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A relativistic Hartree-Fock calculation of atomic wave functions and energy levels is carried out. The
relativistic Hamiitonian is the sum of the Dirac Hamiltonian of the electrons and the retarded Breit inter-
action. Expressions for the matrix elements of the Hamiltonian are given for closed-shell con6gurations of
electrons, and the relativistic Hartree-Fock equations are derived. A numerical program to compute the
Dirac radial functions and energy eigenvalues for an arbitrary closed-shell atom is described. Results
obtained for the energies of the ground states of He and Be are found to be in precise agreement with previous
nonrelativistic calculations. Results for Ne, Ar, and Cu are also presented and compared with previous
self-consistent-Geld calculations.

I. INTRODUCTION

LTHOUGH the Hartree and Hartree-Fock meth-
ods have been widely used to calculate atomic

structures, comparatively few relativistic calculations
have been carried out. At present, all of the relativistic
self-consistent-6eld calculations in the literature either
neglect exchange or use approximations to the exchange
forces.

The best agreement to date with the experimental
energy levels of the inner electrons of heavy atoms has
been obtained from the relativistic Hartree-Fock-
Slater calculation of Liberman, Waber, and Cromer. '
For the E-shell of a heavy element, the difference
between these eigenvalues and the experimental energy
levels is of the order of cr(crZ)4 sttcs, which agrees in

sign and order of magnitude with the Lamb shift for a
hydrogenlike atom. ' In subsequent calculations of
higher-order corrections it would be desirable to have
a calculation of the wave functions including exchange
exactly as a starting point and basis for comparison.
Grant' has derived relativistic Hartree-Fock equations
using an unretarded relativistic electron-electron inter-
action. Racah's algebra of spherical tensor operators is
used to simplify the formula for the expectation value
of the Hamiltonian. Although a numerical calculation
is mentioned in Grant's work, no description of the
calculation has been published. In addition, we have
found some of Grant's tabulated coeQicients to be in
error.

More recently a relativistic generalization of the
Hartree-Pock-Roothaan equations has been formulated
and solved by Kim, 4 who gives numerical results for He,
Be, and Ne.

*Work supported in part by the U.S. Atomic Energy Com-
ml.sslon.

t Based on a thesis submitted to the Graduate School of the
University of Notre Dame in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

f National Science Foundation predoctoral fellow.' D. Liberman, J.T. Waber, and D. T. Cromer, Phys. Rev. 137,
A27 (1965).' See, for example, J. M. Jauch and F. Rohrlich, Theory of
Photons end Electrons {Addison-Wesley Publishing Company,
Inc. , Cambridge, Massachusetts, 1955).'I. P. Grant, Proc. Roy. Soc. (London) A262, 555 (1961).

4 V. K.. K'm, Phys. Rev. 189, t7 (&967).
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The object of this work is to present a relativistic
Hartree-Fock calculation for closed-shell con6gurations
of atoms. An expression is derived for the expectation
value of the Hamiltonian of the atom, and the varia-
tional principle is applied to obtain the relativistic
Hartree-Fock equations for the radial functions. The
interaction between electrons used is that derived from
quantum electrodynamics, treating the coupling of the
electron with the radiation 6eld in lowest-order pertur-
bation theory. Since a stationary state of an atom is
represented by an antisymmetric state vector, exchange
is automatically included. A numerical program is devel-
oped to obtain the wave functions and energy eigen-
values for an arbitrary closed-shell atom. The results of
numerical calculations which have been carried out
using this program are presented and compared with
earlier work.

