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The one-particle matrix elements of the local equal-time commutators of the isovector currents are de-
rived by applying the Dyson representation to the causal parts of the invariant absorptive parts. Assuming
the equal-time commutation relation between the total charge and charge density and also assuming certain
asymptotic limits for the Dyson spectral function, we can generate the local equal-time commutation rela-
tions. between various components of the currents. It is shown that, for a reasonable asymptotic behavior of
the spectral function, the charge-space component has no antisymmetric (in isospin) Schwinger terms, but
involves two possible q-numer symmetric Schwinger terms, and that the space-space components can have no
antisymmetric Schwinger terms. It is pointed out that as the asymptotic behavior becomes worse, we can no
longer define the equal-time commutation relations uniquely.

1. INTRODUCTIO5' AND SUMMARY

ECENTI.Y, much interest has been shown in the
so-called Schwinger terms in connection with the

validity of certain sum rules derived from local current-
current commutation rules. One of the main questions
has been whether or not there exist q-number Schwinger
terms other than the original Schwinger term which is
the vacuum expectation value of the current commuta-
tors, and which, therefore, appears in any diagonal ma-
trix element of current commutators as the contribution
from the disconnected vacuum-vacuum transitions. (In
this paper, we call any derivative of a three-dimensional
8 function in the equal-time commutators a Schwinger
term. ) There have been a few general formulations" of
Schwinger terms without using any speci6c models, but
no concrete answer to the above question has been given
from these formulations. Okubo and others4 used the
Jacobi identity to show that the spatial current-current
equal-time commutator must have antisymmetric q-

number Schwinger terms. However, the validity of the
use of the Jacobi identity is doubtful as pointed out by
Johnson and Low. ' The latter authors undertook the in-

vestigation of the Schwinger terms using speci6c 6eld-
theoretic models, and their conclusion is that there exist
all sorts of q-number Schwinger terms.

The simplest way to obtain the vacuum Schwinger
term is to use the spectral representation for the vacuum
expectation value of the current commutators, which
was the original method Imamura and Goto' used to
show the discrepancy of the blind application of the
canonical commutation relations to the current com-
mutators. 7 The method we use in this paper to analyze

This work was supported in part by the U. S. Atomic Energy
Commission.' J. Schwinger, Phys. Rev. Letters 3, 296 (1939).' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).' Lowell S. Brown, Phys. Rev. 150, 1338 (1966).

4F. Buccella, G. Veneziano, R. Gatto, and S. Okubo, Phys.
Rev. 149, 1268 (1966).' K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto),
Suppl. 37, 74 (1966); 38, 74 (1966).' T. Imamura and T. Goto, Progr. Theoret. Phys. (Kyoto) 14,
395 (1955).

7 For a recent discussion of the vacuum expectation value of the
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the diagonal one-particle matrix element of the isovector
current commutators (to be specific, one-fermion matrix
element averaged over spin) is a generalization of this

procedure, and is based on the application of the Dyson
representation of local commutators to certain ampli-

tudes. ' "In the case of the conserved isovector currents,
their commutator, which is a second rank tensor, is
determined in terms of two invariant amplitudes. We
erst separate out from these invariant amplitudes the
noncausal part which does not vanish outside the light
cone, so that the remainder is now causal. (Of course

the components of the tensor amplitudes themselves are
causal. ) The separation is not unique, and we do it in

such a way that the separated term will give the quark-
model equal-time commutators (ETC) obtained using

canonical commutation relations. Then, the causal part
to which we apply the Dyson representation gives what-

ever terms are present in the ETC in addition to the
canonical terms in the quark. model, includ. ing possible
q-number Schwinger terms.

In deriving the equal-time corn~nutation relations of
the current densities, we have used, besides the rela-

tivistic invariance, the causality and the conservation
of current, two important inputs. One is the ordinary
ETC between the to/a/ isovector charge and the charge
density. This means that we have not made any specidc
assumptions about the Schwinger terms. The other in-

put is the behavior of the spectral function of the Dyson
representation at the in6nite end of the spectrum, which

current commutator see: S. Okubo, Nuovo Cimento 42A, 413
(1966); and G. Pocsik, Nuovo Cimento 43A, 541 (1966).

