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Superconvergent Relations for the Process ~N ~ pNt
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We consider the process mN —+ pN. The high-energy behavior of the invariant amplitudes following from
the exchange of Regge trajectories allows us to write down three consistent superconvergent sum rules.
Five other sum rules, obtained by equating to zero the coefficients of higher powers of t, lead to incon-
sistencies. In the degenerate-mass limit, partial consistency with the U(6,6) theory is obtained.

I. INTRODUCTION

ECENTLY de Alfaro, Fubini, Rossetti and
Furlan' have obtained strong interaction sum

rules at fixed t from the consideration of the high-energy
behavior of scattering amplitudes. If a particular ampli-
tude falls oB fast enough with increasing energy at
fixed momentum transfer, then the integral over energy
of the imaginary part of the amplitude vanishes. Such
expressions have come to be known as superconvergent
relations. The saturation of the superconvergent
relations with one-particle intermediate states gives
rise to sum rules relating the coupling constants and
masses of the particles involved. By considering xp
scattering, de Alfaro et al. ,

' obtained in this way sum
rules connecting the coupling constants gp g p

gq, and the masses of the P, p, &o and, ~ mesons.
Subsequently, this technique has been applied to
meson-baryon scattering, '' Compton scattering, 4 and
photoproduction processes. '

Here we consider the process xE —& pÃ and obtain
three nontrivial superconvergent relations. By satur-
ating these with nucleon and X*resonance, we obtain a
set of consistent sum rules. In the degenerate-mass case
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(m, =m, m~ ——m&*) we find partial consistency with
the U(6,6) theory. " Additional sum rules may be
obtained by equating to zero the coefFicients of t and t'
(t is the momentum transfer squared). When these are
combined with the original sum rules, we find in-
consistent results.

In Sec. II we determine the asymptotic behavior of
the amplitudes describing mE —+ pE by considering
exchange of Regge trajectories in the t channel. The
sum rules are obtained in Sec. III.

A,'t'="o.ttA, &+&+ ', [r.,rttjA;t- (2.2)

with a similar expression for 8;.Here n(P) is the isotopic
spin index of the pion (p meson).

We can define the scalar invariants, s= (p+q)',
I= (p q')', t= (q —q')' —and

v=8 Q=4(s —I).
The invariant amplitudes are written as A;(v, t), B,(v, t).
The transformation p —+ —v can be achieved by inter-
changing the two nucleons. Then making use of the
invariance property of the scattering amplitude under
G conjugation we obtain the following crossing-

'A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London} 284A, 146 (1965); A. Salam, R. Delbourgo, M. Rashid,
and J. Strathdee, ibid 285A, 312 (19.65).

7 Jones and Scadron (Ref. 3) considering the process ~X~xE*
6nd sum rules which are in complete agreement with the U(6,6)
theory.
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II. ASYMPTOTIC BEHAVIOR OF THE
INVARIANT AMPLITUDES

The process ~E—& pX can be described in terms of
six invariant amplitudes. These are taken to be the
foll.owing:

T=ie U(p')LP„(At&+l+y QBrt+l)ys

+Q (As(k)+p. Q+s(k))ps+p psAs(+)
+' "Q"~ & "'3 U(p) (2 &)

where,
~=-:(p'+p), Q=-', (q+q)

with p(p') as the incoming (outgoing) nucleon mo-
menturn and q (q') as the pion (p meson) momentum.
The polarization vector for the p meson is denoted by c.
The superscript (+) labels the isotopic spin channels
defined by
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symmetry relations:

Ai'~&(v, t) = aAii+&( —v, t),
B,&+&(v,t) = +Bi~&(—v, t)

As&+&(v, t) =WAsi+&( —v, t),
Bsi+&(v, t) =WBsi+&(—v, t)

As&+&(v, t) = +As'~&( —v, t),
Bs i+& (v, t) = +Bs i+& (—v, t) .

