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Conspiracy and Superconvergence in Pion Photoproduction~
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Pion photoproduction, especially at t =0, is studied, with particular reference to the conspiracy condition
and the superconvergence relation that should apply at that point.

I. INTRODUCTION

M UR basic interest in this paper is pion photo-
production at 1=0—and the conspiracy' condition

and superconvergence' relation that should apply at
that point. Our main conclusions are: (a) The con-
spiracy relation, although its derivation is complicated
by the presence of unequal masses, is similar in struc-
ture to the conspiracy found originally by Gribov and
Volkov' in nucleon-nucleon scattering. We argue on
physical grounds that the conspirators are not any of
the well-known particles, and that conspirator inter-
cepts are low. If the 3(965) turns out to have the
quantum numbers of the pion, a natural explanation
of this would be a conspiracy between its trajectory
and the one on which the harv(1003) lies. (b) The large
v behavior' of the A~& & amplitude at t=0 is governed
by the exchange of conspirator trajectories only, and
hence should satisfy a superconvergence relation which
converges rapidly in the asymptotic region. (c) Nu-
merical discussion of the low-energy data, including
5 waves, ¹ts*(1238),and ¹~s*(1520)fails to saturate
the superconvergence relation by an order of magnitude.
Because our data certainly stop far short of the asymp-
totic region, and because higher resonances in photo-
production do not have the usual unitarity limitations,
we see no reason why the higher resonances cannot
make up the diQ'erence.

The order of presentation of the material is as follows:
We begin in Sec. II by using conventional Regge
arguments to derive a momentum-transfer-param-
etrized family of superconvergence relations which
express the pion-nucleon coupling as an integral over
Art l+tAs& & above threshold. These conventional
arguments indicate good convergence of the t=0 form
of the superconvergence relation (i.e., for At& l). In
Sec. III, we tighten these arguments in the course of

considering the conspiracy in photoproduction at t=0.
We point out that the high-energy behavior of A~& &

is governed entirely by conspirator exchange, and we
argue physically that the conspirators have low-lying
intercepts. Conjectures are made about actual recur-
rences of the conspirator trajectories. In Sec. IV, we
evaluate the superconvergence relation to find the
somewhat surprising result that the data mentioned
above fail to saturate the relation by an order of
magnitude. Some discussion is given of this, including
the possibility of a axed singularity at J=O (Ref. 4)
and/or a Regge cut with the quantum numbers of
the pion. Finally, the possibility of the pion con-
spiring, together with a dynamical damping mechan-
ism for the other conspirators at physical points, is
mentioned.

where

Gt ———(peak(/M) (At+tA s),

Gs———(p,kt/M)t'"As

Gs ——(k,/2M) Lt't' —2M)LA t+t'~'A 4j

G4= (k,/2M) (2MA t tA4), —

k = (t—t ')/2t'ts p = '(t 4M )'~-—

(2.1)

(2 2)

are, respectively, the magnitude of the photon and
nucleon momenta in the barycentric system of the t
channel. p, and M are, respectively, the pion and
nucleon mass.

II. DERIVATION AND DISCUSSION OF THE
SUPERCON VERGENCE RELATIONS

We take the relation between the invariants in the
direct channel and those relevant to the t channel as'
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The conventional partial-wave analysis in the ( convergence relation (for t(p')
channel is

Gi= —g (J+-', )bg (t)Pg'(z~),
dv'

I
ai( &(v', t)+(as( )(v', t)7(EV'. (2.6)

zg ———VIII/pgkg,

Gs= —
s & (~~ «)LJP~+i"+(J+1)P» i''7-

—(2J+1)(&z+Pz"), (2 3)

Gs+G4= —Z (J+-')b~'(&)P~'(«),
J

G.= —;r. (;«)LJP.,:+(J+1)P..-7
—(2J+1)ag (t)Pg—"),

where s& is the scattering angle in the I, channel. The
amplitudes uJ+, bJ+ are excited by triplet nucleon-
antinucleon states of total angular momentum J and.

parity (—1)~. a& is excited by triplet states of parity
(—1)~+', and b~ by singlet states of parity (—1)~+'.
Thus Ai+tAs receives contributions only from pion
exchange (or exchange of an axial vector meson with
C= —1). For the rest of this section, we shall con-
centrate our attention on this particular combination
in the isospin (—) configuration.