F. J. Dyson, Phys. Rev. 110, 1460 (1958).
The first use of the Dyson representation to charge algebras

was made by B. Schroer and P. Stichel, Comm. Math. Phys. 3,
238 (1966).' Since submitting this paper we have become aware of another
paper on this subject by Jean-Loup Gervais and M. Le Bellac
(Nuovo Cimento (to be published) i. They do not consider a con-
served current and assume that the case of a conserved current
can be obtained by a suitable limit at the end of any calculation.
They obtain the incorrect conclusion that the quark model ETC
cannot be 6tted into the framework of invariant amplitudes repre-
sented by a Dyson representation. The reason they reach this
conclusion is that their assumption about the behavior of the
Dyson spectral functions are much too strong.
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in turn is closely related to the asymptotic behavior of
the invariant absorptive parts. An especially simple
case is obtained if we assume that the spectral functions
vanish at infinity, which is a plausible assumption for
any reasonable field theoretic model. In this case a
formal manipulation using the Dyson representation is
permissible and we obtain the following results:

(i) Charge-density —current ETC has no Schwinger
term antisymmetric with respect to isospin. Thus, the
sum rule of the usual type is possible. (ii) The same ETC
has two possible q-number Schwinger terms, symmetric
in isospin. (iii) The spatial current-spatial current ETC
has one symmetric Schwinger term, which is related to
one of the two terms discussed above in (ii). (iv) The
same ETC has no antisymmetric Schwinger term, but
there exist, other than the quark-model canonical
terms, two possible terms directly proportional to 8'(x).
These terms should be there as the space-space part of
the ETC is model-dependent.

As is pointed out in the Appendix, the ETC, precisely
speaking, should be defined as the limit of the average
of the commutator over a short time interval. Knowing
the asymptotic behavior of the spectral function, we can
calculate this average, as long as the spectral function
is bounded by a power of the spectral variable. The
higher the power, the more Schwinger terms are gen-
erated besides those discussed above. These Schwinger
terms are polynomial in the cutoff momentum used for
the averaging, and are not unique, depending on the
cutoff function used. Thus, if the spectral functions are
ill behaved at infinity, as would certainly be the case
for a very singular interaction, the equal-time com-
mutation relations can no longer be uniquely defined.

2. SEPARATION OF THE N'05'CAUSAL PART

We consider the one-particle matrix element of the
commutator of two isovector currents

A""(~)=(PII.j:(~),j '(0)7IP)

where the state
I p) represents either a scalar particle of

momentum p or a fermion. In the latter case Eq. (1)
means the average over two spin states, so that A„„~is
a tensor in both cases. For simplicity we call the state

I p) the proton. The Fourier transform of A„„~b(x),

A „„~b(q)= de p'p'*(p
I Lg„'(x),j„b(0)7 I p), (2)

is the absorptive part for the Compton scattering of a
vector meson of mass X=q' by the proton.

Because of the conservation law 8&j„=0, we have

qpÃ„„b=0

. and 2„„'can be expressed by two' independent co-

I-"'"(q)=(I/~')LP. P q' (P.—q+q.P )P q+a"(P q)'7

I-""'(q)=LA,.—q.q.7,

where ns represents the proton mass. From the struc-
ture of 1.„„&'~, it is evident that A2(q) can have no
kinematical singularities, because otherwise A„„will
have the same singularities. On the other hand, Z&(q)
can have a singularity of the form

without inducing any new singularity in 2„„itself. Such
a term will give a noncausal function, as we see easily
by considering the region near q'=0 and taking the
system p=0. Then we have

~(p q)/q'= p(qp)/mq—' (6)

the Fourier transform of which is 1/ I xI . Hence we have
to separate such noncausal part of A; in order to have
a Dyson representation for A s.

We choose the separation specifically as follows.

Spb(q) =XX."(q)+Jg "(q) (7)

A. g„"(q)= (2~m/q')(e(qp+ p p) b(q'+2p q)
—p(qp

—Po) ~(q' —2P q)7i"b.(&.), (8)

where T, is the isospin operator for the proton. g,„'(q)
is exactly what we obtain for the antisymmetric (in
isospin) part of Aq'b from the quark-model current
j„~=~„(p.,/2)P using the conunutation relations for
the free field It "

Conversely, if we insert (8) into (4) and take the
Fourier transform for up=0 we obtain

A „,p„"(x,0)=—I.p„&'&A g„"(x)
I g, p

=ie.b,(T,)8'(x)P„/m

A „„;'(x,0)—=I.;;~' A,„(g)I „p
= ip. b.(T,)b,,P(x)pp/m. . (10)

