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Recent experimental results on the zt'-+ zr'2v decay indicate that the branching ratio 8=P„(zr'2—y)/
P„(zr zr p) is of the order of (or compatible with) 1. Using the vector-meson-dominant model, we have
computed the width and the pion energy spectrum of the zt' —z zr'2y decay, using the relevant SU(3)-sym-
metric coupling constants, including the zo-d mixing hypothesis as given by the static SU(6) theory, which
demands Pe(zr'y) =0. We have then studied the effect of varying the mixing angle and the effective coupling
constant fe &„ar ound the static SU(6) value over a wide range compatible with the present experimental
information, using as input the experimental P (zr'y) as before. The model gives 8=0.331&&10 ' at the
static SU(6) value, which increases by a factor of 10 at the mixing angle of 20'. It therefore appears that
unless there is a drastic decrease in the experimental branching ratio, the vector-meson-dominant model
cannot provide a dominant mechanism for the p ~ 21-02' decay. A remark is also made about the relation
between the value of the co-p mixing angle and the ratios of various observed decay rates. We also study an
alternative simple mechanism for the &

—+ 21-'2p decay which may be suggested by the tadpole model of the
electromagnetic mass difference of hadrons. We assume the existence of the I= 1, normal 0+ (rzzr) resonance
c and consider the intermediary of the e meson go ~ woeo —+ 21 02'. Some consequences of this model
are discussed.

I. INTRODUCTION Recent experiments' ' have considerably changed the
over-all picture of the p-decay branching ratios. One
observes that the (2y)/(sr+sr y) ratio has changed
slightly and the (3zr')/(zr+zr zrs) ratio has become smaller
than 1. The cause of these changes is the proof of the
existence of the g

—+x 2y mode and its surprisingly
large branching ratio. Okubo and Sakita~ made an
estimate based on an eQective Hamiltonian of the
simplest form,

HE study of the decays of the pion and of the
pionic resonances has attracted considerable

attention in the last two decases. ' The g-meson occupies
a special position among the mesonic resonances; it
decays by isospin- or G-parity-violating electromagnetic
interactions.

Essentially three dynamical models have been used
to study the rt (and zro) decays: They are named, accord-
ing to the dominant intermediate states, the baryon-
antibaryon loop model, ' the intermediate-vector-meson
model, ' and the intermediate-pion mode14 for the
q' —+ 3x decay.

II= re„„F„„rtszro.

By assuming that the transition mass between p' and m'

can be obtained by contracting photon lines in the above
Hamiltonian, they estimated F„(zro2&) 8 eV. Since, as
they stated, this sort of estimate (by introducing a
cutoff) may easily be wrong by a factor ~10, the large
rate of g'~m'2y decay observed need not be very
puzzling. We may also recall that the decays p' —+ vr'27

and 3x are A allowed, whereas g' —&2y and m+x —
y

are A forbidden. '
The vector-meson-dominant model seems to have

achieved a fair success in explaining the branching
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ratios F„()ry)/F (3)r) and F„()r+)r y)/F„(2y). Therefore,
it seems worth while to study whether or not the same
model also works for F„()r'2y)/F„(7r+)r y). In this model,
it turns out that the matrix elements obtained differ
froin those given by the above simplest one, Eq. (1),
in two respects: First, $ is, of course, not constant;
second, there is an additional term which cannot be
reduced to the form Il „„F„„.9 As regards the rate F„()r'2y)
we have, from the outset, some pessimistic feeling
about this model. Namely, if, for instance, we choose
the p meson as an intermediate state, like )1 —+ p+y ~
(7r+p)+y and rt~ p+y~ ()r++)r )+y, we expect,
crudely speaking, that

I'„( 2y)/F„( + y) ~
G,.„/G, ~

2(0.01.

However, these arguments could easily be wrong by
an order of magnitude. Furthermore, we are not
justified in neglecting the diagrams involving the co and
()I) mesons. Therefore, a detailed calculation may be
useful. In order to test only the vector-meson-dominant
model, one has to divorce it as much as possible from
additional assumptions. For this purpose, although
we use the SU(3)-synunetric couplings with the (e-(t)

mixing hypothesis, we vary the input parameters,
the (e-Q mixing angle, and Fe(m'y) over as wide a
range as is compatible with the present experimental
information.

We treat the intermediate unstable-particle graphs
in the first Born approximation with renormalized
coupling constants, corresponding to the pole approx-
imation of a dispersion-theoretic calculation. For
definiteness we first use SU(3)-symmetric coupling
constants with (e-()b mixing parameter 8 and f/g ratio
(ratio of singlet to octet coupling) as obtained from
the assumed vanishing of F& ()r'y) )which are" the same
as in static SU(6)j, together with the known width
F ()r'y). Then we discuss the effect of possible depar-
tures from the static-SU(6) values and of the experi-
mental uncertainty in F ()roy) and F& ()rap) . The branch-
ing ratio 8=F„()r'2y)/F„()r+)r y) turns out to be

0.33&&10 ' for the static-SU(6) values, but increases
by a factor of 10 if the mixing angle is changed to 20'.
Therefore, if the present experimental indication 8
is correct, this model does not seem to provide a
dominant mechanism of q —+z2p decay. '" We also
note a feature of the correlation between the (e-()I) mixing
angle and the ratios of various decay rates. As a result,
we are led to consider in Sec. III an alternative approach
which seems quite natural if the tadpole model" of
the electromagnetic mass difference of hadrons is

IL THE VECTOR-MESON-DOMINANT MODEL

A. The Matrix Element

The graphs which contribute to the decay are shown
in Fig. 1. We consider the intermediate vector mesons
as stable particles.

