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Equation (4.8) reduces to an identity both in exact
SU(3) and in exact SU(6)s, this relation has also been
derived in broken SU(3)."It is known that Eq. (4.8) is

very well satisfied experimentally. "
(vi) Another relation which follows in the broken and

exact SU(6) s is the following:

pl &*'&=(&/2v3)( Pl '&' ) (49)

Such a simple type of relation does not exist in SU(3).
It has been shown by Olsson" that a relation of the
type (4.9) is very well satisfied experimentally.

good results retain their validity. It is important to
notice that the symmetry-breaking interaction which we
have used to break the SU(6)s symmetry is isospin
conserving and can not alter the exact SU(6) tv ratio
between two isospin amplitudes for processes in which
the members of the same isomultiplets are involved.
Thus the nonvalidity of the Johnson-Treiman relations
involving reactions with different isospin multiplets is
easily understood. The validity or nonvalidity of all
other relations like the ones discussed in Secs. III and
IV can similarly be explained.

V. CONCLUSION

In conclusion, we wish to emphasize that the broken
SU(6)s successfully eliminates many of the bad pre-
dictions of exact SU(6)s and of exact SU(6)s and
~etains some of the good results as far as baryon-meson
scattering is concerned. Similarly when one of the final
scattered particles is a baryon resonance, some of the
bad features disappear; at the same time some of the

» S. Meshkov, G. A. Snow, and G. B.Yodh, Phys. Rev. Letters
13, 212 (1964).

'4 M. G. Olsson, Phys. Rev. Letters 15, 710 (1965).
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The eftect of the leading Landau singularity of the fourth-order single-loop graph in a two-particle to four-
particle amplitude is investigated. The amplitude for the graph is evaluated from a dispersion relation in
the mass squared of the two particles interacting in the final state, and its behavior is studied using a simple
model. The reactions pp ~EE'~21 and pp ~ ~21+21 are examined in some detail, and peaks are predicted for
the amplitude squared in a certain range of the external variables.

I. INTRODUCTION

''T is of some interest to investigate the possibility
- - that the singularities associated with some graphs
may under certain circumstances have direct physical
manifestations.

The possibility of an experimentally observable effect
arising from triangle graphs has been the subject of
intense investigation. ' Unfortunately, the leading

*Partially supported by the National Science Foundation.
Based, in part, on a thesis submitted by P. Collas to the University
of California at Los Angeles in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

~ P. V. Landshoff and S. B. Treiman, Phys. Rev. 127, 649
(1962);R. Aaron, Phys. Rev. Letters 10, 32 (1963);F. R. Halpern
and H. L. Watson, Phys. Rev. 131,2674 (1963);I.J.R. Aitchison,
ibQ. 133,B1257 (1964);V. V. Anisovich and L. G. Dakhno, Phys.
Letters 10, 221 (1964);C. Goebel, ibid 13, 143 (1964); C. Ka.seer,
ibid. 12, 269 (1964); Y. F. Chang and S. F. Tuan, Phys. Rev.

Landau singularity of the triangle graph is a logarithmic
branch point and is thus rather "weak"; attempts to
reinforce the amplitude enhancement by combining this
logarithmic singularity with the inverse square root
non-Landau branch point of the triangle (see, for
example, Landshoff, Treiman, Halpern, and Watson' )
have met with limited success (see, for example, Month,
but also Cason et al. , in Ref. 1).This is due to the fact
that the non-Landau branch point is always on an
unphysical Riemann sheet and only under special
circumstances can it approach the normal threshold;
one has in fact to impose stringent mass constraints at.

136, B741 (1964); M. Month, Phys. Letters 18, 357 (1965),
Phys. Rev. 139, 31093 (1965); ibid. 151, 1302 (1966); N. M.
Cason, S. Mikamo, and A. Subramanian, Phys. Rev. Letters 17,
838 (1966); C. Schmid, Phys. Rev. 154, 1363 (1967); i. B.
Bronzan, ibid 134, B687 (19.64).
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each vertex, which force the whole graph to "take
place" at threshold. These constraints are not easily
satisfied in practice, and as a result on the one hand it
is very dificult to find cases suitable for investigation,
and on the other any visible effect is extremely sensitive
to the variation of the incoming energy, etc. Our purpose
here is to examine in some detail the variation of the
amplitude for the so-called box graph (Fig. 1). The
leading Landau singularity of this graph is an inverse
square root branch point, and therefore it is reasonable
to expect that under the proper conditions (viz. , when
the singularity is close to the physical boundary) it
may give rise to a relatively strong peaking effect as
compared with the (logarithmic) triangle case. As we
shall see, the box singularity can in general be made to
appear aeymhere along the physical boundary and does
not require any stringent vertex constraints. Moreover,
one can 6nd processes for which a strong effect persists
for small ranges of the external variables and for which
the vertices can be justifiably expected to be large.