(2.3)

The high-energy behavior of the invariant amplitudes in the s channel are determined by the exchange of
the leading Regge trajectories in the t channel. To find out the contributions of various Regge trajectories to the
six invariant ainplitudes we follow the helicity formalism of Jacob and Wick. ' We find

A =—tA i—(ps —ps) {mBi—Bs}=P (2J+1)Pg'(cosg)&(i~,

mB:vBi—+A s=—Q (2J+1){CPg (cosg)+cosgPg (cos8)7'y~ —Pg (cosg)n~},

C:pBi+m—Bs= Q(2J+—1){—CPg (cosg)+cosgPg (cosg)7n +Pg' (cosg)y
q J

D= Bs g—(2J+——1)P~'(cosg)o. '~,

t+P P (P P )(t+P P ) t 3P P
A i+ Bi+ 83

4m 4t 4m

+q' As-
4m

po&2 tl/2pq2

{vBi+A s}+ Bs=g (2J+1)Pq'(cosg)y'~,
m 2m

p2 p2
Bs+A s ——P (2J+1)Pq(cosg)P'~,

(2.4)

where m, p and, p are the nucleon, p meson and pion
masses, respectively. And

p'=-', t—m',
Ct—(p+p)'7Ct —(p —p)'7

(q2+ti2) 1/2
o& (q2+P2) 1/2

1 &s,
—sl1)'—&-', —sl —1)'

eJ= ——
V2 J(J+1)

1 m &-;,—;I1)'-(-;,—;I-1)'
V2 qE CJ(J+1)7'"

The amplitudes with dehnite total angular mo-
mentum and definite parity are de6ned as follows:

We have used the shorthand notation (Xi,Xs
I
Xs)~ to

denote the scattering amplitude T~ with dehnite total
angular momentum J, and we have evaluated this
amplitude between the helicity states ) ~, X2, and X3 for
the nucleon, antinucleon, and p meson, respectively.

The right-hand sides in Eq. (2.4) are in suitable
forms for Reggeization. ' The G parity of the initial
state is —1. The fact that the NN system must also
have G= —1 leads to selection rules. We display the
allowed channels in Table I. The last column of the
table shows the experimentally known Regge trajec-
tories with G= —1 which can be exchanged.

The intercepts at t=0 for the trajectories o&, g, Ai,
and A2 are taken to be positive while for the pion
trajectory and for channels with no trajectories we take
the intercepts to be negative.

mv'«l, l I»'+&-: l I
—»'

P~= —K2

p CJ(J+1)7'"

p"= qp(-,',—;
I o)&,

1 &l
—ll»+&-:, —ll —»

K2 J(J+1)

7 =p
CJ(J+1)7'"

(2.5)

Amplitudes

nJ o.'J7

pJ ptJ

~J ~V

Parity

(—1)'

( 1)J—1

(—1)' '

even
odd
even

:odd
even
odd

Allowed I
(isotopic Known Regge

spin) trajectories

I=1
I=O
I=1
I=O
I=O
I=1

A2
CO~ @

None
None
A1

TABLE I. Allowed channels and Regge trajectories.

s M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
S. C, Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.

Rev. 126, 2204 (1962).
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If w'e go through the usual Reggeization procedure
for the right-hand sides of Eq. (2.4), we find the follow-

ing asymptotic behavior at large s for the amplitudes
on the left-hand sides:

A=sI'(" '

B=&tsar (')—'+$s~ (')—'
g&sa(&)—1+f&

g'y(&) —2

D ga(t) —1

= sP(')

p=s~

(2.6)

where u, b, a', and b' are arbitrary functions of t. The
trajectory parameters o&, P, and y refer to the amplitudes
(&r~,&r'~), (&f)~,&()'~), and (y~,p'~), respectively.

In the next section we shall show that some of the
above amplitudes satisfy superconvergent relations.
These relations are assumed to be saturated by E and
E*states and coupling-constant sum rules result.

dv{ v ImBt(') (v, t)+ImA s&s) (v, t)}= 0 (3.3)

dvImBs(e)(v, t)=0. (3.4)

~ÃÃ: g g~Uy5r'Ux', (3.5)

We will attempt to saturate our superconvergent
relations Eqs. (3.2)—(3.4) with S and Ee intermediate
states. Notice that the validity of Eq. (3.2) depends
on the pion trajectory having a negative intercept at
t=0. Experimentally it seems that this intercept is
negative, but quite close to the origin. Therefore the
sum rules resulting from Eq. (3.2) by saturation with
only a small number of intermediate states could be
badly violated.