We explain the notation in detail for the first diagram
in Fig. 1, as there are only obvious changes for the
others. We take the following as invariant couplings
for the gpss and pz'p vertices, respectively:

fnnv fp& 'r

e~p»q~kpeppp and cvp pvkp q, 'e, ~

The f„» and f, o~ are dimensionless effective coupling
constants, m is the pion mass, and e p» is the totally
antisymmetric unit tensor density of rank 4. Finally,
q, kp, kp', and q

' are 4-momentum vector components
of the p, p, p', and x', respectively; and e„,p„, and e,' are
covariant polarization vector componensts of the y, p,
and p', respectively.

Thus the invariant matrix element for the p-inter-
mediate diagram is, up to kinematical factors,

(fI/m ') ept e, tt), pg~kpe„It()'rI. 'e, '(pp +me ) (2)

Here f,=f«~f, ~. (In —the following, we shall denote
by f„and fe the similar coupling constants for the
intermediate &e and P diagrams. ) The last factor in (2)
comes from the p-meson propagator. (We use the
convention ah= a b —(t()bp. )

Using 4-momentum conservation, we can eliminate q'

by rewriting Eq. (2) in a form containing only the three

( e'q) l
b ~ (,, ''l), l (b)(t,(b)6,

+
(b)t I I I

+ +

) Gt

(,b). (,b). (,b).

correct. Namely, we assume the existence of an I=1,
normal 0+ )1)r resonance e (e+, e', e ), and consider the
mechanism

)1' —+ )r'+ e' —+ )r'+ 2y.

The plausibility and the consequences of this model
will be discussed. We emphasize that the pion spectrum
of g ~ 7c 2p decay is very different in the vector-meson
intermediate model and in the e-meson model.

G. Oppo, University of Maryland, Department of Physics and
Astronomy, Technical Report No. 627, 1966 (unpublished)."C.D. Soloviev, Phys. Letters 16, 345 (1965);V. V. Anisovich
et al , ibid 16, 194 (1965).. .

"See also H. Pietchmann and W. Thirring, Phys. Letters 21,
713 (1966); Mobius and H. Pietchmann, ibid. 22, 684 (1966);
W. Alles, A. Baracca, and A. T. Romos, Nuovo Cimento 45, 272
(1966).

~ S. Coleman and S. L. Glashow, Phys. Rev. 134, 8681 (1964).
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FIG. 1. Feynman diagrams for the decay p —+ x 2p in the
vector-meson-dominant model. The letters inside the parentheses
indicate 4-momenta and polarizations.
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independent 4-momenta q, k', and k: P ~„~ 2= (g,D,Syg,D,'S')2 P T2

(fp/m ')epappep6 r(gakpeak6 k 8r ga—kpellk6 urer )
X(P '+ ') ' (3)

pol pol

+ (g'Dr+gaD'')'N' Q U'+2(g;D;S+S,D,'S,')
pol

By the use of the relation e. ..e,~„=8 ~5p,b„,
+~ar~p6~yr+~aApr~p6 ~a6~pr~lir ~ar~pr~a6 ~aAp6t6yr One

obtains from (3) the gauge- and Lorentz-invariant
expression:

—(f /m ') (p '+m ') '{[(k e') (e k') —(k k') (e e')7.

X(q' —q k)+(q k')(k l7)(e 8')+(q e')(k k')(e q)
—(0 k')(k 8')(8 0)—(V 8')(k. V)(8 k')}, (4)

while the other terms vanish by virtue of the relations
k'= k e= k' e'= 0. The term inside the square bracket in
(4) is equal to -', F„„(k)F„„(k').Therefore, this term
corresponds to the simplest effective Hamiltonian given
by (1). However, as already mentioned, ' we get addi-
tional contributions in this model; this can be seen
explicitly from Eq. (4).

The presence of these additional terms leads to an
energy spectrum of the pion which is very different
from the one predicted by the simplest Hamiltonian (1)
or by a model introduced in Sec. III. We now take a
gauge, 84= 84'= 0. Then the expression (4) reduces
(in the rest frame of the g meson) to

—(fp/m 2)(p 2+m 2) ~{(—m 2+m„k)$(k e')(k' e)
—(k k')(e e')7+m 'kk'(e e'))

= —(f,/m ')D (k) (ST+NU) . (5)

Above, expressions like k k indicate 4-products, while
kk' is the product of the magnitudes of 3-momenta. k k'
is the scalar product of 3-vectors. D, (k) = (p,'+m, ') '
= (m,' m„'+2m—„k) ', and D„,D~ below are the corre-
sponding expressions for the le, P graphs. Also we have
used the abbreviations

X (g'D'+g*D'')N E TU (7)
pol

The three photon polarization sums on the right-hand
side of Eq. (7) can be evaluated in a standard way.
After some algebra, ' one obtains the expression
(synunetric in k and k' as expected)

where P is the angle between the 3-momentum vectors
k and k'.

We get the total decay rate by performing the nine-
dimensional integration over the final 3-momenta. We
get

m~ (m„) 6

r„(~'2~)=—
(64) (2s.) ' km. )

where F is a dimensionless integral given by

F=—Z f'f I" (i,i =6, ~, 4).