In Sec. II we study the Landau curves of the singu-
larities involved. For our purpose the box amplitude is
most conveniently represented by a dispersion relation
in the mass squared of the two particles interacting in
the anal state. This also is derived in Sec. II for a general
process of the type 2+8~C+D+E+F. In Sec. III
we introduce widths for the unstable particles (reso-
nances)' in the intermediate state and study, using a
model process, the motion of the singularities and the
subsequent behavior of the amplitude as a function of
the external variables and widths. Finally in Sec. IV
we consider the reactions pp —+ KKzx and pp —+ AAm+vr

and investigate the possibility of amplitude enhance-
ments arising from the graphs of Fig. 17.

Readers interested only in our experimental predictions
can skip Sec. II and Sec III and g. o directly to Sec. IV.

II. DERIVATION OF THE DISPERSION
RELATION

A. Preliminaries

There are essentially three difterent configurations for
processes proceeding via the box graph' (see Fig. 1);
any other can be obtained from one of these by re-
labeling the vertices.

We restrict ourselves to the case of only two in-
coming particles. Wiggly lines represent unstable
particles.

Process (c) of Fig. 1 is experimentally unfeasible,
since it requires two unstable particles in the initial
state. For definiteness, and also because the mechanism
of Fig. 1(a) requires the relatively rare occurrence of a

For a justification of this procedure see I. J. R. Aitchison and
C. Kacser, Phys. Rev. 133, 81239 (1964).' R. K. Norton, Phys. Rev. 135, 81381 (1964); S. Coleman and
R. K. Norton, Nnovo Cimento 38, 438 (1965);R. J. Eden, Phys.
Rev. 119, 1763 (1960).

2 2 2
M, (m +~,

l m2
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M ) (m) pl) M p(m ~~ )

Fn. 1.The three possible configurations of the box graph.

4 The physical bolrIdary of a complex amplitude is the set of
points of the physical sheet which lies in the physical range of the
external variables of the amplitude.

5A more precise meaning of these statements will be given
later on.

6 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys.
Rev. 114, 376 (1959).

resonance decaying into another resonance, we have
restricted ourselves to a study of the con6guration
shown in Fig. 1(b). Although the process of Fig. 1(a)
may contribute to significant mass peakings, it is ex-
pected that this would occur when the external momenta
are outside the range for which the mechanism of
Fig. 1(b) is important. Hence, it is reasonable that the
two possible sources of mass peakings shown in Fig. 1(a,)
and 1(b) be studied separately.

We wouM expect a large contribution to the ampli-
tude from the box graph LFig. 1(b)$ when the corre-
sponding box singularity is "close" to the physical
boundary4 for the process of interest provided the ampli-
tudes occuring at the vertices of our graph are "large. "'

We denote the external 4-momenta by p;; thus

p s= 3fp. We also d—efine the two invariant variables
s, t:

(p. p.) = -(p-.+p )-,
t = —(pi —p4)'= —(ps+ ps)'

The invariant amplitude for the box graph depends
on the six invariants: M~', M2', M3', 3f4', s, t. Our
mathematical expressions take a simpler form if we
use instead the following six dimensionless variables'
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(see Fig. 1 for significance of symbols):

S—AS y
—852
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xg ) X2
2P IPEy

32 @22 m, 22
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x4—

3f2'—Pg' —m2'

2P yS22

3f4
—P2 —fÃy

2P2my
(2)

x3+—— (xt (yx+ xsx4)+yxs+ xx4
(xrs —1)

&P(xt—L„4—) (xt—L„4+)

X (x, L~,—) (x, Lg,+)] 13) (4)

To orient ourselves we begin by reviewing brieQy
certain pertinent facts about the triangle and box
singularities: viz. , the conditions under which they
appear on the physical boundary' and their motion as
some of the invariants are continued along certain paths.

As an example consider the process of Fig. 2(a) which
is obtained by reducing the graph of Fig. 1(b). The
triangle singularity L» of the graph lies on the
physical boundary of the x3 plane when

x &—1, y&+1, y+xs&0;

then L» &1. These conditions arise from requiring

In terms of these variables the inequalities ("in-
stability" conditions) in Fig. 1(b) become xr& 1,
x2& —1) x3)1) x4( —1.

It is convenient to write a dispersion relation for the
box amplitude 8 in the variable x3 and to investigate
the amplitude enhancement in the x3 physical range.
Clearly, since the deftnition of xs LKq. (2)$ does not
involve the internal masses p~ and m~ of the unstable
particles, our integration contour will remain on the
real xa axis even after continuation to complex masses.

