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The one-particle matrix elements of the local equal-time commutators of the isovector currents are de-
rived by applying the Dyson representation to the causal parts of the invariant absorptive parts. Assuming
the equal-time commutation relation between the total charge and charge density and also assuming certain
asymptotic limits for the Dyson spectral function, we can generate the local equal-time commutation rela-
tions between various components of the currents. It is shown that, for a reasonable asymptotic behavior of
the spectral function, the charge-space component has no antisymmetric (in isospin) Schwinger terms, but
involves two possible ¢-numer symmetric Schwinger terms, and that the space-space components can have no
antisymmetric Schwinger terms. It is pointed out that as the asymptotic behavior becomes worse, we can no
longer define the equal-time commutation relations uniquely.

1. INTRODUCTION AND SUMMARY

ECENTLY, much interest has been shown in the
so-called Schwinger terms® in connection with the
validity of certain sum rules derived from local current-
current commutation rules. One of the main questions
has been whether or not there exist g¢-number Schwinger
terms other than the original Schwinger term which is
the vacuum expectation value of the current commuta-
tors, and which, therefore, appears in any diagonal ma-
trix element of current commutators as the contribution
from the disconnected vacuum-vacuum transitions. (In
this paper, we call any derivative of a three-dimensional
8 function in the equal-time commutators a Schwinger
term.) There have been a few general formulations?? of
Schwinger terms without using any specific models, but
no concrete answer to the above question has been given
from these formulations. Okubo and others* used the
Jacobi identity to show that the spatial current-current
equal-time commutator must have antisymmetric ¢-
number Schwinger terms. However, the validity of the
use of the Jacobi identity is doubtful as pointed out by
Johnson and Low.? The latter authors undertook the in-
vestigation of the Schwinger terms using specific field-
theoretic models, and their conclusion is that there exist
all sorts of g-number Schwinger terms.

The simplest way to obtain the vacuum Schwinger
term is to use the spectral representation for the vacuum
expectation value of the current commutators, which
was the original method Imamura and Goto® used to
show the discrepancy of the blind application of the
canonical commutation relations to the current com-
mutators.” The method we use in this paper to analyze
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the diagonal one-particle matrix element of the isovector
current commutators (to be specific, one-fermion matrix
element averaged over spin) is a generalization of this
procedure, and is based on the application of the Dyson
representation® of local commutators to certain ampli-
tudes. In the case of the conserved isovector currents,
their commutator, which is a second rank tensor, is
determined in terms of two invariant amplitudes. We
first separate out from these invariant amplitudes the
noncausal part which does not vanish outside the light
cone, so that the remainder is now causal. (Of course
the components of the tensor amplitudes themselves are
causal.) The separation is not unique, and we do it in
such a way that the separated term will give the quark-
model equal-time commutators (ETC) obtained using
canonical commutation relations. Then, the causal part
to which we apply the Dyson representation gives what-
ever terms are present in the ETC in addition to the
canonical terms in the quark model, including possible
g-number Schwinger terms.

In deriving the equal-time commutation relations of
the current densities, we have used, besides the rela-
tivistic invariance, the causality and the conservation
of current, two important inputs. One is the ordinary
ETC between the fofal isovector charge and the charge
density. This means that we have not made any specific
assumptions about the Schwinger terms. The other in-
put is the behavior of the spectral function of the Dyson
representation at the infinite end of the spectrum, which

current commutator see: S. Okubo, Nuovo Cimento 42A, 413
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10 Since submitting this paper we have become aware of another
paper on this subject by Jean-Loup Gervais and M. Le Bellac
[Nuovo Cimento (to be published)]. They do not consider a con-
served current and assume that the case of a conserved current
can be obtained by a suitable limit at the end of any calculation.
They obtain the incorrect conclusion that the quark model ETC
cannot be fitted into the framework of invariant amplitudes repre-
sented by a Dyson representation. The reason they reach this
conclusion is that their assumption about the behavior of the
Dyson spectral functions are much too strong.
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in turn is closely related to the asymptotic behavior of
the invariant absorptive parts. An especially simple
case is obtained if we assume that the spectral functions
vanish at infinity, which is a plausible assumption for
any reasonable field theoretic model. In this case a
formal manipulation using the Dyson representation is
permissible and we obtain the following results:

(i) Charge-density—current ETC has no Schwinger
term antisymmetric with respect to isospin. Thus, the
sum rule of the usual type is possible. (ii) The same ETC
has two possible g-number Schwinger terms, symmetric
in isospin. (iil) The spatial current-spatial current ETC
has one symmetric Schwinger term, which is related to
one of the two terms discussed above in (ii). (iv) The
same ETC has no antisymmetric Schwinger term, but
there exist, other than the quark-model canonical
terms, two possible terms directly proportional to §3(x).
These terms should be there as the space-space part of
the ETC is model-dependent.