The f; are the dimensionless coupling constants intro-
duced earlier. I;; is dined as follows:

(1+m„2)/2 $ [1—E&+(E&2—m&2) 4)

dk M,;, (11)

&16 I'=m'k'k"{L2(g'D)'(k —m, )k
pol

+2 (g;D') '(k' —m„)k'7+2 (g,D,) (g;D,')

X (2 (k m„)—(k' m„)—+m„(k m, )—

+m„(k' —m„)7(1—cosp)'

+m„'(g;D;+g;D )'(1+cos'p)), (8)

S=——m„'+m„k, T= (k e')(k'. e) —(k.k—')(e e'),
X—=m 'kk' U=—e e'. with

s [~-E~-(E~'-m~') )

qD ID I
The complete matrix element p from the six diagrams
of Fig. 1 will be given (up to kinematical factors) by +(&p' 7)D&g &

(12)—
where

6
= (g'D&+g—&''S') T (g&'+g'D—'') NU

(= »4) (6)

where the primed terms come from the second line of
Fig. 1, and S'= —m, '+m„k'; D,' = (m,2 m„'+2m—„k') '
For simplicity we also put g;= f,/m '; an expres—sion
like g+, means g,D,+g„D +gqDq.

n =—2k(1—k), P=—(1+m '—2E ),
y—=4k'(1 —E —k)'+)2k' —2k(1 —E )+p7'
8—=2(1—E —k) (E +k),
8—=—2(1—k) (E +k)+1+E,

D;= (mP —1+2k) ' D'= (m 2+1—2E —2k) '.

(13)

B. Polarization Sums, Phase-Space Integral,
and Pion Energy Spectrum

+le need for later use the expression for
We have

All the physical quantities in (10), (11), (12), and (13)
are dimensionless (m„,= 1).The indicesi, j stand for any
of the intermediate vector mesons p, &u, and @. The dk
integral can be evaluated in a closed form. However, it
has been found more convenient to evaluate the double
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MeVj, where rr is the fine-structure constant. We
assume the usual SU(3)-syinmetric'4 electromagnetic
vertices P-V-y and introduce ca-P mixing for the vector
meson. "The relations thus obtained turn out to be the
same as those obtained" by using SU(3)-symmetric
V V P-co-uplings and V-y couplings with ca-p mixing.
We take first a value of mixing angle arcsin8=+-', i.e.,
8=35' 18'. This is" very close to the SU(6) value and
is in reasonable agreement with the various estimates'~
of the ta-P mixing angle. We then assume the vanishing"
of the I'e(x'y) width, to obtain for the f/g ratio Lwhich
is the same again as in static SU(6)j the value 1/V2.

We now sketch the procedure used, We write

lg&=cos8 ltaa&
—sin8 laat),

l~&=»n8 l~s&+cos8 l~i&, (16)

0.246 0.53E~'
PION ENERGY IN UNITS OF m~

FIG. 2. The pion energy spectrum for the p —+ 7F 2p decay. The
spectrum for the vector-dominant models is characteristic of the
inodel and does not depend on additional assumptions. (See also
footnote 32.)

C. Coupling Constants and the Decay Rate

In order to get a final numerical value for I'„(x'2y),
we need estimates of the effective coupling constants f,.
We use the experimental I'„(~'y) width to obtain"
(f„ove/47r) =0.15n [corresponding to I'„(say) =1.08

'3 This corresponds to a F (71- y) of 1.08 MeV, and is obtained
from the expression F„(w'y) = (1/96) (f 0„')m„(m„/m )'(1
—(m /m„)rg~ The miniinu. m and maximum values of F„(way), aa
from A. H. Rosenfeld et af 'a latest compilation .PRev. Mod. Phys.
39, 1 (1967)g are 0.902 and 1.27 MeV, respectively.

integral numerically, with the following results:

Imp=1.83X10 ', I„„=1.52X10 ', Iyy=0.414X10 ',
Ie„I„p 1.67 X 10——', ——Iee= Ipe= 0.871)&10 ', (14)

I p=I@ =0.793X10 '.
The j't integral f(E ) gives the energy spectrum of

the pion in the vector-meson-dominant model. Its
shape does not depend appreciably on the particular
value of the input parameters (see next section) or
the graph considered. Figure 2 gives a plot of this
spectrum as obtained for the pp case. f(E,) increases
monotonically from 0 at the lowest energy to a max-
imum at the highest pion energy. This behavior is to
be compared with the cases of the simplest matrix
element given by (1) and of the intermediate e model

(see the discussion in Sec. III) which are also plotted
in Fig. 2. It is seen that the pion energy spectrum will

be useful to distinguish the vector-meson-dominant
model from other simple models.

where lp& and

lpga&

are the physical particle states, and

l
tat& and la~8) are the pure singlet and octet states.