The relevant couplings in momentum space are
taken as

III. SUPERCONVERGENT RELATIONS
AND THEIR SATURATIOÃS

xSS*. gp&vN~&t spy'p (r ) d L ps
m*

(3.6)

If a particular invariant amplitude A(v, t) falls oG
faster than v ' for v ~ ~ at fixed t, it follows that

z

pXX: g,»U~ '&p, '+ g",»U —""'Up;~. , (3.'t)
m

d v ImA (v, t) =0.
1.

(3'1) pe% ~ e U gp»pgpx+ g pNNpYp&t&

In the following, we wiH assume that t is small. From
Eqs. (2.4), (2.6) and our assumptions about the inter-
cepts of the exchanged Regge trajectories, we see that
the amplitudes A&"&(v,t), B( &(v,t), and Bs( &(v, t) are
superconvergent 0

dv{t ImA i&" (v, t)

—(p' —&«')Em ImBi&'&(v t) —ImB, &'&(v t)]}=() (3.2)

+ g-pw. I'pq~ Vs(").Vb.."") (3 g)
2m*~

where P= p'+p and q=p' p, with p (p—') being the
momentum of the incoming (outgoing) baryon. The
masses of E and E~ are denoted by m and m*, respec-
tively. The resulting sum rules are polynomials in t.
We set the coeKcients of the various powers of t equal
to zero and from Eq. (3.2) we obtain

t" 3g'pzrb&gp» — g»p ( 2m*'+—m' mm* —)&+«s— gp»p
3m* m*~ 2m*

8 3m m m mg pgal——+ f& g'p«&)v p+ &b
—3m'+

m+ 2m+~ 2m* m*~
=0, (3.9)

t: 3g'p~Ng ~~— g„~~a
3m*

3 8 3m 2m m
(m m +ti )gpNNp+ + t& g pivNp

2m* m* m* 2m*~

3 m
&+ b g p»p —(p t& ) g p»*+ —g p&v&& * =0, (3.10)

2 2m* m*

t: gp»*Eg pNb&* gp»" j 0—— (3.11)
' Note that the eigenamplitudes for total isotopic spin are A;= (+6)A,&+&, A,&»=2A, & & and similarly for the B; The super-.

convergent relation for {tAi (ps —pi')prNB& —Bpg} wit—h I=0 is trivially satisfied by crossing symmetry LEq. (2.3)g.
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From Eq. (3.3), we obtain

3 (p'+u')
g pNNg» NN+ g» NN»

2m 3m*

(2m~' —2m' —p —p ) (—2m*'+m' —mm* —p') m*—m
+ b gpNN*

4 *2 2

3m'(m+m*) (m+m*) 2m'+2mm* —p'+p'—
8— g pNN+

m* m*

2m2 p2 p2 —3m +a+ b g"pNN* =0, (3.12)
2m*

3
g pNNg»NN+ g»NN»

2m 3m*

—2m*'+ni' —mm* —&1' b
gpNN*+

4m*' 4m*'

3(m*+m)-
g pNN~

2m*

1

4m*2

m
3m—'+a+ b+ ~3 (2m*' —2m' —p' —&«') g",NN»

——0, (3.13)
2m*

P ~ gg NlV +g pNlV+

From Eq. (3.4)

3 2
g pNNgpNN+ gpNN»

m 3m*

4m*' —mm*+m' —p' b
gpNN»+ g pNN»

m*2 m*'

(3.14)

+ —3m +&i+ b g pNN» =0, (3.15)
m*2 2m*

g &w*g

where

(3.16)

(m*'+m' —p') (m*'+ m' —mm* —p')
8 b =m*'+ 2mm*+ m' p', c—=

2m*2

(m*'+m' p') (2—m*'+2m'+mm* 2p')—

We have also made use of the following results. In the s channel

A, &+& =-'LA;&"'&/2A;&'"& j A, &
—

& =-'LA»&'"& —A;&'"&j.
SimilarresultsholdforB, .Their danE poletermshaveisotopicspinprojections 3 and O'Irespectivelyfor the

0 2)

(
states. The sum rules obtained by equating the coefficients of t", to zero corresponds to the derivative sum

2

rule at t,=0 We notice th.at only 1V~ contributes to the sum rules (3.11), (3.14), and (3.16). We, therefore, expect
these sum rules are not as well saturated as others.