As is pointed out in the Appendix, the ETC, precisely
speaking, should be defined as the limit of the average
of the commutator over a short time interval. Knowing
the asymptotic behavior of the spectral function, we can
calculate this average, as long as the spectral function

is bounded by a power of the spectral variable. The -

higher the power, the more Schwinger terms are gen-
erated besides those discussed above. These Schwinger
terms are polynomial in the cutoff momentum used for
the averaging, and are not unique, depending on the
cutoff function used. Thus, if the spectral functions are
ill behaved at infinity, as would certainly be the case
for a very singular interaction, the equal-time com-
mutation relations can no longer be uniquely defined.

2. SEPARATION OF THE NONCAUSAL PART

We consider the one-particle matrix element of the
commutator of two isovector currents

Aw(x)= <P| [7ue(®),5,%(0)] l 2% )

where the state | p) represents either a scalar particle of
momentum p or a fermion. In the latter case Eq. (1)
means the average over two spin states, so that 4,,%% is
a tensor in both cases. For simplicity we call the state
| #) the proton. The Fourier transform of 4,,*%(x),

A,o(g)= / a4 (o |7, 72011 ), (@)

is the absorptive part for the Compton scattering of a
vector meson of mass A=¢? by the proton.
Because of the conservation law 8#4,%=0, we have

qﬂguvab =0 (3)

and A4,,°® can be expressed by two independent co-
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varient tensors, which we choose as

Ap?(Q)=Luw® (@ A1)+ L@ (@A) @)
with ‘

I:uv(l)(Q) = (1/m2)[Pquq2”" (PMQV“*‘QM?V)P ‘q+gw(p- %]
Lﬂv @(9)=Lg*¢w—qu0-],

where m _represents the proton mass. From the struc-
ture of L, ®, it is evident that A(¢) can have no
kinematical singularities, because otherwise 4,, will
have the same singularities. On the other hand, 4:(q)
can have a singularity of the form

o(g*—ap-9)/q* ®)

without inducing any new singularity in 4, itself. Such
a term will give a noncausal function, as we see easily
by considering the region near ¢>=0 and taking the
system p=0. Then we have

3(p+9)/q*=—8(q0) /mq? (©6)

the Fourier transform of which is 1/|x|. Hence we have
to separate such noncausal part of 4; in order to have
a Dyson representation for 4/’s.

We choose the separation specifically as follows.

A19%(q) = A1,2%(q)+A1,2%(q) @)

A1n2¥(q) = 2rm/g®)Le(go+ po)3(g>+2p+ ) :
— e(go— 0)8(¢*>—2p- ) Jieare(T), (8)

where T, is the isospin operator for the proton. 41,%¥(q)
is exactly what we obtain for the antisymmetric (in
isospin) part of A4:%® from the quark-model current
7ue=Yv,(r./2)¢ using the commutation relations for
the free field ¢.1!

Conversely, if we insert (8) into (4) and take the
Fourier transform for xo=0, we obtain

An,o““b(X,O)—:‘ Lou(l)A lnab(x)l 24=0 -
=teao{Tc)0*(X) pu/m ©

A nﬂ;j“b(X,O) = Lij w4 1na'b(x) l =0
= ifabc<Tc>3ij63(x)P0/m"

Thus, A1, generates the quark-model ETC.

With this choice of 414%?, we can prove that A;,2%(x)
is a causal function and also that its Fourier transform
A1.7%(g) has the right support required for the Dyson
representation. These two requirements do not uniquely
determine A1,%® because we can add to it any causal
function with the right support. Therefore the specific
form (8) is to a certain extent a matter of convenience.
From (8) we can calculate 41,%%(x), a convenient repre-

and

(10)

U This is of course equivalent to taking one-particle and dis-
connected three-particle intermediate states in (2) and setting
the charge form factor equal to 1 and the moment form factor 0.
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sentation of which is given by

m
4l (p-x)*—
pox
T f da A(X(2)) cos(ap-a) } , (1)
m 0

A1(%) = —ieape(Tc) {

m2x2:lll2

with X (o) =2,— pu(1—a)p-x/m? Since X2=x2— (p-x)?
X (1—a?)/m?<0 for x2<0 and a< 1, the second term of
Eq. (11) vanishes for #2<0, so that