The general U-P-y interaction may be assumed to be
a linear combination of Tr(V8PaQ), Tr(VSQPS), and
Vi Tr(PsQ). Space-time indices are understood, Vi
represents the vector-meson unitary singlet, and the
matrices P8 and U8 represent the pseudoscalar and the
vector octet, respectively. Because the particles of
interest are only in the diagonal, the matrices Pa (and
Va) are effectively diagonal and effectively commute
with Q. We obtain, therefore, only two independent
interactions with coupling constants f and g, respec-
tively. The following relations result:

f-...= (1/&~f-; .=g, (17b)

from which, by the use of (15) and (16), one obtains

f„o~=i/3 (f sin8+g cos8),

fe or %3(fcos8 —
g si——n8),

f„» f sin8+g cos——8,—

fz„r f cos8—
g sin8——. —

(18a)

(18b)

(18c)

(18d)

'4M. Gell-Mann, in The Eightfold 8'uy, edited by M. Gell-
Mann and Y. Ne'eman (W. A. Benjamin, Inc. , New York, 1964).» J.J. Sakurai, Phys. Rev. Letters 9, 472 (1962);S.L. Glashow,
ibid. 11, 48 (1963);R. F. Dashen and D. H. Sharp, Ref. 5; Y. S.
Kim, S. Oneda, J. C. Pati, Ref. 3."S.L. Glashow, Ref. 15.

"See Ref. 15. Also S. Okubo, Phys. Letters 5, 165 (1963);
J. J. Sakurai, Phys. Rev. 132, 434 (1963); T. Massam and A.
Zichichi, Nuovo Cimento 41A, 310 (1966).

"This mode has not, to our knowledge, been found. See J. S.
I.indsey and G. A. Smith, Phys. Rev, 147, 913 (1966).We actually
assume that I'~(7f'y) (0.008 MeV, corresponding to the values of
a&0.2 as quoted in this reference. There are several arguments
indicating that this width is indeed very small, For instance the
@7r y phase space is about 2.9 times larger than that of co2F'p,
therefore, (fe 0~'/4~)&&(f„.o„~/4~)(2.9)—'. Another argument is
based on the smallness of j. ~(p7F). The latest Rosenfeld tabulation
(Ref. 6) gives F~(3'+p7i-) 0.540 MeV, which leads to an estimate
of Fe(w'p) of the same order.

f -'r= (1/~~)f. r=(1/~3)f ' = f,r=f (—17a)

and
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The assumed relation's fe ~ 0 gives f/g=1/v2.
With this ratio and arcsin8=1/V3 we get

with WahHng, Shibata, and Mannelli's experimental
result, ' which only gives an upper limit.

We have also obtained

According to our definition

fr=0 (20)

fp
=f„=0.363m (0.295n-0.413tr),

where the range has the same meaning as above.
We get for the transition width I'„(7r'2p)

1„(ws2y) = aF =9.446X 10'F eV

with Ii given by

&f'fry—=f'Ip. +f-'I-+2fnf-In

(21)

(22)

= (0.363)'u'L1.83+2(1.67)+1.52jX10 '
f

Thus
=4.667X10 s (23)

I'„(m'2y) =0 447 eV. (0.346-0.574 eV) . (24)

The upper and lower value in the range indicate as
before the highest and lowest value compatible with
experimental data for I'„(7rsy). Using the same param-
eters, the p-dominant model gives for the I'„(n+s y)
width" "

= 137.0 eV (108—156 eV),

with (f, '/4~) = 2.51 from the known I', (m+m ) width. '
Thus we obtain

I' (a.o2y)/I'„(or+sr y) =0.326X10 '
(0.315X10 '—0.367X10—') . (26)

Thus the estimate (26) in the vector-meson-dominant
model using the values of coupling constants based on
the static-SU(6) symmetry is in sharp disagreement
vrith the experimental result by Di Giugno et cl.' or
the compilation by Rosenfeld et al. ,

' but is compatible

"This formula is obtained by use of the intermediate p vector-
meson diagram. It gives a value for the width which is 1.37 times
larger than that of L. M. Brown and P. Singer (Phys. Rev.
Letters 8, 460 (1962); 10, 424 (1966)g or from formula (2) of
P. A. Berends and P. Singer, Ref. 20.

F. A. Berends and P. Singer, Phys. Letters 19, 249 (1965};
19, 616 (1965).

Finally

(f„7'/4') = (3f)'/47r =0.15u (range 0.121n—0.171n)

(when we take into account the experimental error),
which gives

I'„(total)=2490 eV (1960—2820 eV) (27)

by the use of (25) and the known decay fraction for
the rf ~ m+s y mode' (5.5%). Equation (27) is not a
new determination of the total g-decay width. It is
essentially the same as in Ref. 20. The small discrepancy
is due to the different formula used to compute the
partial I'„(7r+~ y) width, and to the newer values of
I'p(m-+m. —) and alp. s

We have also made a study of the dependence of
I'„(7r'2y) and I'„(total) on the mixing angle and on the
uncertainties in the I'e(~'y) and I' (m'p) widths, to see
if we can obtain an enhancement of I'„(m'2y) and a
reduction of I'„(total) by breaking the static-SU(6)
relation. This is discussed in the next section.

D. Dependence of Coupling Constants and Decay
Widths on f|, I'„(~'y), and Fe(m'y)

Froin (18b) we obtain

(f/g) = tan8+(f& o~ tan8)/(&3f cos8 fe o~), —(28)

where the second term vanishes in the SU(6) limit.
Then (18a) gives, by use of (28),

f= (f„o~+f& o~ cot8)/v3(sin8+cos8 cot8), (29)

which in the static-SU(6) limit becomes

f= f„,o~/%3(sin8+cos8 cot8) . (29')

U - '/4 )«(«n'8)(f-, '/4 ) (3o)

If, for the sake of an estimate, we take f„o,'/4~
=0.88X10 ', the lowest experimental value for I'„(arsy),
and require, for instance,

fe &~s/47r(0. 1(f 0~'/47r) tan'8= 10 ' tan'8, (30')

then we can estimate very conservatively the highest
I'& (m.sp) that will leave our conclusion essentially
unchanged.