From Ref. 3 we know the dispersion relation

'+3 1 1
Ai( &(v,t)+(As( &(V,1) = ', f, ——

p2 —t yg-y y~+y

00

+- d.' Ea, (-&(v', 1)+~as(-&(",1)7
p

—v v V+V
(2 4)

1 &is+(
A, (—&+&A,(—&~ — f, —

y P,
—3

in which the small letters denote imaginary parts and

f„ is the pion-nucleon coupling, taken as f„'/47r 0.08. —
The large-v limit of Eq. (2.4) is

At 1=0, this reduces to the particularly simple form

00

f= dv' ai(—& (v',0),
p2+p9/4M

(2.7)

because the A s are free of kinematic singularities. ~

p(J+ ,')b;-(1)P,'(s,) = (~pp, /jV)A„(2. S)

Assuming that bq has a moving pole at J=n (/), and
the usual threshold behavior near the pole,

b..-(t) = tb. (t) (p,k,)"-, (2.9)

we find (doing a Watson-Sonirnerfeld transform) that
the pion trajectory contributes to A 2& ~ in the form

(t)P (t) (1+e-'--('&q
( vq "«&-'

&As( )(v,&)- .
sinirn(t) k 2 & k vs)

. (2.10)

The extra factor of n comes from the derivative of I' J.
To guarantee that 32&—) has a pion pole, we must take
the resid, ue at the pole singular at 5=p", then

(])p ([) 1+& An~(t)q —
q

a~(o i—
tA, (-&(v,&)-

~

—
~

. (2.11)
2(t—&a') siniru. (t) & vs)

Notice now that, although the imaginary part

(2.12)

has no pion pole, the integral over this Regge "tail"
does:

Pion Trajectory and Pion Pole

We can get some insight into how fast this family of
sum rules may be expected to converge by seeing how
the pole at i=p, ' arises on the right of (2.6). The con-
ventional way to Reggeize the pion is as follows. Set
Gs ——Gs ——G4 ——0 in (2.1). This implies that Ai ——0, and
hence

Jl0

~.'L '-'(', 1)+~ ' '(', ~)7 (25)

up

(Ev' les( & (v', $) =
2(&—~')

(2.13)

If the pion is a Regge particle, we expect this amplitude
to go down like y (') ' for large y. Because the pion
trajectory is negative below t= p', we have the super-

' The angle in the cross channel is not necessarily large for small
t, but we assume that daughter trajectories /see D. Z. Freedman
and J. M. Wang, Phys. Rev. 1SB, 1596 i1967)g allow us to use
the usual asymptotic forms. We shall return to note the inter-

tion of daughters and conspirators in Sec. III.

This then matches the explicit pole on the left side of
the superconvergence relation. Note that (2.11) is
essentially the pion contribution used by Zweig.

We learn that near, t= p,
' the continuum contribution

to our sum rule will be dominated, by a large "tail, "
' See J. S. Ball, Ref. 5.' See Ref. 5.
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and one wouM not expect to saturate with low-energy
data. Of course, as t goes away from /22, toward and into
negative values, one would expect the low-energy data
to be more important. In particular, at I,=O, the pion
pole Lcontributing only to A2' &$ evidently fails to
contribute at all.

What about possible contributions to At& & (P,O) from
the exchange of the trajectories corresponding to the
particles A2(1300), A1(1080) which are allowed'in the

(—) configuration? In the usual Reggeization of a
particle which excites ug+, bJ+, or u~, one starts by
setting G~ to zero, thus guaranteeing no contribution
to At+(As for all t (and, in particular, no contribution
to A, at f=O).

We see that conventional Regge arguments indicate
good convergence of the t=0 sum rule (2.7). Actually,
although this conclusion is correct, more sophistication
is necessary because t= 0 is a point of conspiracy, ' and
the Reggeization at t=0 should take this into account.
As we shall see in Sec. III, the high-energy behavior of
At& & (indeed, all the A 1's) is governed by the exchange
of conspirator trajectories only, all of which are low.

