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It is observed that the mN invariant amplitudes A and 8, at fixed u=0 and I„=-„give rise to sum rules
of the type now becoming familiar from superconvergence relations, even though the amplitudes are not
superconvergent. With the s-channel (srN ~ 7rN) spectrum approximated by the nucleon and the A (1238),
and the t-channel (2 s. -+ NN) spectrum approximated by the p, it is found that the sum rule obtained from
the B amplitude is satisfied very well, while that from the 3 amplitude is not. It is speculated that this
discrepancy might be due to the ~7i- s wave, which is rigorously absent from the 8 sum rule.

I. DERIVATION OF SUM RULES
' 'T has been discovered recently' that sum rules can
~ - be obtained from strong-interaction scattering am-
plitudes which satisfy dispersion relations and have
suKciently good asymptotic behavior. The usual
criterion for obtaining a sum rule is that the amplitude
be "superconvergent, " that is, that at high energy it
decreases faster than s '. In this paper we would like
to observe that sum rules may be obtained even from
amplitudes that are not superconvergent, and to
discuss such a sum rule relating baryon to meson
resonances in m-S scattering.

With s, t, and u the usual Mandelstam variables,
and the~g amplitudes 2 and 8 de6ned by 7= —A

+y (qt+q2)B/2, it is known' that at fixed u, both A
and B behave asymptotically as s &"& It' where II(u) is
the leading trajectory in the I channel. Thus if for u=O
all trajectories were below J=——'„ these amplitudes
would be superconvergent, and we could write, for ex-
ample, for the amplitude 8

dst ImB(s, u=O)+ImB( —s, u=0)(=0, (1)

where ImB(&s) is evaluated above the cut in the s
plane, and for the moment we are ignoring the com-
plications due to the unequal x and E masses. If we
consider the amplitude that is pure isospin ~ in the u
channel, we would expect that only the nucleon
trajectory would be above J=—-', ; the trajectory of
the 1V*(1518) is estimated to have an intercept of
J=—0.9 or lower. ' If we write R(s) for the leading
term of the nucleon exchange contribution, we have
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which takes the form

R()=v(0)(1+ * ' "")I (2a)

for s above the right-hand cut; we then expect that
F(s)=B(s,u=—0)—R(s) does decrease faster than s—',
and so we conclude

ds[ImF(s)+Imt( —s))=0. (3)

Furthermore, there are the following indications that
the I=0 amplitude should contribute primarily to 2
rather than to B:(1) The srlr s wave does not contribute
to B at all. (2) Therefore, the lowest I=O resonant
contribution to B is from the f', which is already at a
fairly high energy. Although there are no energy
denominators in our sum rule, the above considerations
show that the high-energy contributions of the s and t
channels, while not separately negligible, must tend to
cancel. (3) The absence of structure in the near-forward
2rp differential cross sections indicates that the I' (and,
to a lesser extent, the 8') trajectory is coupled pre-
dominantly to A near )=0.4 To the extent that we can
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However, we can see that ImR(s)+ImR( —s) =0, and
so Eq. (3) leads us back to Eq. (1).An identical relation
holds for the amplitude A. We cannot break up the
left-hand side of Eq. (1) into the sum of two integrals,
since each separately would be divergent; nevertheless,
the imaginary parts cancel in just such a way as to
make (1) true. Of course this kind of cancellation is not
restricted to backward xE scattering; it is a simple
consequence of the nucleon's having even signature, as
expressed in Eq. (2).

Since we do not know how to calculate the t-channel
(orsr —+ EN) I=0 contribution to our sum rule, we could
not compare it with experiment unless it should turn
out that the I=O contribution is small. We notice that
the amplitude we are using is mainly I=i in the 3

channel:

Brv=l/2 —Br(=1+ 1/Q. {)BI(=0
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extrapolate along the trajectory, we would expect that
the js is coupled mainly to A.~

Therefore we would hope to get a reasonable sum rule
from the 8 amplitude if we ignore the I=O part; for
the A amplitude this is less reasonable, especially if
the mw s wave is important.

One 6nal word on evaluating the sum rule is appro-
priate at this point. A tractable approximation which
we employ is to take the discontinuities to arise from
narrow resonances. In this case, we have

ImB(s,u =0)
=P (residues of s-channel poles) 8(s—M, ')

—P (residues of t-channel poles)

Xb(s+MP —2Ms —2i s) (5a)

The sum rule therefore takes the form

P (s-channel residues) =P (t-channel residues) . (Sb)

To begin, we shall include only the nucleon, 6(1238),
and p pole contributions.

Since the m and S do have different masses, we must
replace ImB(s) and ImB(—s) in Eq. (1) by the dis-
continuities 8, and 8&, respectively, and extend the
integration down to the lowest t threshold; Eq. (5) is
unchanged. Since the Legendre series for the dis-
continuities (not the full amplitude) converge every-
where along the path of integration, the approximation
of keeping only the lowest partial waves can still be
justi6ed.

II. CALCULATlONS

In this section we present the relevant pole terms for
the s- and t-channel states. We need an amplitude with
pure I=-,' in the I channel; this corresponds to the
combination [ss(I= zs) ——,'(I= rz)) in the s channel.
Using the notation

charge i as
2pp

gs 'yq+ o qqqv Xri p

2M

with the normalization (proton~ rs~ proton) = 1.The prir
coupling is defined to be gi(qi —qs) „Xr;; experimentally,
we find gis/47r=2. 5 (corresponding to a p width of
120 MeV).