Thus, A» "generates the quark-model ETC.
With this choice of Aq~ b, we can prove that Ar, b(x)

is a causal function and also that its Fourier transform
P„~b(q) has the right support required for the Dyson
representation. These two requirements do not uniquely

. determine A»„' because we can add to it any. causal
function with the right support. Therefore the specific
form (8) is to a certain extent a matter of convenience.
From (8) we can calculate A~„' (x), a convenient repre-

"This is of course equivalent to taking one-particle and dis-
connected three-particle intermediate states in (2) and setting
the charge form factor equal to 1 and the moment. form factor Q.

varient tensors, which we choose as

A.."(q)=I-.."'(q)A~"(q)+~..'"(q)A2"(q) (4)

with
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A o„& & (x,0) = 5'(x)p„/m,

or in momentum space,

(42)

dgoAo„& &(q) =2~pp/m. (42')

For the symmetric part, (32), (34) and (41) give

Ao;&'&(x 0) = im —'(PosV, P~P —V)
X0'(x)ai—iV,&'(x)as. (43)

VVe will discuss the magnitudes of a~ and u2 later.
For the space-space antisymmetric parts we use (32),

(33) and (37), and add the noncausal part contribution
(10) to obtain

A; &(x,0) = E(po/m) a' +s(2/m')

X(p,p,—po'~, ,)f,—»;,f,)~ (x). (44)

Here we have no derivatives of 8 functions, but we do
get extra 8-function terms, which we expect to be there
as A;;&o&(x,0) should be model-dependent. (32), (34),
(36), and (41) give

A;.&'&(x 0) = im 'PoL28;~p. V—P;V';—P, V',]8'(x)a;. (45)

If the condition (39) is not satisfied, as we could ex-

pect for some field-theoretic model with highly-singular
interaction, then we can have more Schwinger terms.
However, most of these additional Schwinger terms are
dependent on the choice of the averaging function neces-
sary to define the qo integral. Then the ETC involving
such terms is not uniquely defined. (See Appendix. ) For
instance, Aoo"(x) has the antisymmetric Schwinger
terms

Aoo" (x,O) =porn '~'(x)+m '(po'V' —
(I& V)')

Xy(x)ci+ V'8'(x)cs, (46)

where c,=O(As~) (A —+ ~). (46) is correct for 0&~n(1.
For n~&1, other Schwinger terms appear on the right-
hand side of (46), which are of order A'~', h. '

From (4) we have

Loo&"=m 'LPo'V' —
(1& V)'j

(2)

Lo;&'&=m 'L(Posy; —P,P V)8o+(PoP;V' —PoV~P V))
L,„~»=V,a,
L;,&"=m '((po'8, , p;p—,)Dos

+Pp, (p, ;+p, ;)—p;;p Vf
+P,P,V' —

I& V(P,V,+P,V;)+h;;(P. V)'j}
L;sis& = 8@8o'+(V';V;—8,,V') . (41)

From (32), (33) and (41) we immediately obtain

A, , o„&'(x,O) =0,

that is, there is no antisymmetric Schwinger term if (39)
holds. Combining this result with (9), we have

where X= —q' sin'0 is a fixed mass independent of v.
This is the usual sum rule since )2 ~ is the coeQicient of
popr 111 A or.

We cannot take the limit tp~ ~ oo in the Fourier
transform of Eq .(43), as Eq. (43) is equivalent to the
set of equations (32') and (34'). But the same limit ap-
plied to (34') gives

a, = (1/~pp') do oA;&'& (X,o),

which would indicate a,=0, contrary to the conclusion
a2&0 shown later. Thus the above integral must diverge.
If we arbitrarily assume a~=0 and let the components
of p perpendicular to q go to inanity in the Fourier
transform of (43), we would obtain, as do Amati et al.,"

4v pA1 ( q ) &r)= Gs ~

However, this equation does not seem justified.
Similarly, Eq. (44) is equivalent, as we see by decom-

posing (44) into independent tensorial parts, to the set
of Eqs. (32'), (33') and (42') with p=O. Equation (45)
is equal to (32'), (34'), and (36').