II. DERIVATION OF THE HARTREE-FOCK
EQUATIONS

Brown' has shown that the expectation value of the
Hamiltonian of two bound electrons in states repre-
sented by i and j is given by

Nsg =N2&„g'g
—

N2'g, PP,

where

d'r~d'r2
V'(rr) VA" (rr) &'(rs) &4' (rs)

d3rld3r2
I;;,;;=e P, (rr) p„P; (rr) A(rs) p„P;(rs)fr, r,f-

&( coscots'
I

rr —rs I, (&)

and co,, is the absolute value of the diGerence between
the energies of the electrons. We write the four-compo-
nent Dirac wave function in the form

jt'(&!r)G-(r)(l-(&) )li--(r) =
I

((I/r) Z„„(r)n „„(r))
where the Q„(r) are two-component normalized spinors

e G. E. Brown, Phil. Mag. 43, 467 CI952}.
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which are simultaneous eigenfunctions of orbital and shell
total angular momentum, and of the s component of
total angular momentum. 6 The spinor Q„(r) can be
written as

Q„(r) = QC(/22j; m —p, p)Yg, ~ „(r)y&,

where C(l2j; 222
—p, p) is a Clebsch-Gordan coefficient,

is a spherical harmonic, and y& are two-component
Pauli spinors. The quantity ~ is given by

K=~( j+2)

QI44 ——(2j,+,)FP(i, j),

Qh), =0,
m;, X

X&4= (2j~+1)Z~ (K~/K*) b2'( j, i, ~V),

QJ)g= (2j,+1)+I ORE( j, i, (u;;) A~(a;jK;)
ec, )'

+aC) ( J) 2) (de') r (Kj/ Kq)

+2p(i, j, a)g) r~( —K,lK;) ].
The direct and exchange parts of the interaction can be
separated into electric and magnetic terms

L~~,22'= ~ (144+ghX),
X

Naj. ~j —& (~44+ +Ax) q

X

where

The Slater integrals are defined by

SP(i,j) = dr F2(i, r) I G;(r) 2+F, (r) 2j
0

OR+( j, i, cv;;) =2 dr FP(j,i, cog, r)G;(r)F;(r),

d t'jd p'2

rg —r2

X cos~v
I

r&

Z22r (j, i, &o;;) = 'dr FP(j, i, &o,;, r)F;(r)G;(r), ('/)
0

J44 ——
(Pf$(Pf2

4 (ri) 4, (r2) 42'(r2) 4'(r2),

(Ptyd t'2

0 "(r2)~~A(ri) 4'"(r2) ~4'(r2)
I r2 —1'„

I'P( j, i, cv;;, r) =r dr'E&(&o;, , r, r')
0

XI G, (r')G;(r')+F;(r')F;(r') j,

I 2"( j, i, cog, r) =r dr'K)(co,;, r, r') G; (r') F;(r') . (8)
0

X co~a Ir2 —r2I (4)

Substituting the central-field wave functions (2) into
the interaction matrix elements (4) with Eq. (3) and
the expansions

4x r('
, , I'~ *(ri) I'i (r2),

2/+1 r)'+'

The electrostatic and magnetic coupling coefficients are
expressed in terms of Clebsch-Gordan and Racah
coefFicients as follows:

A (K2/Kl) 4( j2/jl)11(/1//2)

h. (K2/K&) =A( j2/j&)11(/&/+1/2),

&(j,jl2) =
I C( jg/j2, —,'0-', ) j'/(2jg+1),

r (K2/K2) =I'(» /K2) II(/g/+1/),

r(K&/K2) =6+I w(1-', j&/&, —,'J)]'A(J/j2),

where

X&(~;;, r&, r2) = ar;, (2/+1)jt(~—;,r&) y&(~',r&),

where
II (/g//2) =0, /2+/+/2 odd)

/2+l+/2 even.
summing over ns;, and making use of the algebra of
the Clebsch-Gordan and Racah coeS.cients, we obtain
for the interaction between an electron and a closed

6The angular-momentum coupling coefhcients and spherical
harmonics used are those de6ned in M. E.Rose, E/ementary Theory
of Angular Momentgm (John Wiley 8z Sons, Inc. , New York,
1957).

