over the distorted contour, while the external
variables are pairs of £® and K ®.

A similar procedure works when the external vari-
ables do not both lie within the region A. It is neces-
sary to place three ¢ on either side of the 7@ in an
expression analogous to (52) and the integrations in-
volved will be over contours different from the stand-
ard one.

By defining the operators in a Banach space rather
than a Hilbert space as above, we could include more
of the first few terms.

6. CONCLUSIONS

Our work leaves many questions unanswered. We
would like to extend the allowed energy range to
3P < 3m-tpu, but meson pole terms in crossed channels
of the two-body and three-body irreducible amplitudes
prevent this. Above 3P=3m-+4u these terms need a
different, more complicated distortion which is not a
topological product of distorted contours for the differ-
ent internal variables. This makes it harder to derive
integral equations. For the parts not containing the
meson pole, our present contour is probably the
“best” possible.

If this problem is overcome, the next step might be
to study systems where both two- and three-particle
intermediate states are exposed. In the present ex-
ample this would mean exposing the (two-baryon
+meson) state in the baryon-baryon scattering ampli-
tude. There is a possibility that the two-particle re-
sults may be generalized to the case of # particles. It
may be that by exposing all intermediate states with
numbers of particles up to and including #, that the
method will provide well-behaved equations for ener-
gies up to the (z+1) particle threshold. An under-
standing of physical region singularities will be im-
portant for a study of any such generalization.
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