At&
—

& = — ((t)'/'G &
—

& —L2M —(t)"')G4& &} (3.1)
2PPk2

is usually taken to vanish at /=0. On the other hand,
however, setting G&, G3, and G4 to zero at (=0 is really
not consistent with the data; we know both from the
sum rule (2.7) and the data' that At(&,0) &0, and we

see from Eq. (2.1) that, near t=O

p Ay p, Ay
Gy~ G3 —&, G4-+—

2
/
f

)
1/2 2i

)
f

)
1/2

p, Ay

2i) i['/2
(3 2)

Thus, we learn that any Regge poles whose contri-
butions are to survive in Ar(», 0) must satisfy the
"conspiracy" equations"

G&(t=O) —iGs(t=O) =0, Gs(t=O)+G4(1=0) =0. (3.3)

' The (extrapolated) dataforA1& &(»,0) are discussed in Sec. IV.
The data for A1&+) at t =0 are essentially those given in S.L. Adler
and F. J. Gilman, Phys. Rev. 152, 1460 (1966).' Notice that t=0 is not in the physical region for photo-
production. This is typical of conspiracy points in the presence of
unequal mass, and makes the physical interpretation of the addi-
tional symmetry more dificult than in the case of Ref. 1 (where
it is a matter of angular momentum conservation): As v —+~,
t =0 approaches the forward direction, so that, at least for large v,
the additional symmetry at I,=O is clear.

III. CONSPIRACY

It has just been mentioned that, in the usual Reg-
geization of a particle which excites ag+, bg, or ag,
one starts by setting G~ to zero, thus guaranteeing no
contribution to A1 (t=O). That is, for example, al-

though exchange of the particles A2(1300), A1(1080)
is allowed in the "minus" configuration, their contri-
bution to G3 ), G4, and hence to

by+(t=0) =0
for all J, or, in the helicity notation of Ball,

Tg(+, +, 1)= Tg ( , —,—1), —

(3.4)

(3.5)

at 1=0. That is to say, the conspiracy suppresses one
of the two kinds of magnetic-radiation-initiated tran-
sitions at 3=0.

The first identity of (3.3) implies the more interesting
relation (redefining in+ —+ a+)

(J 1)"1++(J+—2)"+1++b; f,+, —
= (2J+1)ug—, (3.6)

whose structure and solutions are very similar to that
found by Gribov and Volkov in nucleon-nucleon scat-
tering. "There are two solutions with a 6nite number
of poles:

1s ) GJ ) QzJ Jp J—Jp J—Jp+1

8+= ——b
JQ

2Jp+1
8 b

Jp(2J p
—1)

(3.7)

2, bJ ) CJ+= QzJ JQ J JQ J Jp

1 3Jp+1
b, a = b .

Jp+ 1 (2Jp+ 3) (2Jp+ 1)

(3.8)

"D. Z. Freedman and J. M. Wang (see Ref. 6).
~ Presumably this is because, in both problems, the cross

channel involves the nucleon-antinucleon system.

Presumably these relations hold for all three isospin
configurations, although our primary interest will be
in the (—), as it is relevant to our sum rule. It is worth
emphasizing that, at this point, we do not know
whether the more common particles A2, A~, x, etc.
conspire or whether the conspirators must be more
exotic.

Solution

From Eqs. (2.2) and (2.3) we see that s,=0 at f=0.
Because s& is fixed at a point, we cannot obtain the more
convenient difference equations in the J plane by a
simple partial-wave analysis in s&. This difhculty is
typical of conspiracy relations in the presence of un-
equal mass, and requires a small trick: We imagine
writing the conspiracy relations (3.3) for small t with
a right-hand side which vanishes as t —+0. For any
finite f, s, is free to vary (with v), and we can partial-
wave analyze, using Eqs. (2.3). Then, in the limit i =0,
the right-hand side vanishes. The assumption that we
can interchange the order of partial-wave analysis
and t —+ 0 is evidently an assumption of regularity at
f=0, which should be guaranteed by the daughter
trajectories. "

In this way, it is straightforward to show that the
second conspiracy relation of (3.3) implies
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TABLE I. Contributions to superconvergence relation
(in units of p~).