The coefFicients defined above are given numerically in
Tables I and II. Our coefficient h.( j&/j2) is equal to
one-half the I';,», defined by Grant, ' and we have
found his values for F7/2]7/2 and I'7/237/2 to be in
error.

We write the total energy of the atom as the sum of
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TABLE I. A( j&lj~). Symmetry relation: lt( jmlji) =h( jdj2) ~
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22

3/2

5/2

7/2

9/2

1/21/2
3/2
5/2
7/2
9/2

3/2 1/4
5/2
7/2
9/2

5/2 1/6
7/2
9/2

7/2 1/8
9/2

9/2 1/10

1/6
1/6 1/10

1/10

1/60
1/10

1/20
1/70
9/140

1/504
1/18

1/990

1/210 4/105
1/14 1/210

1/21

5/168
1/462

4/165

1/14
1/14 1/18

1/18

9/140
1/35 1/21
1/84 5/252
1/21 1/99

4/315 1/63
1/42 5/462
1/231 4/231

3/616 9/616
3/154 9/2002

12/5005 9/715

1/22

5/132
1/66

25/693
5/462

4/429

75/8008
3/286

3/715

9/286

25/858
7/858

25/3432
7/858

16/2145

7/286

245/10296
7/1287

784/109395

49/2431

49/12155

the zero-order energy and the interaction energy of the
electrons

F.= QEp,+Q Ug,
pairs

orthonormality conditions

J (G„„G„.„+F„„F„„)dr =8„„.,
0

(10)

where by using Lagrange rnultipliers X@, and setting X;;=8;,
we obtain the relativistic Hartree-Fock equationsCD It' d

Z„-= dr G, (V~+1)G;+I ———' F,
0 &dr r d———'

i F;+(V W;)G, =X—,,dr rj (11a)
It' d sc;+F (V~ 1)F I

——+ —.—G.
g 2 7

d—+ —'
I Gi+ (2+W;—V) F;= V;,

dr r
(11b)

and t/'~ is the Coulomb potential of the nucleus.
Applying the variational principle, incorporating the where

—P&~(~l&~,) &P(i j,~;, r)+I'~(z l—«) VP(j, i, co;,, r)]F;I++');,G,,
e'

&, (r) = ——g'(2 j,+1)QI & (~;ia,) F'P( j, i, ar;, , r) F;
i l

(~;l~;) VP( j, i, ~,;, r) +F ( —x, lv;) VP(i, j, ~;;, t) jG;I —g'&;;F,. (12)

The symbol g'; indicates that the sum runs over all sphere ot radius R=1.2 2"'&&10 "cm, so that
orbitalsi for which I(:i=~; and i/j.

III. DESCRIPTION OF THE NUMERICAL
PROGRAM

A numerical program has been developed to calculate
the wave functions and energy eigenvalues for an
arbitrary closed-shell atom. In the numerical work the
nucleus has been taken to be a uniformly charged

V~(r) = —Ze'jr

V~(r) = 3Ze'j(2R—) +Ze'r'/(2R'),

and retardation has been neglected. We do not believe
this effect to be large, since retardation enters only in
the exchange term, which provides a relatively small
correction, and is of second order in the energy differ-
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T~tE II. r(KRAK&) .Symmetry relation: I'(~24&) =I'(~2l Kl).