One finds that the inequality (30) is practically
satisfied for all values of the mixing angle, but especially
well for large angles in the sense that the I'e(~'y)
obtained by the use of Eq. (30') is larger than the
maximum experimental I'&(~'y) =0.008 MeV. I'q(w'y)
=0.008 MeV corresponds indeed to a very small strength
fe 0 '/4n =4.76X10 'rr=3. 48X10 ' Estimates of the

Thus (29') can be used to study the dependence of the
coupling constants and widths on the input parameters.

We again use as input for f„o~ the most likely value
as well as the maximum and minimum values compat-
ible with the experimental data available on the I' (may)

partial width.
One sees from formula (29) that the effect of non-

vanishing I'@(z'y) will be small as long as
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same order of magnitude are also obtained with a
related model. (See for instance J. Yellin, Ref. 3.)

To test further the effect of the assumption Fe(7rsy)
0 we successively take as input for f& or the values 0,

8.2&10, and 1.57&(10 '. The first of these values is the
static-SU(6) limit, and corresponds to the most likely
experimental situation. " The second corresponds to
Fe(s'y)=3X0.008 MeV, which is considered to be an

upper estimate for this width. "The third corresponds
to Fz(~'y) =10X0.008 MeV and takes care of a cata-
strophic situation.

The mixing angle has been varied up to a value of
50'; the criterion is to use data compatible with the
different measurements of the Fq(KE) width. "

The results are given in Figs. 3, 4, and 5.
It appears that the assumption Fq(~ay) =0 is quite

satisfactory, in the sense that the results are practically
unaffected by it. We have also obtained the series of
results for the minimum and maximum values of F„(7r'y)
compatible with experiments; they are not given here,
as they do not diRer signihcantly from the rest.

Ol

N

r~
3I5- I.I25-

INPUT

J' (v'7)=I.OSMeV, 1 g(~'7) = 0
----- r„(w 7)=I.OSMeV, 1'y('t 7) =24KeV—-- I (m y)=I.OSMeV, Iy(m'y)=SOKeV

O

N

r~

- 4.5XIO

SU(6) prediction or just the hypothesis of SU(3) plus
&v-P mixing. One obtains a F„(~'2y)/F„(~+7r p) of the
order of 10 ', compared with an experimental result' '
of the order of 1. One sees that an enhancement of the
vr'2y width up to a F„(vrs2y)/F„(~+~ p) of the order
10 ' is obtained with smaller mixing angles; this
enhancement, however, is still smaller than needed
for agreement with Di Giugno et al. ,

' ' or even to get
the upper limit of Shibata et alt. ' If one interprets both
experiments at least as a trend toward higher F„(vr'2y)/
F„(~+7r y), one would favor a smaller mixing angle.
Furthermore, a smaller angle might be favored for the
following reasons:

E. Discussion of the Results

It is not possible to explain the F„(m'2y) in the
intermediate-vector-meson model with either the static-
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Fio. 4. The figure shows that the combined effect of mixing-angle
and I'~(w0p) changes may lead to an order-of-magnitude increase
of the SU(6) value of the g —+ m'2y branching ratio.

(a) As shown in (2'7), the value of I'„(total) based on
the values of coupling constants given by the static-
SU(6) theory is about an order of magnitude larger"
than the one which will be obtained if we use the SU(3)
r elation" between F o(2y) and F„~(2y) and experimental
q-decay branching ratio. A smaller mixing angle tends
to narrow this discrepancy. This is even more so if we

t ake the lower estimates" for the F„(z'y). A discrepancy
of the same order of magnitude also appears in the
ratio F„(~+a- ~s)/F o(2y) in an updated version of the

FIG. 3. The figure shows the dependence of some important
variables defined in the text on the mixing angle and the I'p(m'y)
width Lin the vector-meson-dominant model with SU(3)g. The
static-SU(6) values correspond to I'~(w0y) =0 and 0=35' 18'.
One sees that the effect of the mixing angle is substantial, while
the variation of the width j. ~(m0y) has negligible effects.

"T.Massam and A. Zichichi, Ref. 18.

~2 N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1961);
S. Okubo, Phys. Letters 4, 15 (1963).

"About 0.9 MeV, see J. S. Lindsey and G. A. Smith, Ref. 22,
and Ref. 5 there. There appears to be a trend toward a smaller
r„(m'p), as shown also from a comparison of the latest with the
previous Rosenfeld data (Ref. 6).
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FIG. 5. The figure shows that
several widths and their ratios
depend strongly on the mixing
angle. They could, if measured, be
used to determine the mixing
angle.
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vector-meson-dominant model. " Both of them are
related to the large experimental ca ~ m+y width.

(b) A smaller angle would further reduce (see Fig. 3)
the I', (a. y) width, in qualitative agreement with the
recent estimates" based on photoproduction with a
very small f, ~.

On the other hand, a lower mixing angle, for instance
8= 23', would give higher values for the I'„(rty) width.
Larger angles, close to Okubo's value 0 38', would
require a very small I'„(rt&)/I', (vr'y), as indicated in
Fig. 5.