Multipole ~

2 2
dv' (v') 'a&&+& — dv' (v') 'ar — dv' a&

jV0 (3/2)

~I (3/2)

gi (3/2)

~2 (1/2)

(1/2)

0.027
0.040
0.206—0.044—0.015

+0.021

0.027—0.020—0.103
+0.022—0,015
+0.021

0.07—0.045—0.25
0.05—0.08
0.12

In the minus configuration, only particles with G= —1,
I= 1 can be exchanged, i.e., particles with the quantum
numbers of A~, A~, and m, call them A~', A~', and x'.
We can say immediately on grounds of parallel tra-
jectories that ~' cannot be the pion, for, if it were, the
A2' trajectory with the same intercept as the x' would
generate a J"0=0+, I=1 particle with essentially
the mass of the pion. The only candidate at the moment
for such a particle is the so-called 7rv(1003).'s If this
is the first recurrence of the A2' trajectory, its intercept,
along with s.', would be around (—1). Then there
should be a particle with the quantum numbers of the
pion near x&. The only likely candidate for this is the
l&(965) meson. "'4 If the A i' is taken above the m', 2 s'

(solution 2), it could conceivably be the A i itself.
If one allows an infinite number of poles, there are

many solutions to (3.6).'s For example, one can remove
the A&' pole or the A2' pole if the x' has a family of
daughter trajectories spaced downward two units at a
time. In any event, all solutions with parent x', A2'

have them with degenerate intercepts, and all solutions
with parent x', Ai' have the A j' one above or below 7t-',

so there is, in the asymptotic sense, not much difference
between the finite- and infinite-pole solutions.

The result that the connnonly known particles are
not conspiring can be extended to the other two isospin
configurations. In the (+) configuration, only particles
with G=C= —1 can be exchanged, which means I=O
in the nucleon-antinucleon system (e.g. , d and &a can
be exchanged). According to (3.6), if the d were to
conspire (and keep Gt/0), it must do so with a '(J)~
trajectory (i.e., bz ). In fact, it would have to be an
odd-signature trajectory to obtain G=C= —1. Hence,
a conspiring r&&& would imply a Jvgc=1+ meson at
about the r&& mass. Because such a particle is not ob-
served, the p is probably not conspiring. The same
arguments apply to the ~. One can only say then that
if another co is discovered at higher energy, and it

"See the particle data tables of A. H. Rosenfeld et al. , Rev.
Mod. Phys. 39, 1 (1967).

'4 S.F.Tuan and T. T. Wu LPhys. Rev. Letters 18, 349 (1967)g
have recently been led to suspect, on other grounds, that the 6
may have the quantum numbers of the pion."We are informed by D. Z. Freedman and by G. Chew (private
communications) that, when conspiracy is approached through
0(4) symmetry, only infinite-pole solutions are allowed, More-
over, the towerlike solution which has all three parents keeps the
AI' below the other two.

appears near a 1+ meson, one would suspect these of
being on conspirator trajectories. In the isospin (0)
configuration, only particles with G=I=1 can be ex-
changed (e.g. , the p and the 1++ 8 meson). If the p
conspired, it would have to do so with a trajectory
physical at the 8 quantum numbers (which excites
bq ) Be.cause any 1++ meson is much heavier than
the p, we conclude that neither the p, nor the 8 if it
exists, is a conspirator.

Asymytotics

At 1=0, we kn-ow from (3.1) and (3.3) that

C'~4 ~

g'k]
(3.9)

Using the partial-wave expansion (2.1) for G~, doing a
Watson-Sommerfeld transform, and taking uJ+ in the
pole approximation of the conspiracy solution 1, we
find

(J&&I' g,+t"-+ (3Ja+2) Pg&& i"), (3.10)
2ppk, sinwJa

This comes only from the A 2' trajectory. With the usual
threshold behavior assumed for a+,

(3.12)

the asymptotic form (3.11) is finite at 1=0. It is the
responsibility of the daughter of the As' (really the
second daughter, as odd-numbered daughters do not
couple in photoproduction) to cancel the terms singular
at t=0 in I'g0 ~". Notice that the A2' daughter is thus
subtracting away both the singular term of the A2'

and the singular Ai'. )The singular residue of the
daughter can easily be calculated from (3.10).j Similar
analysis can be given for the other solutions to the
conspiracy equations.

We conclude then that At(v, 0) is quite convergent
for large v. For example, in the case of A~( ), we have
reasoned that A~' has an intercept near or below —1,
so that

(3.13)

where the coefficient of the second Legendre polynomial
is a sum of the terms in a+, a of that form. Because of
the daughter trajectories, we should be able to take the
large s& limit of Ref. 11 formally, and have the daughters
cancel oB any terms singular at t=0. That is, as v —+~
Lnow exhibiting the (—) explicitly, and with proper
signature)

xM' a+ 2~&&+' I'(J&&+-',)
A, (—)

2ppk) sin~J&& (s)' ' I'(Ja)

]+a—&wJo

X («)" ' (311)
2
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and one expects the sum rule (2.7) to be quite con- the pion to conspire while damping the other con-
vergent once the asymptotic region is reached. spirators at physical points.