From Eqs. (3.11), (3.14), and (3.16), we find that either g.NN*=O or g'pNN» ——g"pNN0. »The first alternative
leads to g,NNg NN= g'pNNgpNN ——0. The second alternative, when used in Eqs. (3.9), (3.10), (3.12), (3.13), and
(3.15), leads to inconsistent results. So, we disregard these sum rules.

We now consider the case where m*=m, and p= p, . Then our sum rules become

p2 4m' —p,
2

9g pNNg»NN g»NN» 3gpNN»+ Pg pNN»+g pNN» j
m2 m2

(3.17)

2 p2

9g pNNg»NN g»NN» (2m +P )gpNN»+ (4m 9 ) 2g pNN»+ g pNN» y

m 2m'
(3.18)

2 p2

9g pNNg»NN g»NN» (4m P )gpNN»+ (4m M ) g pNN" g pNN» ~'
m' 2m

(3.19)
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p~ 4m' —p2

9g pNNgpNN= gwNNP 3gpNNP+ [ g pNN*+2g pNN*)
m' m2

(3.20)

2 1
9g pNNg NN g NNp (2m'+p')gpNNp+(Sm'+p')g'pNNp+ @0m'p' p'j—g"pNN* ~

m2 2m'

(3.21)

Comparing Eqs. (3.18) and (3.19), we obtain

4m' —p2

gpNN* g pNN+ ~
l

2m2
(3.22)

In the Appendix we write down the relevant vector
currents of the U(6,6) theory and express them in
suitable forms Fro.m Eq. (A6) we note that Eq. (3.22)
is a result of the U(6,6) theory. To determine whether
our sum rules are completely consistent with the U(6,6)
theory, we will assume the additional U(6,6) relation
'
gpNN*=

"
gpNNpLsee Eq. (A6)j. Then Eqs. (3.1/)-

(3.19) become
5(

g~NN=
I

1 Ig NN*~
3E

(3.30)

the right-hand sides of Eqs. (3.28) and (3.29) become
=—16 and =—8, respectively. This is not a very
large discrepancy considering the crudeness of our
approximation.

It is important to notice that the above disagree-
ment with U(6,6) depends ultimately on our use of
Eq. (3.2). As was remarked earlier Eq. (3.2) may not
lead to reliable sum rules. However, we will now show
that Eq. (3.27), which does not depend on Eq. (3.2),
by itself contradicts U(6,6). Using the U(6,6) relations

p2

9g pNNg~NN gmNN+gpNN+ y

m2

9g pNNg~NN 4g~NN*g pNN* ~

(3.23)

(3 24) we find

g pNN g pNN p

10m
(3.31)

15( 10m) ( p, )
g pNN /g"pNN=

I
1— —

II 1— I, (332)
8 E 3p ) E 4m')

These equations lead to the ratio

4m( p' )
gp»*/g 'pNN 11—

p E 4m')
(3.33)P~

pNN: g"pNNU r'Up„'+g' pNNU r'Up„'. (3.7')
2m

" '
4m2

is considerably diGerent.
We now examine the "derivative" sum rules (3.20)

and (3.21). We find that Eq. (3.20) when combined
with Eqs. (3.17)-(3.19) forms a consistent set leading
to the full U(6,6) result for the pNN~ vertex:

Then Eqs. (3.23) and (3.24) become

( , p'
, ) u'

9I g' pNN+ g pNN IgpNN gpNN*gpNN~
4m' ) m'

(3.26)

g NN/g NN 4m /Pi (3.25)

In the U(6,6) theory the charge and the magnetic while the U(6,6) result (See Appendix)

coupling of AS vertex is written as

pNN+g~™pNN)g~NN= Sg~NN*gpNN* (3.27)

These equations yield the ratio

/ II
gpNN* g pNN* g pNN* ~

4m' —p,
2

(3.34)

g pNN/g pNN

Sm'+/i'

From Eq. (A1) we see that the U(6,6) result is

(3.28)

However, the inclusion of Eq. (3.21) leads to in-
consistent results. For example, comparing Eqs. (3.21)
and (3.18), we find g', NN*= —g",NN*, which contradicts
Eq. (3.30). Finally, we note that one of our rejected
sum rules, Eq. (3.11) agrees with (3.30).