Thus, the sum rules we can derive from the equal-
time commutation relation under the assumption (39)
are limited to (47) and a set of relations (32')—(37'). The
latter, especially (32'), (33') and (36') can give physi-
cally meaningful sum rules, which we will discuss
elsewhere. "

Finally we will derive some useful representation for
ai and as as defined in (35) and (34'). If we take I& Per-

"R.F. Dashen and M. Gell-Mann, in Proceedings of the Thif/d
Coral GaMes Conference on Symmesry Er&scip/es a5 High Energy
(W. H. Freeman and Company, San Francisco, 1966).

'4 S. Fubini, Nuovo Cimento 43A, 475 (1966).I' D. AmatI', R. Jengo, and E.Remiddi, CERN Report TH 759,
1967 (uupublishedl.

J. W. Meyer and -H. Suura, Phys. Rev. Letters 18, 479
(&967),

but dependent on the choice of averaging function.
Hence, for a&~1, Aooi '(x,0) is not uniquely definable.

Ke will now discuss what sum rules we could obtain
from the ETC's (42), (43), (44) and (45). The conven-
tional sum rule (Dashen —Gell-Mann" and Fubini'4) is
obtained from (42) by taking the limit ~p~ ~ oo. In
terms of the external boson mass X=q' and the energy
variable o=p q, we write

A, io&(q) =A;&o&P.,o)

and change the integration variable from qo to v. Then
in the limit ~p~ ~ ~, X=(o+y q)'/po' —q'~ —q'
sin'0, where 0 is the angle between y and q.

Using the crossing symmetryA, &'& (X, —o) =A i& &
(&I.,o),

we obtain

do XAi&'(&, o) =srm,
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q
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We have chosen a Gaussian to de6ne the ETC, but the
general qualitative features of the ETC do not depend
on the shape of the cutoG function, provided it is sym-
metric in qo, although some of the Schwinger terms are
dependent on the cutoff function as will be indicated
later.

We introduce the notation

I [qp "2;h.)—=

Introducing (A1) into (A4),

dq, exp( —qp2/h. 2)qp"Z(q) . (A4)

I[X A)=(2~)-2 ds d u(1/2P) (exp[—(up+P) 2/h. 2)—exp[—(u p
—P) /h, )}))!(u,s)

(A2)
—(2++1)

= —(22r)
—' d4u exP[—(up'+b)/A2) Q (2u )2ss—1

~=o (2)2+1)!

where we have used the abbreviations

P= (s+b)'" and b= ((I—u)'.
(AS) involves the integral

ds(s+b)" exp( —s/A2)))! (u,s), (AS)

(A6)

ds s exp( —s/A. 2)f(u, s) =A" +')
+ 0(A2(sjs+a+I)) 1f f(u S)/Sa ~ 0

dx x"e *))!(u, xh, 2) (A7)~0(A ( + +') if f(u, s)/s ~constant.

We can easily see the series in (AS) is absolutely convergent, and we can take the limit A —mao jn each term. If
))! (u,s) is bounded by a power of s as s ~ pp, then obviously only the f(rst few terms of the expansion in A ' in (AS)
will survive in the limit h. —+ p() . From (A7), the leading term in A is given by the 22= 0 term, and we obtain

lim I[A; A) =0 if ))!(u, s) ~ 0

=0(h.") if )J (u,s) —+ s .
(AS)

For the symmetric part 2('), f(u, s) is syr(unetric in u [see Eqs. (29) and (30)). Hence, the leading term in (AS)
vanishes from jupe('(u, s)d4u=O. The next leading term is obtained by again taking 22=0, but taking the 61st
term of the expansion of exp[—(up2+b)/h. 2) in 1/A'. Thus

lim I[X('),A) —(2)r) 'A 4 d'u ds( —241 u) (2up)f('(u, s)exp( —s/A')
gazoo

dp

Therefore, for Z(s), we have besides (AB),

lim I[A(') A)=0 if P«) (u,s)/s -+ 0

=0(A' ') if f(') -+ 0(s ), a) 1.

Similarly, we can analyze the limit of I[qpA("'); A) and I[qp2A ('");A). The results are as follows:

(A9)

lim I[BE(');h.)=0,
=0(A.')

lim I[qpA ('); A) = constant,

—0(Apa+2)

lim I[qp2A ( ); A) = constant,
gazoo

—0(A2a+2)

lim I[qppA ('); h.)=0,

=0(A.')

P('(u, s) —+ 0

P( )(u,s) —+ s

)J ('(u, s)s -+ 0

P"(u s) ~s
(a&~—1)

f( )(u,s) S~0
f(a) (u, s) —+ sa

(a& —1)

P(')(u, s) ~ 0

P(s) (u s) ~ sa

(a)~ 0).