As soon as new data on I'„(~s2y) and at least one
more width Lsuch as I', (~'y), I'„(r)y), or I'~(E,K)
for instancej become available, it will be possible to
test more definitely the intermediate-vector model
and. the other assumptions we have used (besides, of
course, the already mentioned test based on the pion
energy spectrum). We might add the following com-
ments about the SU(3) synunetry breaking. We have
assumed the SU(3)-symmetric coupling constants and
only considered the violation due to cd-p mixing. This

'4 If we update the calculations of Ref. 3 with the parameters
given by the static SU(6) (using 1' 0(2p) 7.5 eV) we obtain a
value of I'„(m+~ m') which is an order of magnitude smaller than
the experimental value.

'5 A. Donnachie and G. Shaw, Ann. Phys. (N.Y.) 37, 333
(1966). On the other hand, the most probable I'p(x' p) width of
0.7 MeV given by F.R. Hudson et ai /Phys. Letters 20. , 91 (1966)g
is more than Ave times larger than even the SU(6) value. See also
G. Fidecaro et al. , Phys. Letters 23, 163 (1966).

may not be justified, especially when photons are
involved. It is not inconceivable that the inclusion of
this symmetry-breaking effect shifts the observed

mixing angle to a smaller value than the static-SU(6)
value or the one obtained from the vector-meson mass
splitting.

Finally we mention the possibility of an enhancement
by q-X' mixing. "However, if one uses the quadratic
mass formula for rnesons one gets a small value of
&10' for the mixing angle. (A much larger angle is
obtained from the linear mass formula. )

It is expected that a detailed calculation including
g-X' mixing will not change the order of magnitude of
the I'„(a'2y). It might, however, still be of interest
because it might shed light on the sign of the g-X'
mixing angle and on the choice between linear and
quadratic mass formulas. "
III. INTERMEDIATE-SCALAR-MESON MODEL

A. Introduction

The branching ratio I'„(vr 2y)/I'„(sr+~ y) 1 which
appears in the table of Rosenfeld et al. ' seems to be
clearly out of reach in the vector-meson-dominant

2' R. H. Dalitz and D. G. Sutherland, Quovo Cimento 37, 1777
(1965); 38, 1945 (1965).

2~ A. J. Macfarlane and R. M. Socolow, Phys. Rev. 144, 1194
(1966).
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model. However, a branching ratio of the order ~10 '
may not be inconsistent with this model, in view of the
theoretical uncertainties involved. It is our feeling that
this margin is at present too narrow to definitely reject
the model, and that more precise experimental deter-
rn. inations of the branching ratio and measurements of
the pion energy spectrum are desirable.

Pending a clarification of the experimental situation,
it seems worthwhile to look into other possibile mechan-
isms for the g —+ x'2p decay.

We study here the eRect of the still hypothetical
isovector normal scalar meson e (e+,e, e ). This scalar
meson would be assigned to be the I= 1 member of the
scalar SU(3) octet. We propose the following inter-
mediary role of the e meson:

q' —+ ir'+ e' —+ n'+ (y+p) .

It may be Inentioned that this mechanism will be quite
natural if the tadpole" model of the electromagnetic
mass difference of hadrons is correct.

In the following we 6rst study the p —& m'2p decay
in this model. Then we study other Inodes of decay of the
eo particle and discuss the consistency of the model by
applying it to the g ~3'' mode.

B. The F„(~'2y) and the Energy Spectrum

We write the strong 'Q ~ z' interaction as

1/1 '
I' (lr'2y) =

~

— G'g'm 'Lm, '—(m '/3) —m '7 '
16 m-

where

I(q ~ x'2y) =
(m~2+m~2) /2 m~

XI(q -+ s'2y), (34)

dE L(E'—m ')"'

X (m '+m '—2m„E)'j~5.3X10 'm„' (35a)

mass difference (m&,o) m&, 0). Moreover, the K,4 decay
could then take place as E—+ e+e+r ~ (n+rr)+e+ i

(the last step follows because the c can decay electro-
magnetically into two pions). The occurrence of this
process does not seem to be consistent with present
knowledge about the E,4 decay. Therefore, it is probably
necessary to assume m, &mz. We will take 500&m,
&750 MeV as the e-mass range of interest in the
following.

In computing the integral in (33), we 6rst approx-
imate the denominator as constant. Then the energy
spectrum of the pion has a broad maximum at E

m„/3. (The energy spectrum is given in Fig. 2.) We
again stress that, under this approximation, the model
gives the same matrix elements as given by (1) and this
pion spectrum is very diRerent from that obtained in
the vector-meson-dominant model. (See also footnote
32.) We then obtain

and the eRective e'~ 2y interaction as

ge'Il „„F„„'.

(31) is the phase-space integral based on the matrix element
(1). In the same approximation of taking the e-meson

propagator as a constant, the spectrum of the directly
emitted photon of the rl —+ iro2& decay is given by

The matrix element for the decay g —+ x'2p in this model
differs from the simplest matrix element given by (1)
only by the presence of the propagator of the e meson.
We then obtain the pion energy spectrum and the width
of the q' —+ 7r'2p decay in this model, which are given by

dk(m '—m, '—2m„k)'
(mx —2k)'

(35b)

C. Consistency of the Model

( m~2+ m~2) /2 mg1 1 3 1
I'„(~'2q) =—— G'g'—

16 m.

dE

(E m) i (m +m——2m E)

L2m E+ (m '—m '—m ')]'

In order to get some idea of the branching ratio of
the g' —+z'2p decay in this model, we next compute
the rate of p —+ 3m' decay by assuming that its
amplitude is also dominated by an intermediate e'

meson: g ~ c'+ir —+ (ir +ir')+ir'. We write the effec-
(33) tive e'~rro+iro interaction (which is, of course, G

violating) as

The denominator of the integral in Eq. (33) comes
from the propagator of the eo meson. Thus in order to
get a numerical value for the width and the energy
spectrum we have to guess the value of m, .