_ieubc<Tc>m
A1,%(x)= for x2<0. (12)
477‘[(?' x)z_mzxzjl/z
From (8), we have 41,%%(g)=0 for
m—@?+m?<g< —m+q>+m?, p=0. (13)

Since m is the minimum mass of our system, 4,,%%(q)

and hence 4,2%(¢) and 4,%(q) vanish in the same region

(13). Then A1,°® vanishes in the same region, which is

the required property for the Dyson representation.!?
We will prove that

A1.°%(x)=0 and A4.%*(x)=0, for 22<0, (14)

in the rest frame p=0, as Eq. (14) is an invariant state-
ment. In this frame, Eq. (4) gives

Ao () =V2[A41°%(x)+A42°%(x)]. (15)
The solution which vanishes as |x| — « is
A 00”®(x ,xo)
A2 (x)+ A2(x) = —— ' 2] (16)
X—X

For xy2<x?, the integrand is nonvanishing only for
x'2< 202<x2, since Aqo(X,%o) vanishes for spacelike x.
Since 4;(x) can depend only upon p-x and x?% we note
from Eq. (4) that in the frame p=0, A**(x,'x¢) is
spherically symmetric in x’. Hence we can safely put
1/|x—x'| = 1/|x| in Eq. (16). Then, from the con-
servation law 9#4,°=0,

/ 05+ A X )= <p|[ / dsx'jo«*(x'),job(m] 1)
— (][0°,jo¥(0)]1 )

= ieabc<Tc)y (p=o) ’ (17)
where we have assumed that [Q% 70*]=1%€ascjo°. Thus
A19%(x)+ 4% (x)= —ieabc<T¢>/47TIX1 , %2<0. (18)

The right-hand-side is exactly equal to 41,%%(%) as seen
from Eq. (12) with p=0. Thus

A1¢ab(x)+A zab(x) =0, (19)

12 Tf we had taken only the first term of (11) as 4:s%%(x), then
An2® would be ieqas{Tc)2w8(p- q)/(mq?), which does not vanish
in the domain (13). Then A41*® would not satisfy the Dyson
representation.

x2<0.
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Next we show that 4,°%(x) is causal. Equation (4)
gives in the rest system

V242 (%) = (1/2)2: Ao®(x) — (3/2)90*(41°*+ 42°Y)
which yields

Az“”(x)—“_ / sy’ {22 Aub(x' 1x0)

IX x|
— 3907 A1°¥(x’ o) + 4 2°(x’,20) ]} .

Since the noncausal part of 41%*+A4,°? as given by Eq.
(18) is independent of time in the rest system p=0,
002(A41°%4A4,°%) no longer contains the noncausal part,
and vanishes outside the light cone. Again the integrand
is nonvanishing only for x"2<x?, if 2<0, and

81r}x] /d%’

XA At —30H(41°24+-4,")},  22<0.
Equations (15) and (3) give the relation

V2602(A 1ab+A2a,b) —_ OOZA ooab(x)
=21, ViV;d ;%)

(20)

A 2“b(x) =—

1)

from which

/dsx'aoz(A 1+A2)
1 / ]’ 1
=—— [ d% | d*%''——
4o |x'—x"|
X245 V'V As2(X )
=/d3x’/d3x”

1
X2 4,5 Aa*¥(x" 20) Vf’W(*‘————)
| x|

=(3) / a*x" 305 (X x00)

where we have used

1 1
e | B — Y= (1)s..
47r/de1V]<]x’—x”l) @)

From (21),
A:%%(x)=0, x2<0

which, combined with (19), gives (14).

(22)

3. DERIVATION OF EQUAL-TIME COMMU-
TATION RELATION

We have seen in the last section that the noncausal
function 41,9 generates the quark-model ETC (9) and
(10). We now calculate the contribution of the causal
part A1.°® and A2,°>=4,°> to the ETC. Since 4 ;.2(x)
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(1=1,2) vanishes for x2<0, and the Fourier transform
Ai2b(q) vanishes in the domain (13), it satisfies the
Dyson representation

A;2%(q)=(2m)3 / ds f d*u e(g—u)
xa((q-—u)2—s)¢,~ab(u,s) ’

where ¥,;°®(u,s) is nonvanishing in a finite domain in %
space. The Fourier transform of (23) is given by

(23)

A (x)=1 / i ds A(x,s)®;%%(x,s) , (24)

where

P:%0(x,5) = (2m)~ / due= Y (u,s).  (25)

From Eq. (1) we have the crossing symmetry

Awt(x)=—A4,,b*(—x), (26)
which requires from (4) that
Ai“”(x)= —A,-b“(—-x). (27)

If we decompose 4 ;% into symmetric and antisymmetric
parts defined by

A,’“b(x) = 5abA,'(’)+1:€abc<Tc)Ag(“) (28)
we have from (27)
A (—x)=—4:9(x) (29)

A (— )= 4, (x).