1
2

3
4

3/2

1/6
2/3

1/2
1/2

1/2
1/10
4/15

3/10
3/10

4/15
1/6
1/14
6/35

3/14

6/35
1/10
1/18

1/6

8/63
1/14 10/99

1
2
3
4

2/3 1/2
5/12 1/4

1/6

1/6
13/60
11/70
3/28

3/28
1/7

29/252
5/63
3/28 25/396

2
3/20
2/5

2/5
7/30

' 1/10
1/4
1/14
6/35

4/15
1/6
1/6
1/10

3/10
9/140
1/10
1/20

3/10
1/10
8/105

23/210

6/35
3/28
1/21
9/140

1/10
1/7

. 4/63
11/210

4/35
2/30
5/132

1/5
31/3,15
65/1386

20/231
15/308

5/99
5/66

10/143

35/858

5/42
2/7

1/14
1/14 11/70
1/6 4/105
1j18 1/14

3/14 8/63
1/21 5/63
4/63 25/693

13/462 19/462

20/231
5/99

25/858
200/3003

75/2002 70/1287

1
2
3 2/7

9/56

6/35
6/35 3/28

1/10 1/14
1/8 13/280

3/14 1/14
9/140 3/28

11/210 19/462
29/616 23/616

15/308
5/66 /5/2002

35/1144 475/8008 35/1144

ence co;;. In addition, we have computed the effect of
retardation for a particular case; details are given below.

The limiting form of the kernel in Eq. (8) force;, =0 is

E~(0, r, r') =r~'/r&'+'.

We can now set the off-diagonal Lagrange rnultipliers
equal to zero. To show that the radial functions will

then satisfy the orthogonality conditions, we first mul-

tiply Eq. (11a) by G, and Eq. (11b) by F;, where i is

any orbital except j, for which K'= K)'. We then subtract
the equations, interchange i and j in the resulting
equation, subtract again, and integrate over r to obtain

(W;—W, ) (F;F,+G,G,) dr

(X,G, X,G,+F,F, —F,F;)dr—
0

The integrand on the right side of the above equation
can be shown to vanish by writing out the functions

X;, X;, F;, and F; in the form (12) and replacing the
functions 7P(i,j0, r) ,and FP(i,j, '0, r) by their

integral representations (8). We will therefore set the
off-diagonal multipliers equal to zero and achieve a
considerable simplification in the numerical solution.

The input data consists of the quantum numbers of
the electronic shells and previously computed poten-
tials. To begin a calculation, the functions X; and I';
were taken to be zero, and the potential V calculated
by a relativistic Hartree-Fock-Slater program written
by Johnson and Coletta was used. The Hartree-Fock-
Slater program used procedures essentially identical to
those described by Liberman, Waber, and Cromer, ' and
gave energy eigenvalues in agreement with those
reported by these authors.

The solution of the Hartree-Pock equations and the
determination of the energy eigenvalues for a given
orbital and set of potentials was carried out using a
relativistic generalization of a method first employed

by Hartree7 in a nonrelativistic calculation. Let us drop
temporarily the subscript j on the radial functions

7 D. R. Hartree, J. Opt. Soc. Am. 46, 350 (1956);see also D. R.
Hartree, The Calculation of Atomic Structure (John bailey 8z

Sons, Inc. , New York, 1957).
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He

(1)

1.83589

(2)

1.83606'

(3)

1.836b

(4)

1.807b

Be 1s
Be 2s

9.46601 9.46698
0.61862 0.61864'

9 466c

0 61860
8.23~
~ ~ ~

TAsx.z III. Energy eigenvalues for He and Be in rydbergs.
(1) Present work; (2) relativistic Hartree-Fock-Roothaan; (3)
nonrelativistic Hartree-Fock; (4) experimental.

and G&~, and complementary functions F&~ and G&~

satisfying the boundary conditions that the radial
functions go to zero as r approaches infinity.

The complementary functions satisfy Eqs. (11) with
X, and I", set equal to zero. A solution F and G satis-
fying both boundary conditions, and continuous every-
where except possibly at the classical turning point ro

can be formed by setting

~ See Ref. 4.
H. A. Bethe and E. E. Salpeter, in Handblch der I'hysik, edited by

S. Fliigge (Springer-verlag, Berlin, 1957), Vol. 35, p. 231.
~ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A150, 9

(1935).
~ K. Siegbahn, Alpha-, Beta-, arid Gamma-Ray SPectroscopy (North-

Holland Publishing Company, Amsterdam, 1965), Vol. 1, p. 862.