We first note that M, )m„—m . (Otherwise the

g
—+ e+~ decay will become a strong decay, so that the

observed p
—+ 2p decay could hardly compete with

it.") Furthermore, if m„—m (m, (mr&, it would be
hard to explain the presently favored sign of the E&'-E2'

"However, in the literature existence of such a low-mass
4 meson (m, 283 MeV) had been proposed. R. E. Marshak, V. S.
Mathur, and L. K. Pandit, Phys. Letters 21, 563 (1966),

g'e'm'x'. (36)

Then the rate of g ~ 3m' due to this mechanism in the
rest frame of the g' is given by

5

(3~0) (3)G2g&2m —lcm 2 (m 2/3) m 2j—2

2'
XI(~ 3e), (»)

where

I(q —+ 3'') =
d'P d'q d'r

li'(k p q r)———
E- (P) E- (q) E- ( )

~8m'm '(1.5X10-') . (38)
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In evaluating (37) we have made an expansion of the
propagator of s around the symmetry point Pm, '—(m„s/3) —m 'j and kept only the leading term. (The
contribution of the linear term in this expansion
vanishes owing to the syirimetry properties of the 3x'
states. )

On the other hand, from (32) and (36) we also obtain

r,o(2y) = (gs/4s)m, s (39)
and

r, (2s') = (g"/4tr) (2m, ) 'L1 —(2m, /m, )']'is. (40)

By using the results (34), (37), (39), and (40), we
can obtain a relation between the experimentally known
branching ratio R=r„(s'2y)/r„(3s-') and the unknown
ratio R'—=r,o(2y)/r, (2s-s), namely,

R' 1.25X10—'(m„/m, )4R. (41)

If, for example, we take' R='„we obtain from (41)
for the interesting range of e mass (500(m, (750 MeV)
the relation

3.4&R'(15. (42)

From the proportionality between R' and R (at constant
m, ) it follows that the allowed range for R' would be
displaced toward smaller values if R were smaller.
If m,)750 MeV we need R'))1. Of course, the assump-
tion that the c -meson contribution alone will dominate
the g

—+ 3m amplitude cannot be completely justified.
However, the above estimate can at least be taken
as an indication that the r, (2y) has to be compar-
able to or a little larger than the r, (2'') in order to
explain the surprisingly large branching ratio of the
t}—+ trs2y decay. Therefore, if m, (m, +ms ~690 MeV,
we expect"

I', (2y) &r, (2s-s or s.+s=) . (43)

In the following we give some estimates which indicate
that the model is not so unrealistic. Suppose that
e+ —+ s++s.s decay occurs through the electromagnetic
virtual transition q'~ m '.

e+ —+ t}'+s-+ —+ s-'+ tr+.

Ke then obtain

r, (s-+pro) = (16'nz, ) '6'(f„./(m '——m. ')j'
X L1—(2m./m, )']'is, (44)

r„(2y) 162 eV. (47)

Then using the experimental g' branching ratio, we
obtain r, (3s-') 102 eV compared with (46). Therefore,
the present model does not seem to be so unrealistic.
From (45), we expect

I',o (2y) 1—10 keV. (48)

If we compare this with (47), the width of e'-+ 2y decay
given by (48) seems reasonable.

We add some remarks on the e' —+ ~++or +y decay,
which might compete with the eo —& 2p decay. We may
use the p-dominant model, as in the case r„(s+s ss)/
r„(s'y). We write the e'p'y and p'y vertex as

2fepymp psvPsvs (49)

2
p QS2p p+8+ p (50)

where, for instance, p„„=B„p„—B„p„, and p„and e„are
the polarization vectors of the p and photon, respec-
tively. The x+ and the photon energy spectrum and the
rate are given by

6p 7 p z' 7r

r, (~+~-~) =m,
~

(2~)-sP,
4~ J

ms/2

dE X(E„k)dk,

(51)

where

L„=(n4' —2m,E.)/2Lm, —E w (E '—m.')"'j,
X(E.,k) =k'(E.'—m ')D'(p)R,

D(p) = (mps —m/+2m, k) ',

Lm, s—2m, (E +k)+2E kj'
R=1— ~1.

We remark here that if we use this model to evaluate
the effective coupling-constant g' of the e' ~ 2m'

vertex, we obtain from (37) and (38)

r„(37rs) 163 eV.