A41,% is antisymmetric, so that 4 must also
satisfy (29). In terms of the Dyson spectral function we
have

P; ® (x,s) = (I)i(s)(— .’XJ,S)

and
202 (1,5) = — B4 (—5,5). (30)
Introducing (24) into
Aew? (@)=L, (8) A1+ L,,P(9) 4%, (31)

we obtain derivatives of up to second order with respect
to time of 4;.%%(x). Using (24) and the crossing relation
(30), we have, for the symmetric and antisymmetric
parts,

A9 (x,0)=0 (32)
A 9(x,0)=0 (33)
A (x,0)= —ia:6%(x), (34)
where
a;= / ®,(0,5)ds
—Grfas [auvioms @9
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dzA i (s)
> (x,0)=0 (36)
a4, @
(x,0)= —2b;6%(x), (37)
di?
where
= (2m) f ds / i@ (5) (38)

In the above we denoted 4. by 4;® because the
latter has no noncausal part. The above relations are
equivalent in momentum space to

[ daod1.®9(g)=0 (32)

/ dgoged i@ =0 (33)

/ dgoq0d :)(g) = 2ma; (34)

f dqoge?Ai =0 (36")
and B

f dgoqe*d ;. @ = 4mb;. (37)

These relations do not follow unconditionally from (23),
since the interchange of the order of g and s integrations
is necessary to derive them. (This point was first con-
sidered by Schroer and Stichel.?) [The domain of #
where y(u,s) is nonvanishing is finite; hence # integra-
tion gives no difficulty.] In the Appendix we will discuss
the precise definitions of Eqs. (32")-(37’) and the condi-
tions for their validity. There we find that the necessary
and sufficient condition for all the above relations
(32)-(36) to hold is

lim ¢;@ @ (4,5)=0. (39)
If (39) holds, we have from (23)
lim Z09(g)=0, (40)

go—>®

which is a necessary condition for (32)-(36) to hold. [1f
we consider Eq. (37") as the definition of b;, (38) is valid
only when sy;¢© — 0, instead of (39). However, the
structure of ET'C does not change if we take (39).]
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From (4) we have
Loo®=m* p*V*—(p- V)?]
Ly®=v?2
Lo O =m[(po®Vi— piD* V) 00+ (popsV2i— poVip- V)]
Ly;®=V,9o
Lij O =m=2{(pe*di;— pips) 9o
F+Lpo(piVit piVi)—2pobip- V 100
+pipiVi—p- V (p:iVitp;iVi)+8i(p- V) 2]}
L;j®=6;;00>+(V;V;—8;;V 2),
From (32), (33) and (41) we immediately obtain
A c,0u (@ (X;O) = 0 )

(41)

that is, there is no antisymmetric Schwinger term if (39)
holds. Combining this result with (9), we have

4 Op () (X)O) = 63(36)?,,/’}% ) (42)
or in momentum space,
/ dqod os®(q) =2 pu/m . (42)
For the symmetric part, (32), (34) and (41) give
AOi(s) (X,O) = —im_2(p02V¢— j),p . V)
X8¥(x)a1—iV;03(x)az.  (43)

We will discuss the magnitudes of a; and g, later.

For the space-space antisymmetric parts we use (32),
(33) and (37), and add the noncausal part contribution
(10) to obtain

A @(x,0)=[(po/m)di;+ (2/m*)
X (pipi— po*8i;)b1—28:;0216°(x) . (44)

Here we have no derivatives of § functions, but we do
get extra §-function terms, which we expect to be there
as A4 (x,0) should be model-dependent. (32), (34),
(36), and (41) give

A9 (x,0)=1m2po[ 26,p- V— piV;— p;V: 183 (X)ai.  (45)

If the condition (39) is not satisfied, as we could ex-
pect for some field-theoretic model with highly-singular
interaction, then we can have more Schwinger terms.
However, most of these additional Schwinger terms are
dependent on the choice of the averaging function neces-
sary to define the go integral. Then the ETC involving
such terms is not uniquely defined. (See Appendix.) For
instance, Ag**(x) has the antisymmetric Schwinger
terms

Aoo(“) (x,O) — pom“153(x)+m_2(ﬁo2v2"‘ (p . V) 2)
, X 83 (x)c1+ V283 (x)ca, (46)
where ¢;=0(A2%), (A — ). (46) is correct for 0<a<1.