F, and G;. For a given set of potentials and energy
these equations have particular solutions IiJ. and G~
and complementary functions FI. and GI. satisfying
the regularity conditions Fl~r'+' and G&~r'+' at the
origin. Similarly, there exist particular solutions Fz"

F(r) =Fzz(r) =Fzt'(r) +~zrFzt'(r)
'

G(r) =Gzz(r) =Gzz~(r) +nzzGzzc(r)
r)rp,

F (r) =Fz(r) = Fz~(r) +nzFzc(r)

G(r) =Gz, (r) =Gz~(r) +rxzGzc(r)
r(r„(13)

where 0.& and o.L, are any pair of constants. The require-
ment that Og and a~ be continuous at ro determines O.g
and e~ to be

Gzt (rp)(Fzt (rp) Fz (rp)]—+Fz (rp)(Gz, (rp) —Gzt (rp) j
Fz,'(ro) Gzz'(rp) —Fzr'(ro) Gz'(ro)

Gz (rp)[Fzt (rp) Fz (rp)—]+Fz (rp)LGz (ro) —Gzt (ro)]
Fz,'(ro) Gn'(ro) —Fzz'(ro) Gz.'(ro)

The solution constructed from Eqs. (13) using the
values of az and nzr given in Eqs. (14) is continuous
everywhere and satisfies the boundary conditions both
at the origin and at infinity. Such a solution is not
necessarily normalized; the norm of the wave function
depends on the energy H/'. Solutions are computed for
different values of t/V, and the energy eigenvalue, which
gives a normalized solution, is determined by successive
linear interpolation.

The two 6rst-order differential equations (11) are
integrated using the five-point Adams method, ' chosen
because of its stability properties. The Adams method
is a standard predict-correct method using as a pre-
dictor

y„+&——y„+(h/'/20) (1901y' —2774y'„z+2616y'„

—1274y'„s+251y'„4) + (95/288) hey
"l ((),

and as a corrector

y„+t ——y„+ (h/720) (251y'„+&+646y'„—264y'„ t

inlnity, determined by the condition

LV(r) —Wjrs-300,

TABLE IV. Energy eigenvalues for Ne in rydbergs. (1) Present
work; (2) relativistic Hartree-Fock-Roothaan'; (3) nonrelativis-
tic Hartree-Fock; (4) experimental x-ray levels. '

Shell (2) (3) (4)

to the classical turning point. The outward integration
is started at the surface of the nucleus, using starting
values calculated at points inside the nucleus by a
power series.

To have a finer mesh of points near the nucleus, the
range of integration is divided into 427 intervals,
equally spaced in the variable t= lnr. The mesh is
chosen so that the fifth point is on the surface of the
nucleus; the integration could then be started with a
power series for points inside the nucleus. The last
mesh point is fixed at 1(N„where A,, is the electron

+106y'„s—19y'„s) —(3h'/160) y'@(f) . 1g

Here y„denotes the value of the solution y(r„) where
r„ is the nth mesh point. The point $ lies somewhere on
the interval of integration.

The integration is carried inward from the practical

1/2

1/2

3/2

65.607

3.872

1.704

1.697

65.63490

3.87198

1.70568

1.69696

65.546

3.861

1.701

63.72

1.4

'F. B. Hildebrand, Introduction to Numerical Analysis (Mc-
Graw-Hill Book Company, Inc. , New York, 1956), pp. 198, 202,
216.