5 2m
g "p»/g 'pNN= ——

3 p
(3.29)

So our ratio of the magnetic to charge coupling for the
pNN vertex differs from that predicted by the U(6,6)
theory. However, it is amusing to note that if we
assume an average mass of 2.4 p for the N and N* (p is
the average mass of p meson and pion), we find that

IV. CONCLUSIONS

We have seen that certain combinations of the
invariant amplitudes describing ~N ~ plV scattering
satisfy superconvergent relations. By assuming that
these relations are saturated by E and 1V* intermediate
states, we obtain coupling-constant sum rules of both
the derivai. ive and nonderivative types. Some of the deri-
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vative-type sum rules receive contributions only from
the E* state and yield inconsistent results. We have
rejected these sum rules on the ground that they are not
as well saturated as the sum rules which receive
contributions from both E and X* states.

In the degenerate mass case (m~=m, p= p) the three
nonderivative-type sum rules are consistent with each
other and are in partial agreement with the U(6,6)
theory. There are two derivative sum rules which
receive contributions from both X and E* states. One
of these $Eq. (3.20)], when combined with the non-
derivative sum rules improves the agreement with
U(6,6). The other $Eq. (3.21)] leads to a result which
disagrees with U(6,6). Hence these two derivative sum
rules contradict each other. Since there is no a priori
way of choosing one derivative sum rule over the other
and since derivative sum rules are expected to require
saturation by higher-spin intermediate states, we should
not take Eq. (3.34) Lobtained by using Eq. (3.20) too
seriouslyf.

In contrast to Jones and Scadron, ' who find super-
convergent sum rules for the process 7' ~ xS* which
are in full agreement with U(6,6), our results show
partial agreement. It should be noticed that Eq.
(3.22) which is an U(6,6) result depends only on the
superconvergent relations Eqs. (3.3) and (3.4). The
disagreement with U(6,6) expressed in Eq. (3.28)
depends ultimately on Eq. (3.2), which is a consequence
of our assumption that the intercept of the pion
trajectory is negative. Since the intercept is very close
to the origin, the resulting sum rule may be badly
violated. We have shown however that disagreement
with U(6,6) may be obtained without making use of
Eq. (3.2). We are therefore led to believe that super-
convergent sum rules of this type should not lead in
general to the results of a higher symmetry.

Note that our definition of g differs from that of Ref. 6
by a sign. We have the identity

Next using

pIJ z
U U= Uq~U — U~~"Vq„.

2m 2m

giIVKXy~y —gvKyK gPIKpV+jg KvvrK

(A2)

we find
p2

U U= U qK— ~~"q„~ U.
4m2 4m2 2m

(A3)

Equation (A2) and (A3) allow us to go back and
forth between the forms (A1) and (3.7).

The X*Xpart of the vector current is

1 ) 2m)J (N*N)=g
~
1+ ~e """P„q„U&x.

2m2& p )
Using the identity

(A4)

g/lVKX (itglIKOVII+gVXaiIK g/kiOVK IgVKOKXj

+gVKgKk gpKgVL+g /lV0 KK)y (A5)
we obtain

2m) 4m' —p'
J"(KI"N'I=K(I+ ~U l"'

p ) 2m'

APPENDIX

In the U(6,6) theory the NN part of the vector
current is

JK(NN)=g 11+ lU U
2m) 2m

5p 2m rK——
i
1+ U U, (A1)

3k p, 4m2
where

y~= cI""""P
q yqy5, with e "'=1.
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In all of the above equations we have omitted the
isotopic spin part of the couplings. They are the same as
chosen in Eqs. (3.5)—(3.8).