Universality' of the p-meson coupling to the isospin
current would imply g2=-,'g&. To relate g2 and [tip to
measurable quantities, we can look at a dispersion
calculation of the nucleon form factors, in which we

obtain

( electric ) f»gsMqs/ 1 )
(magnetic) M, s t (2luq)—

+(nonpole terms) . (8)

From p
—+ e+e (or e+e colliding-beam) experiments, '

we can in principle determine f», so that the form-
factor data can determine g2. At present, it appears
that f»=2/gi (as would be expected from a dispersion
calculation of the pion form factor), so that the p residue
in Eq. (8) can be written as

(1)
2p,)

with r=—2gs/gi. Spearman's fit to the form-factor datar
implies r=1.6 and pq=lsy(=1. 85). Therefore the p-
meson contributions to our sum rule from Eqs. (6) and

(8) are

ResAq(I„= rz—)=2rgi iiyM(1 Mq /2M )—
=4xX9.6 GeV

and
ResB,(I„=si) =2rgts(1+ 22' v) =4tr X37.5.

Next, we exhibit the baryon-pole terms. The nucleon

pole is
A~=0

and

we 6nd for the p contribution
(0l
(3)s—M'

(10)

1) pqM(1 —M '/2M')
I2gtgs

E—2) I,—3fp'

where g'/47r= 14.5. Hence the nucleon contributions to
the sum rules are

ResAN(I„=-,') =0
1+2',,

12gigs
4—2) &

—M' (6)
and

ResBiv(I =-', )=gs=4irX14.5. (11)

The 6-pole terms can be evaluated by expressing A

Here we have written the p/lV coupling for the p of and8intermsof thepartial-waveamplitudes. 'Dining
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733

Q2 gTR6+W (E—M)g

we see that

the residue of the (3,3) partial-wave amplitude by

2W exp(swiss) sinless
(12)

B sum rule: 39.5 (from baryons)
versus 37.5 (from p) . (17b)

III. DISCUSSION'
[q(E—M)/2d jpss= I'/2. (13)

Experimentally, we have F=120 MeV and 6=-',M,
and so ass=22. 5=ss(g'/4a. ). This is the same value
predicted either by SU6 or by the static bootstrap
model.

We can now write the 6-pole terms in A and 8 as

(—1)47ryss 3(W+M)
Aa(s, N=O) =

i

Ols —6' 2(E+M)'
(Ms ps)s s

X ——+Ms+ps +(W—M)
2 W2$

and
)—1~4~q» 3

Ba(s, 1=0)=i
Ols —6s 2(E+M)'

(Ms ps) 2 s
X ———+M'+1r' —1

22$

The contributions to the sum rules are

—ResA a(I„=—',)= 113Myss ——4s.X18.8 GeV,
and

ResBa(I„=-',)=14yss=4s X25. (15)

—(s-channel contribution)
4m

=—(t-channel contribution),
4x

(16)

Eqs. (9), (11), and (15) give

A sum rule: 18.8 (from baryons)
versus 9.6 (from p) in GeV (17a)

The masses, widths, and elasticities of many of the
higher baryon resonances are known, and so we can
compute their contributions to the sum rules. However,
it turns out that all of these contributions together are
less than 10% of the N and r), contributions, and so we
shall continue to neglect them.

We are now in a position to evaluate our sum rules. If
we rewrite Eq. (Sb) as

We note first that the 8 sum rule is well satis6ed with
the experimental values of the pNN couplings (as
interpreted from form-factor analysis). Universality
(which implies r=1.0 instead of 1.6) would not have
given such good agreement. Even within the resonance
approximation, we have of necessity neglected the
contributions of higher resonances, such as the f', any
possible second p,

' and the resonances seen in the
missing-mass spectrometer work at CERN."According
to the arguments presented in Sec. I, these higher.
energy contributions to the sum rules should be small-

If the f' is indeed coupled to A, it could perhaps
account for some of the discrepancy in the A sum rule.
In addition, the xx s wave, which does not contribute
to 8 at all, makes a contribution to A which we do not
know how to calculate. %e do not even know the sign
of this contribution, but can perhaps estimate the
magnitude of the low-energy s wave by approximating
the low-energy spectrum by a 0 meson. From a boson-
exchange model of nucleon-nucleon scattering, Ball,
Scotti, and Wong" estimate the AS coupling to be
g,zzs/4a=5. If we arbitrarily assign the o mass of
500 MeV and a width of 200 MeV, the 0. would con-
tribute about 2 GeV to the A sum rule, Eq. (17a), and
so could account for about 4 of the discrepancy. In
addition, there is some evidence for an I=L=O xm

resonance lying underneath the p,
"and we have no way

of estimating what its coupling to EE might be.
Because of these ambiguities, it is diKcult to draw

any conclusions from the A sum rule; we would certainly
not like to use this sum rule to estimate the magnitude
of the a.a. —& NN amplitude! The B sum rule seems
to be well satisfied by keeping only the states p, E,
and h.
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