~ See Ref. 4.
E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127,

1618 (1962).
o See footnote d, Table III.
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TAnLE V. Energy eigenvalues for Ar in rydbergs. (1) Relativistic Hartree-Fock (present work); (2) relativistic Hartree-Fock
with retardation (present work); (3) nonrelativistic Hartree-Fock', (4) nonrelativistic Hartreea; (5) nonrelativistic Hartree-Fock-
Slaterb; (6) experimental x-ray levels. '

1$ 1/2 238.092 238.088 237.212 237. 118 232.54 235.3

2$

1/2
3/2

24. 815

19.240
19.086

24.816

19.243
19.088

24. 643

19.142

22.201 22.865

17.849 18.207

21.09

18.15
18.01

1/2

1/2
3/2

2.5731

1.1894
1.1756

2.5732

1.1896
1.1758

2.554

1.182

1.912

0.834

2.1068

1.0653

1.98

0.88

R. D. Cowan, A. C. Larson, D. Lieberman, J. B. Mann, and. J.Vfaber,
Phys. Rev. 144, 5 (1966).

"See Ref. 9.
4 See footnote d, Table III.

Compton wavelength; the step size At varies from 1/32
to 1/28 for 1&Z& 92.

A calculation of the error term of the Adams method
formula gives for the E-shell Coulomb radial function

F(r) =Ar&e ""

arelative error
~
Af/f

~

of order 10 "forr at the classical
turning point ro. The relative error increases somewhat
for larger r, reaching a value of approximately 10 ' at
the practical in6nity. However, the absolute value of
the error term is nearly the same at this point as at the
classical turning point. The numerical-integration rou-
tines were also tested on this example for Z=70, and
the results were found to agree with the above esti-
mates. The Coulomb radial functions were also used to
test the integration routines for an inhomogeneous set
of equations, by taking

X=—20nr)/ 'e "",

Y=20o.r~'e "",

V= —90n/r.

This set of equations has the same solution as the
homogeneous set with Z=70.

The power series is terminated when the next term
is less than j.0 times the sum. The numerical values
for V=X;= I';=0 and ~ = —1 were found to agree with
the analytic solution

F,= —((2+W) r] '[r cosh(pr) —sinh(pr) ],
G;= sinh(pr)/p,

to one part in 10'.
After solutions continuous everywhere are con-

structed, using Eqs. (13) and (14), the variation of
the energy eigenvalues to produce a closer approxima-
tion to the true eigenvalue can be carried out in two
ways. First, an error in H/' large enough to result in
radial functions with an incorrect number of nodes is

corrected using the "stepwise improvement scheme" or
the "range-narrowing scheme, " described by Herman
and Skillman. ' Second, if the radial functions have the
correct number of nodes, the new eigenvalue is deter-
mined by linear interpolation using previous values or
8"and X.On the second trial integration of an iteration
cycle, the value of S' used to obtain another value of
E for interpolation is 0.958 .

Modification of the energy is discontinued on any
iteration cycle if the interpolation formula gives a
change ATV in the energy such that

Using the new radial functions, new potentials are
computed using Eqs. (12).The functions FP(i, j, 0, r)
and I'p(i, j, 0, r) are computed for any pair of orhitals
using Bode's integration formula

f(x) ds = (2k/45) Pfp+32fr+ 12fs1'32fs+ 7f4)

+ (gh'/945)f"'(6) .
For the special case F(r) =re "", the routine gave
results in agreement with the analytic solution to seven
decimal places. The norm of the wave function was
also computed using this formula.

As a remedy for possible instability in the iteration
process, the potentials

l'=4 l'-t.+ (1—4) l'.ta,

X& PX;.,t,+(——1 g) X;,)e, —

l't=4~t-t. +(1—4) 1"t.u,

@=0.375

are used in the next cycle. The energy eigenvalues to
be used in the 6rst trial integration of the next iteration
cycle were calculated using 6rst-order perturbation

9F. Herman and S. Skillman, Atomic Structure Calculatione
(Prentice-Hall, Inc. , Englewood Clips, New Jersey, 1963}.
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TABLE VI. Energy eigenvalues for Cu+ in rydbergs. (1) Present work; (2) nonrelativistic Hartree-Fock&; (3) relativistic Hartreeb;
(4) relativistic Hartree-Focir-Slater'; (3) nonrelativistic Hartree-Fock-Slater; (6) nonrelativistic Hartree'; (/) experimental x-ray
levels. '