We shall thus be concerned with the singularities of
8 on its x3 Riemann surface. These are, apart from the
normal threshold at xs ——+1, the triangle singularities'

L„s+———yxs+L(ys —1) (xss —1)]'" (3a)

L += —**~E(x'—1)(*4'—1))'" (3b)

and the box singularities'

(a)

xs =Lyp

s
Mi

x3=L xo

(c)
+

x3=Lyp

FIG. 2. By contracting the internal lines with masses m& and p1
in the graph of Fig. 1(b) one obtains the triangle graphs shown
in (a) and (b), respectively. The triangle shown in (c) arises from
contracting the line of mass m1 in the diagram of Fig. 1(b) and
reversing the direction of m2. For the three cases indicated, the
triangle singularities L„g, L 4, and L„2+ are singular on the
physical boundary of the amplitude when the external momenta
allow real internal particles to propagate in the directions given
by the arrows.

positive Feynman parameters and real external
momenta. '

The singularity L»+ on the other hand will lie on the
physical boundary only when x3 is a "momentum-
transfer" variable, i.e., x3(—1; e.g. for the process
shown in Fig. 2(c). So that when conditions (5) hold,
it is on the wrong sheet.

In Fig. 3 we show the paths of L„2+ as we continue
xs+ie, (e)0), from the region xs( —1, y) 1, y+xs(0,
to the region xs& —1, y) 1, y+xs) 0.

We now turn our attention to the box singularities

LEq. (4) and Ref. 8). In Table I we give the conditions
on the x;, x, y, L„+,L„,+ for the box singularity to lie
on the physical boundary. These conditions follow from
kinematical and geometrical requirements imposed so
that the graph be realizable as a "classical process. '"
When things are adjusted as in any of the four cases of
Table I, the singularity xt+(xs) of the graph of Fig. 1(b)
is on the physical boundary if, and only if, x3 lies in the
appropriate region indicated. When xt ——xt+(xs) is on

the Physical boundary of the xt Plane, xs=xs+(xt) is also
on the Physical boundary of the xs Plane and vice versa.
Inequalities such as x+x4 &0 imply that at least one L
triangle singularity (e.g. , L,4 ) will also be on the
physical boundary. The singularities x& and x3 appear
on the physical boundary in processes for which x& and
x3 are "momentum-transfer" variables, i.e., x~,x3( —1;
therefore box singularities with opposite signature are
never on the physical boundary at the same time.

In Fig. 4 we show the motion of the box singularities
x&+, x3+ as x3 and x&, respectively, follow certain paths

' On the x1 Riemann surface we have the triangle singularities
L„4+ and L &+ defined analogously. We take all square roots to be
positive for x& 1, y& 1, x2 & —1, @4&—1.

8 On the x1 Riemann surface we have the box singularities

1

+I
/

)t+X&=0
L

xz Plane

$$ ($3(yx+$3Ã4) +$$4+xÃ2
(x3'—1)

+E(*3—~33 )(»—~u3')(*3—~.4 )(*3—~.4')3'").
We again take all square roots to be positive for x1, x»L„+,L»+.

FIG. 3. Paths of I»+ as we go from y+x&&0 to y+x»0 by
increasing xg, keeping x2& —1 and g&1 throughout the continua-
tion. L» leaves the physical boundary by looping around the
normal threshold at as= 1.I„2+ is never singular when xg& —1.
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TmLE I. Conditions restricting box singularity to the physical boundary.
Restrictions on the x;)x)y: x1)x3)x)y p +1, xm, x4 &—1.

Restrictions on the I.„+,Iy,+

x+x4&0, 1&I.ym &L 4 &Ly~ &L„4+, then
1&I~g &L„4 &L~2+&Ly4+) y+x4&0

1&L„2 &Lx4 &L~4+&Ly2 then
1&L„4-&L,2-&L 2+&Ly4+, x+x2&0

y+x2&0, 1&I 4 &Lyq &L&4+&Lym,
1&Ly4 &L~m &Ly4+&Lg2 ) x+xx&0

1&L 4 &Ly2 &Ly2+&L~4+) then
1&L„2 &Ly4 &Ly4+&L,2+, y+x4&0

Location of box singularity in x1 and x3

Lg4 &xs&xeo&Ly2+
xPP: xg+(x80) =I

then I„4 &xq=x&+(x3)&xj (I.,4 )&L,r+

Lx4 &x3&x3 &L~4
xg'P: x&+(x ') =I. s

then L, s& gx=xg+(xr) &x)+(L,4-) &L,s+

I y2 &x3&x30&Lg4+
xPP, xg (x3 )

then I~s &xg=xg+(xa) &xg+(L„2 ) &I.„4+

Iy2 &xa&x3 &L 2

x3 Q, xf (x3 ) —Ly4
then I.„4 &xg=xg+(xs) &x,+(L„g ) &I.„4+

x4( —1, (6)

(7) moreover,

g2& —1)

x+xs(0, x+x4(0, y+xs(0, y+x4(0.
Thus a possible arrangement of the L+ is (x+xs)' (x—xs)'

xs+(xt) = +1, xs (xt) = —1, (12)
+1+1&L„s &L,4 &L,4+&L„s+ on the xs plane, (8)

+1&L„4 &Lgs (L,s+&L„4+ on the xt plane. (9) and

Inequalities (6) and (7) imply that all L branch points
are on the physical boundary.