(A10)

(A11)

(A13)
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The KTC, when the condition (39) does not hold, can
be easily read from Eqs. (A10)—(A13). We do not bother
to write them down, but the following remark may be
important. I[qp A; A], as given by (A5), is a power
series in A. ', starting from some highest-power A.' +

if P ~ s~. This leading term 0(A.' +") is independent of
our choice of averaging or cutoG function, which we took
as exp( —qo2/A2) for convenience. The next leading
term, 0(h.' + ') will be dependent on the choice of the
averaging function, and generally linear in g. From the
symmetry property of It(u, s), the leading term can
vanish, as is the case for I[A'&; A], I[qpA&'&; A], and
I[qo'A&'&; A]. Then, these quantities are entirely model-
dependent, and hence the corresponding ETC has no
definition without specifying the method of averaging
over time. We 6nd the following when f& "&(u, s) -+ s:
Aoo ' (x,o) = Po2&2 h2(x)+2&2 'I Po V' (I&. V—)']

X82(x)Ci+ V2&&2(x)C2, (A14)
where

charged mesons, while for the antisymmetric parts o-z, l,
represents the difference of or, L+ and ar, L . Since
go~ 00 means that the incident vector-meson mass
X~ oo, we may not assert that o 2,L+(W= op, g= op ) -+
constant, even if we assume that

o2,L+(W= oo, X=finite) ~ constant.

However, o.2,L(oo, op) —& constant does not seem con-
tradictory to field-theoretic models with not too singular
interactions. Assuming this, we have lim« „qQ;&'&(q)
—+ constant, and lim«„„qoA;&'&(q) ~ 0, the latter fol-
lowing from o+/o —+1. These asymptotic behaviors
are obtained if we assume that lim, „s'I'P;& & &'&(u,s)
=M(u), i.e., n= ——', in Kq. (A10'). The better conver-
gence for 2 & & is due to

d'u M & &(u) =0.

C;=(22r) ' A & &(q)dq

A 2
——— (a2 —aL)

v2 —m9

(v &2L 2S9L&2T) p

& (v' —2229.)

(A15)

where a~, L, are related to the total cross section of the
transverse or longitudinal vector mesons of mass X=q',

by
o L,T(W ~) &2L, T/(v 2 2&22$) 1/2 (A16)

with the total energy in the center-of-mass system
W2=2N2+2v+Ii. Combining (A15) and (A16) we see
that

lim Zi(q) = —r&22p ' lim [oz(W, X)—oL(W, &)]/qo
qp-o oo qp —v oo

lim 22(q) = —p lim [po o'L(W&X) 2&22&rr(W&X)]/—qo
qp~ oo

Note that for the symrrietric parts 2;&'&, oz,L should
mean the sum of 0.~,L+ and rz, L, , cross sections for &

=0(h.2 ).
For 0&~n&1, (A14) is exact. For n&~1, there will be
additional terms of order A ~ A ( 2) ~ ~ ~, on the
right-hand side of (A14), making the ETC unde6ned.
A p,

&'& (x,0) is undefined for n~) 0. A pp&'& (xp) is unde6ned
for n~) 1. Apq&'&(x, 0) is given by (43) as long as n(1.
For n~& 1, A p;&'&(x,0) is undefined. A;;&'&(x,0) is given by
(44) for n&0, and undefined for n~& 0. A;;&'& (x,0) is given

by (45) for n(0, and is undefined for n~& 0.
In terms of the transversal and longitudinal ampli-

tudes a2, L [Eqs. (44) and (45)], we have

I&Iote added iN proof It w. as shown in the Appendix
that if the spectral function goes like s as s —+~, then
the ETC is in general a power series in h. 2 (A being the
cutofF momentum used to define the time averaging)
starting from some highest power A2&"+ & (r&2) 0). Based
on this analysis a statement was made in the text to
the eBect that the terms in ETC, except for the most
divergent term, would no longer be unique depending
on the cutoff function if the spectral function behaves
too singularly as s —+~, and therefore that the ETC
can no longer be defined uniquely in such cases. The
first part of this statement must be corrected. and. the
second part needs qualification.

