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in order to satisfy the CI'T theorem, 2 should have one
of the following forms: (a) Z=GA(J J' t) where A
denotes antisymmetrization with respect to Fermi
fields, (b) Z=GN(J J,f), or (c) Z=zG(J,J t'). Need-
less to say, if one regards the weak currents themselves
as the fundamental entities, the alternative (c) seems
to be the most natural choice; the currents being boson-
like, in the Lagrangian the product should be sym-
rnetrized with respect to the currents. On the other
hand, the operations A and S in the first two alterna-

tives have to be defined in terms of the 6elds rather than
the currents themselves.

Note added its proof. If a nonlocal generalization of
the commutator is used to describe CP violation, the
conclusions in Ref. 2 that depend only on the symmetry
properties of the commutator will still be valid for
such a theory.

I am thankful to Dr. V. Gupta for stimulating my
interest in the CPT properties of the current commu-

tator and to Professor S.M. Udgaonkar for discussion.
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The meaning of Castillejo-Dalitz-Dyson poles (CDD poles) in the 6eld-theoretic context of a boson
separable-potential model is studied. Because the asymptotic-Geld operators for this model depend upon
the D function, it is possible to insert CDD poles into these fields and to gauge their eHect. It is found that
CDD poles have a profound inQuence: Their presence prevents the in-fields from satisfying canonical
commutation relations. A return to the free-particle algebra is possible, however, if new particles are in-
serted into the theory, one for every pole. These new particles are unstable, thus confirming the link between
CDD poles and instability. A further consequence of this work is the development of a method for con-
structing Hamiltonians which, a priori, yield scattering amplitudes containing CDD poles.

I. INTRODUCTION

~
'RADITIONALLV, Castillejo-Dalitz-Dyson poles'

(CDD poles) have been associated with unstable
particles. ' The reason is that unstable particles may be
identi6ed with the poles of the scattering amplitude in
the lower half plane of the second Riemann sheet',
CDD poles can also cause these to appear. Of course
not all such unstable particle poles can be attributed
to CDD poles. 4%hat is wanted is a precise connection
between instability and the presence of a CDD pole.

The purpose of the present work is to examine this
connection in the context of 6eld theory. This is most
conveniently done by a study of the infields of a 6eld
theoretic model. The program is to explore the eRects
that CDD poles have on the algebra of asymptotic
6elds.
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In a previous paper' one of us investigated the
asymptotic 6elds of a boson separable-potential
model. '7 In Sec. II CDD poles are inserted into the
0;„t 6elds of this model. It is found that the operator
algebra is radically changed with CDD poles present;
no longer do the in-6elds obey canonical commutation
relations. A return to free-boson algebra is possible, if
additional particles are added to the theory. These new
particles are shown to be unstable regardless of the
existence of a pole in the scattering amplitude on the
second Riemann sheet. Furthermore, a method of
constructing Hamiltonians containing any number of
CDD poles is found.

II. ASYMPTOTIC FIELDS OF THE SEPARABLE
POTENTIAL MODEL AND CDD POLES

This model describes a system with two types of
particles in it, a static heavy boson cp of mass M, and a
boson 8 which may move with three momentum p;
energy or„. The operators which create these particles are
labeled qt and et(p); vector symbols for momentum
indices on boson operators will hereafter be suppressed.

The Hamiltonian for this model in momentum space

' E. Kazes, Phys. Rev. 135, 8477 (1964).
M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,

1258 (1961).' J. D. Childress and J. Urrechaga-Altuna, Phys. Rev. 148,
1359 (1966).



160 CASTILLEJO —DALI TZ —DYSON POLES

may be written

with

H = dh cos8t(k)8(k)+N yt y+XGtG(pt rp, (2.1)

«-=ef(-,)qt(p), -.=("+P)".

The following corrunutation laws are obeyed by the
elementary-particle operators:

Because, as will become apparent, CDD poles have
such profound e6ects, the functions shall be labeled.

D(z) (with CDD poles)=—D, (z),
D(z) (no CDD poles) =—D(z).

Similarly

8; '(p) (with CDD poles) —=8;„,,'(p).

If CDD poles are absent, the in-Gelds may easily be
shown to obey

L8;.(k),8;.t(p) j =8(p-k). (2.9)
L~,v'1-=1,

I 8(k),8'(p)1-=8(k-»,
L8(k),~'j-=0.

(2 3) Furthermore the in-fields may be used to diagonalize
the Hamiltonian, since (aside from terms proportional
to e)'

The asymptotic 8-field operator 8; t(p), has been
given in Ref. 5. It was constructed to obey

r& 8' '(p)3-= ~.8 -'(P)+seL8'-'(P) 8'(P)1 -(2 4)

H= dk aiq8;„t(k)8; (k)+Apts (2.10)

in the limit of e ~ 0. The solution to Eq. (2.4) is

7 v'v f(~n) dp'f(~n )8'(p')
8'-'(p) = 8'(P)

D'(~n) ~' ~n sq— —

where D+(co~) is defined by
(~v'v )'4~'f(~s) f(~~)

IX- .(k), 8. '- .'(P).3 8(-ii=k)—
(2.6) D. (~s)D.+(~n)

dqf (-,)
D(z) = 1+Iiytq

by explicit calculation. Equation (2.10) defines the
Hamiltonian when CDD poles are present.