If we let x2=x4 and x=y while preserving the in-
equalities (6) and (7), we have

(x+x,)' (x—g )&

gt+(gs) = +1, xt (xs) = —1. (13)
gs—1 xs+1

Also, it is easy to show that as xt varies in $+1, + m )

on their real axes, the remaining variables being Then, from Eqs. (3) and (4),
restricted in the following domains (cf. Table I):

Ly2 ——L,4-——Ly4
———L,2—,

x&1, y&1, L2+—L +—L +—L + ~

y4 z2

$2= g4&, —1 )

x=y)+1,
x+xs(0.

xi Plane

gs+(xt) ~ (()xs (gt)

(10)
while

xs+(L.s+) =xs—(L,s+) =L P,

when (xt—L,s )(gt—L„+)~(()0 (14)

Ly4 I

L+ L+ x3 Plane
X4 Q2-~ - r ————~———

I ~

I

Ly4 Lx2 Lx2
x+

+ X3

j L+ x3 Plane

1

L & L+
y2 ~ x y2~

+

XB
(a) + {L- ) X3 XB (Ly4)

XB X2

and that analogous relations hold for the xr+(gs).
The rather complicated trajectories of g,+(gs) and

xs+(xt) (Fig. 4) reduce now to the simple paths shown
in Fig. S. Finally we derive the limits of the physical
range of x3 or M3'. From energy-momentum conserva-

Xi(XB ) Plane
+

Lx2
Ly2 Lx

xi (L 2) x + +

Ly4
XI (b)

X

Plane

c l

+

Xl
+ ~- x, (Ly2)

Lx2

Lx2

XB(Xi) Plane
+

Lx2 X3t i~
&+')

tJ
X XB(i)

B(l)

Fxe. 4. Motion of the box singularities as functions of xs and x1.
In the case shown [i.e., inequalities (6)-(9)j, xs+ is on the physical
boundary in (a) only on the segment of its trajectory on the real
xa axis characterized by dxs+(x&)/dxq& 0,

xq+P[L„s,L„s+]Q[L,4,L4+1: (cf. Table I). ,

FIG. 5. Motion of the box singularities when x2= x4 and x =y.

9 Under the circumstances we shall refer to the triangle singu-
larities simply as L 2+.
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Continuing in the same way, we finally obtain

8—
27ri

disc,B(x,')
dx3 (22)

where the contour goes over L„2, L 4, x3+, and Nader

x3, L,4+, Ly2+.
The discontinuity across the normal threshold cut

on the x3 plane, disc&B, can be calculated by Cutkosky's
rules. '4 However, since the Feynman amplitude for the
box graph is a symmetric function with respect to

permutations of the pairs of variables (x,y), (xi,xs), and

(xs x4)"; it is evident that the desired discontinuity is
formally identical to the discontinuity across the x-plane
normal threshold" after relabeling x+-+ x3 and y+-+ x&.

[It is also clear that a double dispersion relation in

(xs,xi) exists and is identical to the usual one in (x,y) up
to relabeling. ] So we write (up to over-all constant
factors)

1 dx3
B(xs)=- f(xs'),

x3 —x3—ze
where

1 xi+(xs')+xi (xs') —2x&+2([xi (xs') —x&][xi+(xs')—xi])'l'
(xs') = ln

organ xi+(xs')+xi (xs') —2xi—2([xi—(xs') —xi][xi+(xs') —xi)}'"
(24)

E= (xs"—1)[x,+(xs') —xi][xi (xs') —x,]
= (xi' —1)[xs+(xi)—xs'][xs

—
(xi) —xs'j. (25)

Equation (24) is given for +1(xs'(L» . The
simplest way to see that the branch of the logarithm in
Eq. (24) is thus correctly defined is to let xs ——x4 and
x=y [inequalities (10) etc.j; then xs is the upper
limit of the physical bounds, ry [Eq. (18)$ regardless of
its positiois 03s the real axis From. the rules of Ref. 3 it
follows that x3 should not under the circumstances
give rise to a singularity of 8 on the physical boundary.
It is a simple matter to convince oneself" that this can
be avoided if and only if x3

—is not a branch point of
f(xs') anywhere along the prescribed integration con-
tour for x~&1, which in turn is possible if and only if
the logarithm in Eq. (24) is on its principal branch when

+1(xs'(min(L„s, L,4, x)s. (26)

Finally all that remains to be shown is that the con-
tour in Eq. (23) should pass Nrider the branch points
L,4+ and L„s+ of f(xs'). These branch points should
not give rise to singularities of 8 on the physical
boundary for xs) 1 and inequalities (6) and (7) (Ref. 3).
Again in order to simplify the discussion we go to the

"R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
"The Feynman amplitude for the box graph can be written

(see for example Ref. 2) as follows:

d'p ap dp vis S(1—P; ' pi)
3 m3333233li32[2plp2xl+2p3p3x+2pip4x4+2p2p3x3

+2p3p4y+2p3p4x3 —Q'=3 p' j .