On the uniqueness of the terms in the ETC, a de-
tailed analysis shows that the terms of order h. '(o)0)
are obviously dependent on the cuto6 function including
the highest-power term and that the terms of order
0(1) are always unique. This brings about for example
the following situation. If II —+ s (s ~op), the ETC like

(A4) would be of order A'. However, this term can
vanish if It (u, s) is even in u as shown in (A9). Then we
are left with terms of ord, er A. , which are independent
of the choice of the averaging function. Thus the ETC
is well d,efined in this case contrary to the previous
statement. Similarly, in the statements following (A14)
the critical case when the leading nonvanishing terms
is of order h.', must be includ, ed in the case of the
well-defined ETC.

On the general statement that the ETC can not be
de6ned for singular f, there are exceptions for this
statement. It has been brought to our attention by
B. Schroer and P. Stichel (private communication, see
also Ref. 9) that a well-defined ETC can be obtained
for a certain class of Dyson spectral functions even
though the spectral function goes as s" for large s. The
situation can be explained in the language of our paper
in the following way. Consider I[A,A] as defined in
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Eq. (A4). We take
yh

lf (N,s)= Q s"M (I)+y(u, s),

where

y(N, s) —-.0.
$~00

Then p can be treated separately and from Eq. (A8)
gives a vanishing contribution in the limit of large A.
We further require that f(u, s) be synunetric in tt so
that the term in I which goes as A'" vanishes as in

Eq. (A9). The tenn which goes as A'" ' receives con-
tributions from both 3f„and M 1. Now the point
which Schroer and Stichel make is that there exist a
class of f's for which these two contributions cancel one
another so that there is no A'" ' term. In fact, this
process is continued until all divergent terms are
canceled, . This then leaves a finite ETC which in
general is a polynomial in ltil of order ts. In the Ap-
pendix we considered lt 's which behaved only as s"3f(st)
and thus did not consider the possibility of this
cancellation.
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POSSible aT = —,
' AmylitudeS in Ao DeCay*

LEE G. PGNDROM

Urtioersity of Wiscortsirt, Modssort, Wiscortsirt

(Received 13 March 1967)

Using Es' ~ ss. and E+~ s s as a guide, estimates are made on the magnitudes of l AT
l
= s amplitudes

and possible CP violation in the decay A. ~ nm . It is found that, consistent with current experimental
data on A decay, a small lhTl =-,' amplitude could be reflected in an observable departure of no/n from
unity, and that large CP-violating phases could be present.

E(.ENT measurements' of the rate E2'~~'~
indicate that

l
AT

l
)ss amplitudes are responsible

for the CI' violation exhibited by the decays E&' —+ xw. ' '
The only other known lATl = s amplitude is found in
E~-+sr+sr'. From this rate a ratio of S-wave tiTl =s
and lATl =s amplitudes can be calculated: As/Asl
=10%.s The CP-violating phase angle &p can be esti-
mated by assuming that only the lAsl/lApl term
contributes to the ratio st+ ——amp. (E ss —+ or+7r )/
amp. (Ets~sr+sr ). The resulting equation, lrt+ ——1/
(410)(IAsl/Idol)&&sinf, ' gives q =57 mrad for g+
= (1.83&.12)&10 ').' A possible SUs suppression of the
E» —+ mw rate of unknown magnitude would decrease

lAsl/idol and increase fo correspondingly. ' An addi-
tional uncertainty in the amplitude and phase estimates
comes from the possible presence of both

l
ATl = s and

AT =—,
' terms. Thus it is possible that both the

BT =—,
' and

l
t) Tl = ss amplitudes are large and have

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT(11-1}-881,CO0-881-102.
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large phase angles relative to
l
AT

l

= —,', but the
E~' —+7f.x rate is suppressed through a cancellation.
With these reservations in mind, it is the purpose of
this paper to point out that

l As l/idol = 10% and fo=0
could be reQected in the nonleptonic decay of the A.'
and could be easily detected. In addition, if large
lATl =s amplitude and phase were allowed, a large
CI' violation in A.' —+ e7r' could occur.

The data on nonleptonic decay of the A are sum-
marized in Table I. Since the

l
AT

l

=-', rule requires the
same ''amplitudes&for A' ~ p7r and A' -+ ss7cs, this
decay is particularly suited to a search for the presence
of

l
AT

l
= ss. The ratio of asymmetry parameters

no/n is the most sensitive available test. Possible
values for ns and po have been studied using the con-
straints in Table I except for the ratio lPol/lSol and