For > 1, other Schwinger terms appear on the right-
hand side of (46), which are of order A2e=2 A2e4 ...
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but dependent on the choice of averaging function.
Hence, for a2 1, 4¢'?(x,0) is not uniquely definable.

We will now discuss what sum rules we could obtain
from the ETC’s (42), (43), (44) and (45). The conven-
tional sum rule (Dashen—Gell-Mann'® and Fubini'4) is
obtained from (42) by taking the limit |p| — . In
terms of the external boson mass A=g¢? and the energy
variable v=p-q, we write

A9 () =A:(\p)

and change the integration variable from gy to ». Then
in the limit [p| — », N\=(@+p-q)*/p’—q*—> —¢q*
sin’, where 6 is the angle between p and q.

Using the crossing symmetry 4,9 (\, —») =4, (\ ),
we obtain ’

00

/ dv M @D\ p)=mm , (47)
0

where N\=—¢q? sin? is a fixed mass independent of ».
This is the usual sum rule since N4 is the coefficient of
Dupyin Ay

We cannot take the limit [p| — « in the Fourier
transform of Eq .(43), as Eq. (43) is equivalent to the
set of equations (32) and (34’). But the same limit ap-
plied to (34") gives

ai=(1/mp?) / B0
0

which would indicate a¢;=0, contrary to the conclusion
ay7%0 shown later. Thus the above integral must diverge.
If we arbitrarily assume a;=0 and let the components
of p perpendicular to q go to infinity in the Fourier
transform of (43), we would obtain, as do Amati et al., 1

/dl/ VA1(8>(—-(]2, 1/):: —azs.

However, this equation does not seem justified.

Similarly, Eq. (44) is equivalent, as we see by decom-
posing (44) into independent tensorial parts, to the set
of Egs. (32"), (33’) and (42") with u=0. Equation (45)
is equal to (32'), (34’), and (36’).

Thus, the sum rules we can derive from the equal-
time commutation relation under the assumption (39)
are limited to (47) and a set of relations (32')—(37’). The
latter, especially (32'), (33) and (36”) can give physi-
cally meaningful sum rules, which we will discuss
elsewhere.16

Finally we will derive some useful representation for
a1 and @, as defined in (35) and (34"). If we take p per-

18 R. F. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral Gables Conference on Symmeiry Principles at High Energy
(W. H. Freeman and Company, San Francisco, 1966).

14 S. Fubini, Nuovo Cimento 43A, 475 (1966).

1 D. Amati, R. Jengo, and E. Remiddi, CERN Report TH 759,
1967 (unpublished).

a 16 7). W. Meyer and H. Suura, Phys. Rev. Letters 18, 479

967).
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pendicular to q, then from (29), 4;(q) is antisym-
metric with respect to ¢o and we have from (34")

ai=(1/m) / daogo O (@w=puas),
B

where 8= — po+ (p>+q>+m?)1/2. As we will show later,
the integrand can be continued analytically to »=0 by
letting |p|2— —m? and po—> 0. Then changing the
integration variable to A=¢? we obtain

a:=(1/2) / " {@(\0). (48)

We now express 4;® in terms of positive definite quan-
tities, which are essentially cross sections for hypo-
thetical charged photons of mass \. If we denote the
amplitudes for these hypothetical charged photons by
AP 4,®, etc., we obviously have

A@=54:54+4,9). (49)
The positive definite quantities are
a(:i:) — eﬂevg‘w(ﬂ:)
=1/m)[ (e p) A= ], =N >, (50)

where we have used e?=—1 and e-¢=0. In the rest
system, p-e=0 for the transverse polarization, so that

ar® =—[(0¥/m?) A, BN, ®]. (51)
For the longitudinal polarization we have
pre=[0P—Mm?)/A]",
and _
oL@ =— N4, B+4,D), (52)
For ¢o>0,
ar,r®=02m)* 2 [(ple j2(0)[n)]?
Xo®(p+g—pn). (33)