Note that each pair (x,y), (x3,x3), and (x3,x4) appears in the de-
nominator multiplied by a complete set of P;.'s.

"See, for example, S. Mandelstam, Phys. Rev. 112, 1344
(1958); C. Fronsdal, R. E. Norton, and K. T. Mahanthappa,
J. Math. Phys. 4, 859 (1963);J. Tarski, ibM 1, 149 (1960). .

"For example let L,2 &x1&L 2+, then L,2 &x3+&x3 &L, 2+

(see Fig. 5). (The contour passes above L,2 and xa+.) If the
logarithm in f is not on its principal branch when 1(x3
&min(I, 2,x3+}, then as x3' approaches x3 along the prescribed
contour, it will 6nd x3 a branch point of f. Hence x3 should lie
above the contour in order to avoid a pinch with the pole at xa+ie.
If we now continue x1+ie so that x1)L. 2, x3 will loop clockwise
(under) L, 2 dragging the contour along with it (1&x3 &x3+
&L, 2 ), and thus making a pinch with xs+ie unavoidable.

case x2 ——x4, x=y, i.e., L 4+——L»+—=L 2+.' We now let
1(xt(L,s, then (see Fig. 5) L, +s( xs and unless
L ~+ lies above the contour it will give rise to a singu-
larity of 8 on the physical boundary through a pinch
with the pole at xs+ie.

Our dispersion relation for 8, Eq. (23) is now un-
ambiguously determined for the case of inequalities
(6)-(9) and. hence for any other case by analytic
continuation.

III. CONTIN'UATION' TO COMPLEX
I5'TERNAL MASSES

A. Investigation of the Motion of Singularities as
Functions of Particle Widths and

External Variables

In this section we shall study the motion of the
SingularitieS L,s+, L„4+, Xi+ (Xi plane), L,4+, L31s+, Xs~

(xs' plane) and the corresponding effect on the size of the
amplitude squared,

~

8 ~', as we continue mi —+ mi —in,
n) 0, 434 ~ 143 ip, p) 0 and vary t—he external variables
in their physical ranges. The parameters n and P are
related to the full width at half-maximum F of m~

and JM& by
n=—r„/2, p=r„/2.

A convenient model for our investigation, possessing
a certain amount of symmetry, is obtained by letting
mi ——lit ——m, (n= p), and ms ——ps ——Ms ——3II4 ——p, in
Fig. 1(b).

Clearly x2 ——x4 and thus the triangle singularities are
at the same points on. both the xi and xs(xs') plane.

Even with x2 ——x4 the problem still retains its full
complexity; i.e., the number of singularities and the
number of variables has not been essentially reduced.

Because of the large number of cases one would have
to examine, and because it would be desirable to get a
comparatively simple and clear picture of the essential
features, it is advisable to begin by restricting the
investigation to the cases for which x=y. We shall
assume this to hold throughout the present section,
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crease as ms+ approaches +1 and consequently (see
Fig. 6)

~

Imps+~ decrease, what occurs is actually the
opposite. This appears to be due to the fact that
f(xs' 1)=0, a——nd thus Ref and Imf have narrower
peaks than they would if x&+ were farther to the right
and Imxa+ more or less unchanged. It is instructive in
this connection to examine in some detail the variation
of Ref and Imf; this variation is shown on Fig. 14 for
two of the curves of Fig. 13, and on Fig. 15 for the
example of Fig. 11. We stress, however, that because
th function we are dealing with is rather complicated,
the above inferences should be taken only as roug

e un
h

guides for preliminary orientation to be followed by a
more or less detailed investigation of

~

8 ~' for each case
of interest.

In the next section we shall continue the investigation
of ~IB~' as a function. of the external variables in con-
nection with two real processes (I' fixed) which have
been studied to some extent experimental y.ll

r
r'

r

1.5 2 5 4
( I r ( r (

5 6 7 8 9 10

f 1Fza. 15. Variation of the real and imaginary parts of x3
for the curve of Fig. 11.

IV. APPLICATIONS

A. General Considerations

20I.et us consider the box graph shown sn Fig.
Here the blobs represent the amplitudes for the proc-
esses taking place at the vertices; these amplitudes are
unknown functions of the momenta and spin
parameters.