If the D function contains CDD poles, however, the

(2.5) algebra of the asymptotic fields is changed. The boson
commutation relation, Eq. (2.9), is not obtained for
8;,,t(p). Rather,

D(z)

dq f'(qqq)
=1—) sty

I
D+(ei,) I

'(ei,—z)
(2 7)

D+(cv„)=D(z) with z= ei„+is in the limit of e —+ 0. This
D function is the same as would arise in the standard
solution to the Lippmann-Schwinger equation for y-0
scattering; here it is an operator because the 8;„t(p)
Geld is an operator. It obeys the Low equation,

X P (2.11)
2'=1 (qq&

—g&+std)(Mi —g&.—ze)

in the limit of e —+ 0, q —+ 0. For computational purposes
8;„,, (p) is to be defined in the limit of qi

—+ 0, while

8;,,(k) is in the limit of e ~ 0.
A return to boson commutation relations in the

presence of CDD poles may be affected by the intro-
duction of n new boson fields, labeled P;t, such that
they obey

in the absence of bound states.
Equation (2.7) allows solutions more general than

Eq. (2.6),' however. A full solution to the Low equation
1s

2=n g.
D(z) =1 X4m'pter Q—

9'A 1-=4
P, , ~j =9,, ~'3 =9,,8(k)j-=0.

~e may now define a new in-field, 8; t'(p),

(2.12)

dqqq f ((dq)gNq
+ Ii4~qtq, (2 g)

(co z)

where CDD pole terms have been added for complete-
ness. Because Eq. (2.7) demands that D(z) be propor-
tional to an R function' (with proportionality constant
'A), every u; must be positive. The pole terms are labeled
in order of increasing energy; depending on X and f(qqq)

it is possible for x~ to lie to the left of p, but every other
x; must be in the cut (p, , ~).

For a general methods of solution of Eq. (2.7) see R. Norton
and A. Kiein, Phys. Rev. 109, 991 (1958).

8;.'(p) —=8;...'(p)+ Z 5;*( .)~,', (2.»)
j=l

where g;*(cv„) is constructed so as to yield

I 8;. (k),8'-'(p)i-=8(k-»
Substitution of Eq. (2.13) into Eq. (2.14) gives

(2.14)

&2~v 'v (~ )'"f(~~)
5';~((e„)= lim

D (qq )(M —x'+qe)
(2.15)

as a solution. 5',*(&u„)may be multiplied by an arbitrary
phase factor which has been here set equal to +1.Thus
a new asymptotic Geld has been constructed which
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Using Eqs. (2.7), (2.13, and

lim(Xq tq )'a,4''
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where S—= q~q. Therefore

C,.(t)=)'4 'N'

dtlf'( .)( '"'—1)
+1. (2.25)

ID,+( co,) I'Ico,—x,+is I'
If N= 0, C/v(t) =+1, i.e., the P; particle does not decay
if it is in a state without y's.

With the aid of Eq. (2.17) one obtains, if N&0,

dq f'(~.)s '""
C/v, (t) = )t'47r'N'a. (2.26)

I
D~+(coo)

I

'
I
too cc,+—is

I

'

The new model H' in which the unstable bosons
appear is one which u priori yields an amplitude for p-8
scattering containing CDD poles, and the scattering
state, 8; t'(p) yt

I 0), is one which is composed in part of
unstable particle states. Since the method of construc-
tion of H' involves the use of asymptotic fields, it is
applicable in general to other soluble models. "
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APPENDIX

Thus, by the Riemann-Lebesgue lenuna, m "every P;
is indeed unstable; the integral of Eq. (2.26) approaches
zero as t ++oo.—The asymptotic expansion of this
term may be evaluated by integrating by parts,

In order to prove Eq. (2.17) consider

(A1)

C/v, .(t)~X'16m'N'a.

One may further evaluate the integral of Eq. (2.26)
by familiar methods, "examining it for t) 0 when the
contour of integration is deformed into the lower half
plane of the second Riemann sheet. An exponential
time decay would require that the integrand have a
(first-order) pole in this region. Such a pole depends
upon the analytic continuation of D,(s). and, therefore,
of f'(too) Regardles. s of the existence of a pole, however,
the j particles are unstable by the Riemann-Lebesgue
lemma.

where the contour of integration, C, is shown in Fig. 1.
1/2 —c(ot w/4) &si ~ —3/s x; lies in the cut for generality. The right hand side of

+Q(t—s) (2 27) Eq. (A1) is zero because no poles lie inside the region of
(2I t'/'I D,+(p) I'Its —xs I'

III. SUMMARY FIG. 1. Contour of integration for Eq. (A1).

Because the in-Gelds of the separable-potential model
contain D functions, it is possible to insert CDD poles
into the theory and to exactly gauge their effect. The
presence of these poles is found to produce a nonfree
particle-field algebra for the 0 asymptotic Gelds. Free-
particle corrunutation relations may be retained, how-
ever, if a new in-6eld, containing new bosons is de6ned.
Examination of these new particles shows that, in the
context of a new Hamiltonian, they decay with time.
This decay is present even if the scattering amplitude
does not have a pole in the second Riemann sheet. Thus
the usually conjectured link between CDD poles and the
presence of unstable particles is con6rmed —to every
CDD pole there corresponds an unstable particle.

' S. Bochner and K. Chandrasekharen, Fourier Transforms
(Princeton University Press, Princeton, New Jersey, 1949), p. 3.

"E.T. Copson, Asymptotic Expansions (Cambridge University
Press, Cambridge, England, 1965), p. 24.

integration since D,(z) is proportional to an Jt! function.
The Low equation, Eq. (2.7), shows that the only pole
of the integrand is at x;. Thus Eq. (A1) reduces to

D,+(co )(co —x,)s

+P
D~ (tdq)(Coq —xj) )i4s p pttt

(A2)

"See, for example, M. Levy, Nuovo Cimento 13, 115 (1959)."See S.Jernow Ldoctoral thesis, Pennsylvania State University
(unpublished)g for a discussion of other models.

Combining the two integrals of Eq. (A2) and realizing
that, because the combined integrand has no pole, the
principal value is equal to the total integral, which
gives Eq. (2.17).