Although $o=0 is unphysical with respect to the
initial state, it is still in the physical region of the inter-
mediate states, as long as go=> — po-+[(p+q)2+m>]!/2
asin Eq. (48), since this is equivalent to s= (p+¢)22> m?.
In other words, >, 6(p+q— p») in Eq. (53) is still well
defined in the limit »=0. Since the matrix element
(p|e- 7P| n) would in general be an analytic function of
v, we can take the limit » — 0 in (53) and conclude

aL,T(i)()\,O)> 0. (54:)
Thus, Egs. (51) and (52) give
1 redi
ay=—— [ —[ar®X\,0)+ar™(\,0)]
4r Jo A
and
1 redx
artar= —— / e P00 +aON0]. (55)
dr Jo A

EQUAL-TIME COMMUTATION RELATIONS
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We conclude that a,7#0. @; involves the difference
ar—ar and no conclusion can be drawn about it. It
should be stressed, however, that the disconnected
vacuum contribution is still included in Eq. (55) for
as. This is because in Eq. (53) for az,r, {p|e-7(0)|n)
can be a disconnected matrix element in which the state
|#) contains the initial particle p, plus the rest of the
particles which are produced by the momentum ¢ inde-
pendently of p. Such a disconnected matrix element
would vanish for A= ¢? smaller than a certain threshold
because of the energy-momentum conservation factor

n—1

=1

but in Eq. (55) the whole range of X is involved. To
prove that the g-number Schwinger term is nonvanish-
ing, we have to subtract from @, the vacuum Schwinger
term, which is contained in the product of the discon-
nected matrix elements, and show that the rest is non-
vanishing. If we do this subtraction, we obtain, besides
the positive definite terms involving only connected
matrix elements, the interference terms between con-
nected and disconnected matrix elements. So far we
have not been able to prove the non-vanishing of the
g-number Schwinger term, although the exact cancella-
tion of direct and interference terms is very unlikely.

APPENDIX

Consider an invariant 4 (¢) which satisfies the Dyson
representation

)

A(Q=2n)3| ds / d*u e(g—u)
"’ X3((q—u)*— W (us). (A1)
The equation
/ A(g)dgo=0 (A2)
should be interpreted as'?
lim [ dgo exp(—qe%/A%)A(g)=0. (A3)

—00

This equation does not necessarily follow from (A1),
but depends on the behavior of ¥(x,s) as s— . (The
domain of # where ¥ is nonvanishing is finite, so that
there is no problem in the # integration.) The factor
exp(—qo?/A?) and the limit A — o arise from defining
the ETC as

A w(x,0)=lim(1/r7/%)

—00

0

dxy exp(—x02/72)A /w(x:xﬂ) ’

where 7=A"1is the half-width of the time measurement.

17 For a discussion of the meaning of the formal expression of the
Dyson representation Eq. (A1) see: A. S. Wightman, in Dispersion
Relations and Elementary Particles (Hermann, Paris, 1960), p. 304.
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We have chosen a Gaussian to define the ETC, but the We introduce the notation

general qualitative features of the ETC do not depend -

on the shape of the cutoff function, provided it is sym- wd A o, e

metric in go, although some of the Schwinger terms are g d; A]= dg0 exp(—qd’/A)q"A(g) . (A4)
dependent on the cutoff function as will be indicated
later. Introducing (A1) into (A4),

—00

ILA; 1= 2r) / s / 0(1/268) (exp[— (ui-18)%/A¥]—expl — (ua— B/ AT} (15

© (AZ)—@wtD) ®
=—2m)~° / d*u exp[ — (uo™+)/A%] ngo W(Zuo)"’"“ / o ds(s+0)" exp(—s/ADY(u,s), (AS)

where we have used the abbreviations

B=(s+b)"? and b=(q—u)?. (A6)
(AS5) involves the integral
© % — o(AXmretDY if  y(y5) /5% —> 0
/ ds s™ exp(—s/AY(u,s) = A2(m+D / dx x™e Y (u,xA2) ] (A7)
s so/A? — O(A2tmtetD)  if  Y(u,s)/s* — constant.

We can easily see the series in (AS) is absolutely convergent, and we can take the limit A — in each term. If
¥(u,s) is bounded by a power of s as s — «, then obviously only the first few terms of the expansion in A=2 in (A5)

will survive in the limit A — «. From (A7), the leading term in A? is given by the #=0 term, and we obtain
lim I[4; A]=0 if Y(u,s)—0
Ao . (A8)
=0(A%) if yY(u,s)— s=.

For the symmetric part 4@, y(u,s) is symmetric in « [see Egs. (29) and (30)]. Hence, the leading term in (A5)
vanishes from [uq)® (u,5)d*s=0. The next leading term is obtained by again taking #=0, but taking the first
term of the expansion of exp[ — (#2+0)/A%] in 1/A2 Thus

li_{g ITA® A]~—(2m)—3A / d*u / i ds(—2q-u) Quo)y @ (u,s)exp(—s/A2).