As a crude approximation valid only in the neighbor-
hood of the box singularity enhancement we can write

dX3
g (~) g (.)g (f)+,+,

'Ã X3 X3 zf

(28)

',&(m;P.2) M, &(m2+IM. 2)
2 2 2

1-where A(") represents the average e6ect of the doub e-
resonance production amplitude (Fig. 16) at the in-

coming cen ecenter of mass energy (Mt) of interest; similarly
3(f) represents the 6nal state interaction for 353 ze e

neighborhood of the Peak, and finally y; (i=1,2) is
proportional to the square root of the decay width of
the resonance.

,06 A(b)

.02

—.02 M( &(m(+fL (
)

2 2
2 & (P.(-m2)

—.06

-.10

—.14—
I

I I I

IX&~

l

1.5
I

2.5
I

3.5

f /FIG, 14. Variation of the real and imaginary parts of ~ I,x3 g

for two of the curves of Fig. 13.

FIG. 16. Exact box graph. A(b) is the exact
box amplitude. (p,2= —M,2.)

"Readers who have skipped Secs. lI and III should consult
s. (1) and (2) in conjunction with Fig. 16 so as to familiarize

themselves with our notation. We mention
conditions (Table I second case from top) owly the triang e
singuiantiesl L, I & and the box singularity @3+ can appear
on ep ysith h sical boundary on the x3 plane (or correspon ing y

orx =x3+ thelane). When thiS happens and x3=1„2,F3=1~4, or@3=
h

' F' 2(a) 2(b) and 16, respectively, can begraphs s own in igs.
les,Ref. 3 .thought of as occurring with reaI intermediate par tie es e .
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We can write the nonresonant final-state" total

amplitude A as

TABLE J.I. Relative production rates for processes
leading to the anal state Aim "x .

A =As+A&'&, (29) Process Fraction

where Ao represents all contributions except that of
the box graph.

It is impossible to make reliable quantitative esti-
mates of the relative importances of A&" and Ap. In
fact, a conclusion based upon some attempt to do so
might be more misleading than helpful, in as much as an
extremely unreliable result may be worse than none.
Despite this, however, we use a very crude model and
the data in Table II to make a calculation of A (" rela-
tive to Ao for the reaction discussed in part C of this
section, namely, pp ~ XA7r+7r . It is found that for not
unreasonable z+m scattering lengths, A&~) could com-
pete favorably with, or dominate, Ao in the neighbor-
hood of the box singularity. What the physical situation
is, when the actual angular distributions and phases of
all the amplitudes are included, is anybody's guess.

Despite our inability to be quantitative, it is clear
that A & & will have a good chance to dominate over Ao
if A &"& and A &r& in Eq. (28) are "large." It is therefore
desirable to look for the box effect in processes where
for some 3f~' there is considerable double-resonance
production and at the same time the amplitude A &f) is
appreciable. Finally the resonance widths should be
neither too large nor too small, since although very
small widths would give a high narrow peak in 8, the
y~y2 factor would cut down A(') relative to Ao, while
in the case of very large widths, the situation would be
reversed. This behavior has a simple physical inter-
pretation. " Let us for convenience consider the case
where the two resonances involved are the same
(m&

——pr=nz). When xs ——xs+ and the necessary in-

equalities hold, the box can be interpreted as a classical
process. Introducing widths for the resonances is equiva-
lent to allowing a mass spread around. nz (i.e., all
resonances produced will not have the same mass but
their mass spectrum will exhibit the characteristic
Breit-Wigner shape). "It is clear that xs ——xs+ (with all
invariants fixed) will be fulfilled only for some events,
while for most events particles m~ and p, 2 will not take
off in exactly the right direction for a collision to occur.
This has the eBect of broadening and decreasing the
maximum of the peak centered at x3+, and accounts
for the behavior of the peak in 8 as a function of the
width, which is shown in Fig. 12. We note here that
taking into account the quantum-mechanical nature of
the particles does not essentially alter the above
picture.

"Events having one or more resonances in the 6nal state fall
in specidc Daiitz-plot bands and can be separated out.

~ See C. Kacser, Phys. Letters 12, 269 (1964) and J. B.
Bronzan, Phys. Rev. 134, 8687 (1964) in connection with triangle
graphs.

~ We recall that in our dispersion relation )see Eq. (28)g the
widths appear in 8 as negative imaginary parts of the masses of
the resonances; i.e., for the cases considered here we have mi =@,i

m in, n= 1'/—2 wh—ere r is the full width at half-maximum.