If we use the 5U(3) symmetry to compute the r}~ 2p
rate from the z —& 2y rate, ' we obtain

4k'(E' —m ')

The pion energy spectrum behaves in a similar way to
that of q —+z'2p decay in the e'-meson Inodel, given
by Fig. 2. Ke obtain for the branching ratio

where we have denoted the strength of the g-x' vertex
by f„o. If we use the value of f„o~ (54 MeV)'—
obtained from the electromagnetic mass difference of
the pseudoscalar mesons, 7 we obtain"

r, (s-+s')~3.4 keV. (45)

"The c —+ 2p decay will involve a higher momentum barrier
effect than the eo —+ 2m decay, so that we should normally expect
that F,(2~)&&I',(2p), contrary to (44). (We note that the q ~ 37i-

decay can complete with the q -+ 2y decay. )
"We have used the value of G normalized in such a way that,

using the SU(3}-symmetric coupling constants, the I=( scalar
meson g (w„=725), which belongs to the same octet as the e
meson, has the width F„(all) 25 MeV. See D. Loebbaka, S.
Oneda, and J. C. Pati, Phys. Rev. 144, 1280 (1966}.

p mp)s fp, '
R.—=r"( + v)/r" (2v) = —

~

—, (52)
n(2s.)' m,) 4s.

where o. is the fine-structure constant. Kith the relevant
mass values m„viz. 500, 600, and 700 MeV, the
numerical values of F give for R, the values 1.4)&10 ',
7.3X10 ', and 2.8X10 ', respectively. Therefore, if
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m, &700 MeV, we expect, roughly speaking, "

If m, &700 MeV, the strong decay e~ rt+sr becomes
possible.

IV. CONCLUDING REMARKS

In conclusion, if the presently reported large branch-
ing ratio of the tt' —+sr'+2y decay is confirmed, the
vector-meson-dominant model will not be able to
explain it. An unambiguous check will be provided by
the study of the pion energy spectrum. " In this case

"This is in qualitative agreement with another estimate. See
D. Loebbaka and J. C. Pati, Phys. Rev. Letters 14, 929 (1965).

32 In Fig. 2, the pion spectrum in the c-meson model, Eq. (33),

the e model discussed in Sec. III seems promising,
although it is not entirely necessary to postulate the
existence of the e meson. That is, eliminating the e

meson in the present model, one might simply postulate
the existence of an effective interaction such as 'g 6 pp„Mp„
which can lead to the rt —+ sr+2y decay. Nevertheless,
a search for the t.' meson seems interesting, particularly
from the point of view of the tadpole model of the
electromagnetic mass differences of hadrons. If the
presently accepted branching ratio of t)o ~ srs+2y
decay is correct, the study of the similar nonleptonic
weak decays E+ —+ 7r++2y and Ess ~m'+2y will also
be very interesting. The branching ratios of these
decays may not be as small as we usually expect.

is drawn by approximating the denominator of Eq. (33) as
constant. The higher mass of ~ tends to move the maximum point
of the spectrum to the right.
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Asymptotic Behavior of Form Factors*
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The asymptotic behavior of form factors is examined in the presence of inelastic states. It is shown how
the form factors can vanish asymptotically when the density of inelastic states assumes a su%ciently rapid
power behavior in energy. Three distinct, soluble models for scattering are examined, and the relationship
among the asymptotic behavior of form factors, inelasticities, and diftraction scattering amplitudes are
discussed. It is pointed out that the scattering amplitudes need not approach their Born amplitudes asymp-
totically when the density of inelastic states increases suKciently rapidly with energy.

I. INTRODUCTION

ET us consider, for the sake of definiteness, the
(s.sr —& n-7r) scattering amplitude (s.sr

~

T
~
7rsr),

which can be expressed in the E/D form. The pion form
factor F (s) = (srsr

~

T
~
o), where o is some one-particle

state, e.g. , the p or the photon, is essentially the inverse
of the D function: F (s) =C/D(s), where C is an arbi-

trary constant. Because D(s) can be made to go to a
constant at infinity, the form factor F (s) does not
vanish asymptotically. However, it appears likely that
the nonvanishing behavior of the form factors is con-

nected with the assumption of elastic unitarity on the
mw scattering amplitude, and it is interesting to investi-

gate the behavior of the form factors in the asymptotic
region if one allows for the existence of. inelastic chan-

nels. Recently, ' the asymptotic behavior of phase shifts

(real and imaginary) was investigated under the as-

sumption that an in6nite number of two-body channels

become available for scattering as we go into the asymp-
totic region. ' Ke shall examine the asymptotic behavior

* Supported in part by the National Science Foundation.
' R. K. Kreps and Pran Nath, Phys. Rev. 148, 1436 (1966).
s 'rhe number E(s) of inelastic channels increases very rapidly

of the form factors under similar assumptions. Ours is
a multichannel formalism, and we work with models
which we can solve in a closed form so that we can ob-
tain the scattering amplitudes and form factors ex-
plicity. These forms are then examined when certain
sums over the density of channels increase rapidly with
energy. In this limit, the form factors are then shown to
go to zero, and the asymptotic limit of the various meas-
ures of inelasticities is obtained. It is found that the
various measures of inelasticities do not necessarily reach
the limiting values dictated by one's naive conception
about maximum inelasticity or absorption. 3 For ex-
ample, in all the models examined we find that tt (ao ) = 1,
as previously noted, ' and the scattering amplitudes need
not become purely imaginary. Recently (see Ref. 4), the
asymptotic behavior of the form factors was examined
according to the same general philosophy. In this work,

with the number of allowed fundamental thresholds; e.g., if we
assume I. fundamental thresholds like ~~, E'K, EX, etc., then
E(s)~s~12 as the energy becomes large.

'One might assume that the limits ~1+2iTn~ =0, ReTn/
ImTii=0, and P~zi~T»('/~Tn~s~oo are necessarily reached .

simultaneously as s ~~, where T@ is the ij scattering amplitude.' D. Seder, Phys. Rev. 149, 1208 (1966).