Therefore, for A ), we have besides (A8),
lim I[A®,A]=0 it ¢9us)/s—0

A9
=0A%*2) if Y@ —0(s%),a>1. (49)
Similarly, we can analyze the limit of I[god ®; A and I[ 0?4 (+; A7]. The results are as follows:
lim I[god @ ; A]=0, Y@ (us) —0
A= (A10)
=0(A*), Y@ (u,5) — s
lim I[god ®; A]=constant, ¥ (u,s)s— 0
A~ (A11)
— O(A2a+2)’ ¢(s)(u,s) — 5@
(a2 —1)
lim I[go?4 @; A]=constant, ¥ (u,s) s— 0
A->0 (A12)
=0(A%+2), Y@ (4,5) — 5=
(a2 —1)
lim I[g2 A ®; A]=0, Y (u,5) — 0
A (A13)

—OWH), YO - 5o
(@20).
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The ETC, when the condition (39) does not hold, can
be easily read from Egs. (A10)-(A13). We do not bother
to write them down, but the following remark may be
important. I[go™4; A], as given by (AS), is a power
series in A=2 starting from some highest-power A2et+m
if ¢ — s*. This leading term O(A2**™) is independent of
our choice of averaging or cutoff function, which we took
as exp(—qo¢?/A?) for convenience. The next leading
term, O(A2¢*™2) will be dependent on the choice of the
averaging function, and generally linear in q. From the
symmetry property of y(u,s), the leading term can
vanish, as is the case for I[A®; A, I[goA®; A], and
I[q?A® ; A]]. Then, these quantities are entirely model-
dependent, and hence the corresponding ETC has no
definition without specifying the method of averaging
over time. We find the following when /(9 (,s) — s*:

A00@ (x,0) = pom—163(x) -+ m~2 po?V2— (p- V)7]
X 83(x)Ci+- V264 (x)Cy,  (Al14)

where

Ci=(2m)1| A, (g)dq

=0(A%).

For 0<a<1, (A14) is exact. For a>1, there will be
additional terms of order A2@D A2 ... on the
right-hand side of (A14), making the ETC undefined.
Ao (x,0) is undefined for o> 0. 40’ (xp) is undefined
for a>1. 40 (x,0) is given by (43) as long as a<1.
Fora>1, 40 (x,0) is undefined. 4,;? (x,0) is given by
(44) for <0, and undefined for &> 0. 4 ;5 (x,0) is given
by (45) for <0, and is undefined for ¢ > 0.

In terms of the transversal and longitudinal ampli-
tudes ar,, [Egs. (44) and (45)], we have

m?

Ay=— (er—ar1)
v2—m\

(A15)
A,

——————(%—m\ar) ,
A@p2—m2)

where ar,; are related to the total cross section of the
transverse or longitudinal vector mesons of mass A= g¢?,
by

UL,T(W,)\) = aL,T/(v2—m2)\)1/2 s (A16)
with the total energy in the center-of-mass system
W2=m?+2v+\. Combining (A15) and (A16) we see
that

lim 4i(g)=—m?" lim [or(W,\)—or(WA\)]/q0
go— go—

lim A3(q)=—p? qlim [po2o .(W,\) —m2ar(W,N)]1/qo.
go— ® 0—> ©

Note that for the symmetric parts 4;, or,1 should
mean the sum of o7 1+ and or,~, cross sections for =+
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charged mesons, while for the antisymmetric parts o7,z
represents the difference of o7,z and or,z~. Since
go— o means that the incident vector-meson mass
A — o, we may not assert that o, ;Z(W=100 A=) —
constant, even if we assume that

or, 12 (W= 0, A\=finite) — constant.

However, or,(,%) — constant does not seem con-
tradictory to field-theoretic models with not too singular
interactions. Assuming this, we have limg,.. god:®(q)
— constant, and limg,.« god:(g) — 0, the latter fol-
lowing from ot/o—— 1. These asymptotic behaviors
are obtained if we assume that lim,_., s1/%;(@()(y,s)
=M (u), i.e., a=—% in Eq. (A10’). The better conver-
gence for 4;@ is due to

/d“u M@ (u)=0.

Note added in proof. It was shown in the Appendix
that if the spectral function goes like s* as s —, then
the ETC is in general a power series in A2 (A being the
cutoff momentum used to define the time averaging)
starting from some highest power A2t (;>0). Based
on this analysis a statement was made in the text to
the effect that the terms in ETC, except for the most
divergent term, would no longer be unique depending
on the cutoff function if the spectral function behaves
too singularly as s —c, and therefore that the ETC
can no longer be defined uniquely in such cases. The
first part of this statement must be corrected and the
second part needs qualification.