Shell (2)

3$

1/2

1/2

1/2
3/2

1/2

1/2
3/2

3/2
3/2

665. 10

83.915

73.117
71.676

10.942

7.4865
7.2936

1.6193
1.5969

658.4

82.30

71.83

10.651

7.279

1.613

664.8

79.52

70.66
69.14

8.978

6, 012
5, 818

1,020
1.000

658.07

80.558

71.180
69.625

9.6410

6.6447
6.4470

1.4622
1.4395

78.87

69.74

78.45

69.86

9.355

6.429

8.968

6.078

i.459 1.195

650.40 658 ' 0 660.0

80.9

70.0
68.5

5.7
5 4

0.15

a D, R. Hartree and W. Hartree, Proc. Roy. Soc. (London) AISV', 490
(193').

A. O. Williams, Phys. Rev. 58, 723 (1940).
'See Ref. 1.

~ See Ref. 9.
~ D. R. Hartree, Proc. Roy. Soc. (London) A141, 282 (1933).

See footnote d, Table IIL The experimental levels quoted are for
neutral Cu,

theory. Iteration was continued until

for each value of r.

IV. RESULTS

The numerical results for the energy eigenvalues
obtained using the present methods are compared with
those from other methods. Results are given for the
normal states of the elements He, Be, Ne, Ar, and Cu+.
The energy eigenvalues of He and Be are found to
agree closely with those calculated previously using the
nonrelativistic Hartree-Fock method. This result is
expected, since relativistic eBeets are completely
negligible for these atoms, providing a check on the
calculation.

The results for He and Be are shown in Table III,
with the nonrelativistic Hartree-Fock results and the
experimental values. The remaining discrepancy be-
tween calculation and experiment is presumably due
to the rearrangement energy and correlation effects.

The energy eigenvalues for neon are shown in
Table IV. As the E-shell binding energy is only 63.7
Ry, or approximately 0.00017 times the electron-rest
energy, relativistic effects are small for this atom. The
nonrelativistic Hartree-Pock eigenvalues were com-
puted using the expansion method, and their authors
believed them to be accurate to three significant
figures.

The numerical results for He, Be, and Ne presented
here are seen to be in substantial agreement with the
previous calculations of Kim. 4 The slight differences

which do arise are probably due to the difference in
numerical technique, and to the effect of finite nuclear
size.

The energy eigenvalues for argon are presented in
Table V. For the E shell, the difference AE between
the relativistic and nonrelativistic Hartree-Fock results
is 0.9 Ry. The ratio /3E/E is thus of the same order of
magnitude as the ratio of the binding energy to the
rest energy. In general, a relativistic calculation will
give a larger binding energy than- the corresponding
nonrelativistic calculation. The Hartree-Fock and
Hartree-Fock-Slater methods give lower energy eigen-
values than the Hartree method.

The magnitude of the effect of retardation was
tested for argon by making a calculation with retarda-
tion included. The results are presented in column 2 of
Table V. It is seen that for all levels the diGerence is
limited to the fifth decimal place.

The energy eigenvalues for: Cu+ are shown in Table
VI. Like the eigenvalues for Ar, they are somewhat
lower than the relativistic Hartree-Pock. -Slater eigen-
values and slightly lower than the nonrelativistic
Hartree-Fock eigenvalues. For the E shell, the differ-
ence between the relativistic and nonrelativistic eigen-
values is again of the same relative order of magnitude
as the ratio of the binding energy to the rest energy of
the electron.

/Vo/e added se proof. Since the submission of this
article for publication, our attention has been called to
the work of M. A. Coulthard LProc. Phys. Soc. (Lon-
don) 91, 44 (196/) j, in which a relativistic Hartree-
Fock calculation is carried out for several atoms, with
the magnetic interaction terms omitted. Detailed re-
sults are given for mercury.