IV. EVALUATION OF THE SUPERCO5'VERGEÃCE
RELATIONS

We shall content ourselves here with a rough estimate
for J'aq& &(v', 0)dv' based on the detailed calculation of
J'a&'+&(v') 'dv' done by Adler and Gilman" These
authors list the contributions to J'aq&+&(v') 'dv' from

(~/2) P (3/2) ~y (3/2) Py (3/ ) ~ (~/2) Pp (i/ )

non-5-wave multipoles being dominated by A ~t2*(1238)
and X&t2*(1520).The first column in Table I lists their
results divided by 2, to compensate for their normal-
ization of the invariant amplitudes. The second column
is calculated from the 6rst by an isospin rotation, using
the relations

Fixed Pole

A fixed pole4 is always a possibility in scattering
amplitudes with linear unitarity, and certainly there is
a fixed pole a,t 7=0 in the (gauge-invariant) Born term
for pion photoproduction. Although some theoretical
arguments exist for not having a fixed singularity in a
matrix element of only one weak current, "we want to
discuss briefly the possibility that this pole does not
begin to move.

We begin conventionally, as in Sec. II, setting
G2 ——G3 ——G4 ——0, which results in Eq. (2.8). We then do
the Watson-Sommerfeld trick and assume (near the
respective poles)

g (+& 1g (1/2&+ 2g (3/2&

A( ) = 3A('/') ——A(3/').

That is, for I=-,', ~3, we use, respectively,

(4 1)
tp(t) tg(t)

t&g =r&z(kgp()~, r&g J—n. (t)

This results in the large v behavior of tA2(—)

-g (—)- 0/2) -g (-)—(3/2)

g (+)
12' -tp(t) ~tg(t)n. (t)

kg&-& (v, t) —+ 2m +
v sinn. n. (t)

p'+t 2
f. ,

p,
2—t

d" (~i'-&+t~2&-&) = 2~tp(t) (4.6)

The third column is calculated from the second by a
narrow resonance approximation; that is, we have
multiplied the contributions dominated by 1V3~2*(1238)

by v evaluated at that mass, etc. Because we trust the
P-wave models more at low energy, we have multiplied Tak h Eq. (2.5), this imPlies the sum rule

them by v(1238), but our results are insensitive to
reasonable variations in this. Adding the contributions
in the third column, we Gnd

X „2+&~/'4M

dv' a&—
& (v',0)-—0.13

instead of Eq. (2.6) To match the pion pole on the left
of (4.6), we must have either p(t) or g(t) (or both)
srngular at t=p' For s&mphcrty, consrder p(t) singular

to be compared with f,=1.0. We see that these data
fail to saturate the superconvergence relation by an
order of magnitude.

Our integration has only gone up to about 2.25
(BeV)' (center-of-mass energy squared), which is
certainly not asymptotic, so the poor saturation is not
yet in contradiction to our Regge analysis. Moreover,
because the unitarity statement for photoproduction
is linear (to lowest order in electromagnetism), there
is no ordinary unitarity limitation on the higher reso-

nances. Thus, it is not unreasonable to hope that the
higher resonances will saturate the superconvergence
relation. This, of course, remains to be seen.

This is, on the other hand, the appropriate place to
mention certain "diseases" of a theoretical nature
which might prevent the sum rules (2.6) from being
correct in the first place, namely, a fixed singularity at
J=0 and/or a Regge cut with pionic quantum numbers,

or, 6nally, a dynamical mechanism that would allow

~6 See Ref. 9.

p(t) =p(t)/(t —
t ') (4.7)

Requiring that the coeKcients of the pion pole on both
sides of (4.6) are equal, we can rewrite the sum rule as

p(t ')- vo

Lug&
—&+ta2&—&idv'. (4.8)