On the uniqueness of the terms in the ETC, a de-
tailed analysis shows that the terms of order A¢(e>0)
are obviously dependent on the cutoff function including
the highest-power term and that the terms of order
0(1) are always unique. This brings about for example
the following situation. If ¢ — s (s =), the ETC like
(A4) would be of order A2. However, this term can
vanish if ¥ (#u,s) is even in % as shown in (A9). Then we
are left with terms of order A° which are independent
of the choice of the averaging function. Thus the ETC
is well defined in this case contrary to the previous
statement. Similarly, in the statements following (A14)
the critical case when the leading nonvanishing terms
is of order A% must be included in the case of the
well-defined ETC.

On the general statement that the ETC can not be
defined for singular y, there are exceptions for this
statement. It has been brought to our attention by
B. Schroer and P. Stichel (private communication, see
also Ref. 9) that a well-defined ETC can be obtained
for a certain class of Dyson spectral functions even
though the spectral function goes as s for large s. The
situation can be explained in the language of our paper
in the following way. Consider I[4,A] as defined in
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Eq. (A4). We take

V)= 3 M) +8(u5),

where
¢ (u,5) — 0.
80
Then ¢ can be treated separately and from Eq. (A8)
gives a vanishing contribution in the limit of large A.
We further require that y(%,s) be symmetric in % so
that the term in 7 which goes as A?" vanishes as in
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Eq. (A9). The term which goes as A2"2 receives con-
tributions from both M, and M,_;. Now the point
which Schroer and Stichel make is that there exist a
class of ¥’s for which these two contributions cancel one
another so that there is no A?*~2 term. In fact, this
process is continued until all divergent terms are
canceled. This then leaves a finite ETC which in
general is a polynomial in |q| of order #. In the Ap-
pendix we considered ¥’s which behaved only as s*M (u)
and thus did not consider the possibility of this
cancellation.
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Possible | AT| =% Amplitudes in A° Decay*

LeE G. PoNDROM
University of Wisconsin, Madison, Wisconsin
(Received 13 March 1967)

Using Ko — wr and K* — 7 as a guide, estimates are made on the magnitudes of |AT| =% amplitudes
and possible CP violation in the decay A®— na® It is found that, consistent with current experimental
data on A° decay, a small |AT|=$ amplitude could be reflected in an observable departure of ao/a- from
unity, and that large CP-violating phases could be present.

ECENT measurements! of the rate K— %0
indicate that |AT|>% amplitudes are responsible

for the CP violation exhibited by the decays K o* — 7m 23
The only other known |AT|=% amplitude is found in
K*— g#7° From this rate a ratio of S-wave |AT|=3
and |AT|=% amplitudes can be calculated: |A4s/A4,]
~109,.4 The CP-violating phase angle ¢ can be esti-
mated by assuming that only the |A4s|/|A4q| term
contributes to the ratio n_=amp.(K— wtr~)/
amp.(K®— 7tz~). The resulting equation, |n_=1/
(W10)(| 42|/ | 4o]) Xsing,® gives =57 mrad for 74
= (1.83£.12X1073).8 A possible SU; suppression of the
K9 — 7 rate of unknown magnitude would decrease
|A2|/|Ao| and increase ¢ correspondingly.® An addi-
tional uncertainty in the amplitude and phase estimates
comes from the possible presence of both |AT|=% and
|AT|=% terms. Thus it is possible that both the
|AT| =% and |AT|=% amplitudes are large and have

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT (11-1)-881, CO0O-881-102.
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large phase angles relative to |AT|=%, but the
K" — 7 rate is suppressed through a cancellation.?
With these reservations in mind, it is the purpose of
this paper to point out that |4s|/| 4| =109, and ¢=~0
could be reflected in the nonleptonic decay of the A9
and could be easily detected. In addition, if large
[AT|=% amplitude and phase were allowed, a large
CP violation in A’ — znz® could occur.

The data on nonleptonic decay of the A% are sum-
marized in Table I. Since the |AT| =1 rule requires the
same Yamplitudes? for A°— pr— and A°—s ua9, this
decay is particularly suited to a search for the presence
of |AT|=$%. The ratio of asymmetry parameters
ao/a— is the most sensitive available test. Possible
values for ap and B, have been studied using the con-
straints in Table I except for the ratio | Py|/|S,| and
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