(a) pp ~ Y&*+Y~* (1385)
(b) -+ Yr* Yi*+
(c) F *+h.z and c.c.
(d) —+ F1~ X~+ and c.c.
(e) ~ AXs+~ (nonresonant)

0.20
0.30
0.20
0.10
0.20

On the other hand the resonance width is inversely
proportional to the particle lifetime, so that when the
width is large the resonances will decay while they are
still close to each other and thus particles m2 and p~

will have a chance to interact due to the de Broglie
wavelength spreading even if they are not aimed in the
right direction. When the width is small, the resonances
will get to travel a long distance apart before decaying,
and thus even a small deviation from the correct
direction will cause m2 and p2 to pass each other a
relatively large distance apart. (When the width is
zero the "resonances, " of course, will never decay. )
This behavior is manifested through the over-all y'
factor on 8 LEq. (28)j.

We now turn our attention to two reactions, which

we believe might well exhibit the box amplitude
enhancement. These are

pP ~ XA7r+x. ,

at an incident p momentum of 3.7 BeV/c, and

(30)

(31)
at rest.

Proton-antiproton annihilations leading to the final

states of reactions (30) and (31) have been studied
experimentally' at the above momenta, and in both
cases a rather large amount of double resonance produc-
tion was found.

We quote in Tables II and III the pertinent data
from Ref. 24.

The full width at half-maximum of the Ft*(1385)

TABLE III. Proton-antiproton annihilations
producing E E+~+m .'

Process

(s) pp ~ E+EP~+~' (total)
(b) ~ E*'E*'
( ) ~ QQ+QQ

(d) —+ K*+E0m+
z*+z+ '

(f) —+ E*0E+m-+

Rate

5.19X10-3
1.43X10 3

0.77X10 '
1.04X10 ~

0.'97 X10~
0.57X10 '

For the various rates in the annihilations leading to the final states
KiKi~+~ and Ki(Ko) m+x, see Ref. 24.

~ For annihilations into AXs-+s. see C. Baitay, I. Sandweiss,
H. D. Taft, B.B.Culwick, J.K. Kopp, R. J.Louttit, R. P. Shutt,
and A. M. Thorndike, Phys. Rev. 140, B1027 (1965); for
annihilations into XE~7r see N. Barash, L. Kirsch, D. Miller, and
T. H. Tan, ibid. 145, 1095 (1966) and references therein. We are
indebted to the authors for sending us their results prior to
publication.
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i.e., for s larger than the upper limit, the triangle
singularity will loop clockwise around xs=+1 and
move onto the upper half plane of the second Riemann
sheet of the amplitude B. (Cf. Fig. 3.)

Figure 18 shows the paths of L,s+ ' (dashed lines) and
xs+ (solid lines)" on the xs' plane. We remark that al-

though xs~ has gone through the L s cut (which we take
parallel to the real axis from L,& to +~+i ImLgs ),
both singularities stay rather close to the real axis.
LRecall that the physical range of xs extends from +1
to xs, see Eq. (18)$. In Fig. 19 we have plotted some
typical jBj' curves (arbitrary units) for s varying
through practically the entire (33) range. The best
peak is that for s 102.2; however, we have more-or-
less good peaks throughout the entire range getting
narrower as s approaches 105.

We now calculate the three-dimensional partial
distribution of events for fixed M~', s, and t as a con-
sequence of the matrix element squared jBj'. This is

I

l.5 2.5

.7
s=l29,7

I

I I I

Fzo. 22. Variation of jBj' for the case pp -+ AXx+x

follows the same path as before. ' We indicate the
position of x~+ when L 2 is at the lower end and L„2 is
about to loop around +1. We therefore expect little
change in the curves of Fig. 20 for sAt (but not too
different). (It is in fact conceivable, since xs+ remains
close to the physical boundary for a great part of the s
and t ranges, that if the box graph dominates suQi-

ciently over the background, the enhancement may
survive in the integrated distribution dR4/ass. )

X

s = II8.8l
t = l49.0

=II8.8
-j2 I

0 I .5 I 2

I'ro. 21. Motion of singularities for pp ~ AXx+m. Lannihilation
at 3.7 BeV/c, MP=456. 9, ts, =1, rex*=9.9—s(0.19)g. In the
xgy parts L,s (s= 118.8) is 6xed, while L„s (t) and the rest move
as t increases from 118.81 to 179.0. j t & (tMr —M4)'—179 3.j
given by"

d'R4 zr' xa—1 '~'

dsdtdMss 83Ers xs+1
(34)

~ Dash-dot curves refer to the x /y case and should be ignored
at this point.