The first thing to note about this sum rule is that, at
t=0, it reduces to the same sum rule as does the super-
convergence relation, namely (2.7), so that the lack of
convergence of (2.7) is not a test for a fixed singularity
of this kind. Only the t/0 form of (4.8) can sense its
presence. Of course, this is because we have taken the
conventional Reggeization, namely setting 62= G3
= G4——0 to Reggeize G~. )It will thus be interesting to
evaluate both (2.6) and (4.8) for negative t%0, as a
test for the fixed singularity. ) The way to construct

17 R. F. Dashen and S. C. Frautsehi, Phys. Rev. 143, 11'tp'j.

(1956).
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sum rules that differ from (2.7) at t= 0 is to assume that
the fixed singularity has nonvanishing residue at t=0,
i.e., that it enters into the conspiracy equations (con-
spiring fixed singularity). At the moment, we do not
feel that the lack of saturation demonstrated above
merits such analysis here.

The second thing to note about (4.8) is that it has
the form of the sum rule written down by Bardakci,
Halpern, and Segre,"

where F +(t) is the mr+EX form factor (with ~ off the
mass shell) in a particular field theory of pions, nucleons,
and photons. The relation was criticized by these
authors on the basis of perturbation theory and/or
pure Regge behavior; we learn here that this form of
sum rule is implied if there is a Axed singularity at
J=0. The implication is strong that, if there is a fixed
singularity at J'=0, its residue )more precisely P(t)/
p(iis)j could be considered as a natural definition of
the mEE form factor.

It is worth underscoring that the fixed singularity
discussion given above applies only to the special type
of 6xed pole assumed, whereas the type suggested by
perturbation theory in fact does not vanish at t=0.
This is because the (gauge-invariant) Born term, which
already has the 6xed pole, contributes both to 3» and
As. The resulting sum rule is Eq. (4.8) with 1P(t) re-

placed by p'P(t). Note that this does n01 have the form
of the Bardakci-Halpern-Segre sum rule —and the
residue at the Axed pole is rot the mEE form factor
(although it can be shown that it still has the phase of
the form factor). As mentioned above, moreover, a
6xed singularity of this form would conspire, according
to Eq. (3.6), with infinite sets of fixed singularities for
J&0.

Regge Cut

It has been pointed out"" that Regge cuts should
exist in relativistic, theory. We only, want to note here
that a Regge cut with the quantum numbers of the pion
can be made by putting together a p trajectory and an
co trajectory. Its leading edge should be at

n, (0)=np(0)+n„(0) —1, (4.10)

"See Ref. 4.
"D.Amati et a/. , Phys. Letters 1, 29 (1962); S. Mandelstam,

Nuovo Cimento 30, 1127 (1963);30, 1148 (1963).
I. Muzinich, Phys. Rev. Letters 18, 381 (1967).

which may be above zero. If this is so, then our sum
rules (2.6) do not strictly hold. Moreover, if the dis-
continuity across the cut is large, then they do not hold
even in some approximate sense. We do not at the
moment consider the lack of satura, tion of (2.7) as
necessarily indicative of a cut.

Dynamical Damping of Physical Conspirators

Recall that our arguments against a conspiring pion
were based on not seeing a 0+ particle near the pion
mass (from the conspiring As' trajectory). On the other
hand, if a mechanism were operative to damp out the
A2' conspirator just as it became physical, " then the
pion could conspire. Moreover, the conspiring A 2'

trajectory, with the same t=0 intercept as the pion
wouldaddalargeasymptotictailv "& 'toAt& &(P,O)—
in which case poor convergence of the t=0 sum rule
would certainly be expected. Again, we emphasize that
our present low-energy analysis is not adequate to
imply that such a thing is happening.

1Vo1e added in Proof Equation. s (3.3) should be com-
bined to read

Gi(t=0)+iG4(1=0) =0.

That is, there is only one conspiracy condition obtain-
able from our methods. We wish to thank Ling Lie
Wang for pointing this out. Strictly speaking, then,
Eqs. (3.4) and (3.5) do not follow. On the other hand,
Mitter LUniversity of California at Santa Barbara
report (unpublished)$ has recently claimed that (3.4)
and (3.5) are true anyway by 0(4) considerations. It
should also be noted that the conspiracy solution em-
phasized here is a Class III solution in the language of
O(4), as has recently been discussed by Mitter and by
Frautschi and Jones LCalifornia Institute of Technology
report (unpublished) ).
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2' For example, a mechanism like that conjectured for daughters
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