See, for example, P. Nyborg, H. S. Song, W. Kernan, and
R. H. Good, Jr., Phys. Rev. 140, B914 (1965).

with the boundaries given by Eqs. (15) through (18).
In Fig. 20 we compare the density of events given by
Eq. (34) (solid lines) for the jBj' shown in Fig. 19,
with that of pure phase space (dashed lines). Since the
scale for

j
B j' is arbitrary, it is the shape of the curves

that is significant. We conclude that for s t 102, one
should be able to detect a comparatively large accumula-
tion of events near threshold. Returning to Fig. 18 we
let s= 98.4, i.e., L 2 is at the lower end of its path, and
increase t; thus L„s follows the (dashed) path that
L,s followed before (when s=t). It turns out that xs+

C. pp ~ XA.et+sr

For the graph of Fig. 17(a) we again have xs ——x4,
and as in the previous case we set s=t (x=y). Here
Mt' 456.9, tttr~9. 9—s(0.19)"while

+1&x&—xs or equivalently 118.81&s&134.18.
(35)

Figure 21 shows the paths of L,s+ (dashed lines) and
xs+ (solid lines)" on the xs plane. The singularities
L 2 and x3+ are farther away from the physical
boundary than in the previous case. We do, however,
get good peaks for 122&s&133 (see Fig. 22), the best
one being that for s~129.7.

In Fig. 23 we compare the corresponding partial
distributions of events Lsee Eq. (34)j with that for
pure phase space. Again we conclude that one can
reasonably expect a relatively large accumulation of
events near threshold for s t 129.7.

Finally we examine brieQy the motion of the singu-
larities for sAt (xWy). Setting s= 118.81, we increase
t. The singularity L„2 follows the path previously
followed by L,2 and subsequently moves on the upper
half-plane of the second Riemann sheet, while ra+
follow the paths shown in Fig. 21 (dash-dot lines). We
note that under the circumstances the path of @3+ is
farther from the physical boundary than before and
therefore we should expect the peaks to Qatten out as

"xs is now complex (dash-dot line) so that the physical xs
range is given by (16) and (17).
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where rr is the F'»*(1385) width (see Sec. IVA). The
eRective coupling constants yY„and y appearing in
Eq. (A2) are connected to the total cross sections for

pp —+ Y*I"*and»r+»r ~ »r+n. , respectively, by

and

0YY 8'2,
(2')'2(og2»0,

i v; v, j—

(T7r~ —P'&r'&r / 7l Ivx 3

(A4)

(AS)

I

l.5 2.0 2.5
(I

3.0
i

s=l33.2
i

3.5 4.0

where H/„ is the n-particle invariant phase space and
3f3 the two-pion c.m. energy.

Finally, using the effective interaction Hamiltonian
density

Pro. 23. EGect of the phase-space factor on the curves of Fig. 22.

s becomes different from t. Thus it is clear that the
s= t cases are the best cases for experimental study.

we get

Xr=V:4»*»t~»t *4.4g*4i :»

(A6)
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and for the total nonresonant final-state cross section

(27r)'2(oP~»
I

v»-,
—v„I

t/t/"4. (A7)

~sr/~»». .=5/2. (AS)

Now, from the experimental results appearing in
Table II )reactions (a), (b), and (e)j we have that

(A9)

rr2my'o. „.(@~+1)I
I(I'3W»

(A10)
iA i' A(mz' mp' m ')S»r» '(2»r)'W2

where

x3+1=M32/2nz '.

APPENDIX Equation (AS) along with (A4), (A6), and (A7) gives
the ratio

We obtain here a crude estimate of the ratio lA ('& i'/ 1 5%4
iA i' for the pp ~XA7r+»r case, which we treat in
Sec. IVC. The amplitudes A(b) and A are dehned at (2~)' 2 ~2
the beginning of Sec. IV.

We use a 6eld-theoretic model in which all fields are so that using Eqs. (A9), (A2), (A3), and (A5), we obtain

scalar and carry charge (or strangeness). The effective
interaction Hamiltonian density is given by

QYp+Yh. ~ Pm~
2

A (b)— 8,
16mY'm ' (A2)

where 8 is defined by Eqs. (23) and (24). LAn over-all
factor of is missing from Eq. (24) has been incorporated
in the factor that multiplies 8 in Eq. (A2).j Similarly,
we ind

yr». ' (1 -A(»&»r', mJ, ',m.') -'i'
rr=

4n-mr' k2 4m+
(A3)

Using this Harniltonian, we find. for the box amplitude
A (b)

For the cases shown in Fig. 22, we 6nd that in the
range 1.02&x3&1.57 or equivalently 280.6 MeV&3f3
(316.5 MeV, we have on the average (x~+1) i

8
i

'= S.6.
Thus, for example, in order to have (A(~&i'/(A i'=1,
we need 0. =160 mb near threshold; this cross section
corresponds roughly to an S-wave, I=O, xx scattering
length laoi =1.2 pion Compton wavelengths. A scat-
tering length of this magnitude is not unreasonable"
(see in particular Collins who reviews the situation). We
remark also that since A =AD+A. '~& we could in
general have box dominance over A 0 even if

i
g (t»

J
~/f g J2(1


