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Equation (4.8) reduces to an identity both in exact
SU(3) and in exact SU (6)w; this relation has also been
derived in broken SU (3).% It is known that Eq. (4.8) is
very well satisfied experimentally.t

(vi) Another relation which follows in the broken and
exact SU(6)w is the following:

(rpla=N*t)= (1/2V3)(z=p|a*N*7).  (4.9)

Such a simple type of relation does not exist in SU(3).
It has been shown by Olsson! that a relation of the
type (4.9) is very well satisfied experimentally.

V. CONCLUSION

In conclusion, we wish to emphasize that the broken
SU(6)w successfully eliminates many of the bad pre-
dictions of exact SU(6)w and of exact SU(6)s and
retains some of the good results as far as baryon-meson
scattering is concerned. Similarly when one of the final
scattered particles is a baryon resonance, some of the
bad features disappear; at the same time some of the

18 S, Meshkov, G. A. Snow, and G. B. Yodh, Phys. Rev. Letters
13, 212 (1964).
14 M. G. Olsson, Phys. Rev. Letters 15, 710 (1965).
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good results retain their validity. It is important to
notice that the symmetry-breaking interaction which we
have used to break the SU(6)w symmetry is isospin
conserving and can not alter the exact SU(6)w ratio
between two isospin amplitudes for processes in which
the members of the same isomultiplets are involved.
Thus the nonvalidity of the Johnson-Treiman relations
involving reactions with different isospin multiplets is
easily understood. The validity or nonvalidity of all
other relations like the ones discussed in Secs. III and
IV can similarly be explained.
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The effect of the leading Landau singularity of the fourth-order single-loop graph in a two-particle to four-
particle amplitude is investigated. The amplitude for the graph is evaluated from a dispersion relation in
the mass squared of the two particles interacting in the final state, and its behavior is studied using a simple
model. The reactions pp — KKnrand pp — AAntr— are examined in some detail, and peaks are predicted for
the amplitude squared in a certain range of the external variables.

I. INTRODUCTION

T is of some interest to investigate the possibility
that the singularities associated with some graphs
may under certain circumstances have direct physical
manifestations.
The possibility of an experimentally observable effect
arising from triangle graphs has been the subject of
intense investigation.! Unfortunately, the leading

* Partially supported by the National Science Foundation.
Based, in part, on a thesis submitted by P. Collas to the University
of California at Los Angeles in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

1P, V. Landshoff and S. B. Treiman, Phys. Rev. 127, 649
(1962) ; R. Aaron, Phys. Rev. Letters 10, 32 (1963) ; F. R. Halpern
and H. L. Watson, Phys. Rev. 131, 2674 (1963); I. J. R. Aitchison,
ibid. 133, B1257 (1964); V. V. Anisovich and L. G. Dakhno, Phys.
Letters 10, 221 (1964) ; C. Goebel, 7bid. 13, 143 (1964); C. Kascer,
ibid. 12, 269 (1964); Y. F. Chang and S. F. Tuan, Phys. Rev.

Landau singularity of the triangle graph is a logarithmic
branch point and is thus rather “weak”; attempts to
reinforce the amplitude enhancement by combining this
logarithmic singularity with the inverse square root
non-Landau branch point of the triangle (see, for
example, Landshoff, Treiman, Halpern, and Watsonl)
have met with limited success (see, for example, Month,
but also Cason et al., in Ref. 1). This is due to the fact
that the non-Landau branch point is always on an
unphysical Riemann sheet and only under special
circumstances can it approach the normal threshold;
one has in fact to impose stringent mass constraints at
136, B741 (1964); M. Month, Phys. Letters 18, 357 (1965),
Phys. Rev. 139, B1093 (1965); sbid. 151, 1302 (1966); N. M.
Cason, S. Mikamo, and A. Subramanian, Phys. Rev. Letters 17,

838 (1966); C. Schmid, Phys. Rev. 154, 1363 (1967); J. B.
Bronzan, 7bid. 134, B687 (1964).
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each vertex, which force the whole graph to ‘“take
place” at threshold. These constraints are not easily
satisfied in practice, and as a result on the one hand it
is very difficult to find cases suitable for investigation,
and on the other any visible effect is extremely sensitive
to the variation of the incoming energy, etc. Our purpose
here is to examine in some detail the variation of the
amplitude for the so-called box graph (Fig. 1). The
leading Landau singularity of this graph is an inverse
square root branch point, and therefore it is reasonable
to expect that under the proper conditions (viz., when
the singularity is close to the physical boundary) it
may give rise to a relatively strong peaking effect as
compared with the (logarithmic) triangle case. As we
shall see, the box singularity can in general be made to
appear anywhere along the physical boundary and does
not require any stringent vertex constraints. Moreover,
one can find processes for which a strong effect persists
for small ranges of the external variables and for which
the vertices can be justifiably expected to be large.

In Sec. IT we study the Landau curves of the singu-
larities involved. For our purpose the box amplitude is
most conveniently represented by a dispersion relation
in the mass squared of the two particles interacting in
the final state. This also is derived in Sec. II for a general
process of the type A+B— C+D-+E+F. In Sec. 111
we introduce widths for the unstable particles (reso-
nances)? in the intermediate state and study, using a
model process, the motion of the singularities and the
subsequent behavior of the amplitude as a function of
the external variables and widths. Finally in Sec. IV
we consider the reactions pp— KK and pp— AAntr—
and investigate the possibility of amplitude enhance-
ments arising from the graphs of Fig. 17.

Readers interested only in our experimental predictions
can skip Sec. II and Sec. I1I and go directly to Sec. IV.

II. DERIVATION OF THE DISPERSION
RELATION

A. Preliminaries

There are essentially three different configurations for
processes proceeding via the box graph?® (see Fig. 1);
any other can be obtained from one of these by re-
labeling the vertices.

We restrict ourselves to the case of only two in-
coming particles. Wiggly lines represent unstable
particles.

Process (c) of Fig. 1 is experimentally unfeasible,
since it requires two unstable particles in the initial
state. For definiteness, and also because the mechanism
of Fig. 1(a) requires the relatively rare occurrence of a

2 For a justification of this procedure see I. J. R. Aitchison and
C. Kacser, Phys. Rev. 133, B1239 (1964).

3 R. E. Norton, Phys. Rev. 135, B1381 (1964); S. Coleman and
R. E. Norton, Nuovo Cimento 38, 438 (1965); R. J. Eden, Phys.
Rev. 119, 1763 (1960).
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F16. 1. The three possible configurations of the box graph.

resonance decaying into another resonance, we have
restricted ourselves to a study of the configuration
shown in Fig. 1(b). Although the process of Fig. 1(a)
may contribute to significant mass peakings, it is ex-
pected that this would occur when the external momenta
are outside the range for which the mechanism of
Fig. 1(b) is important. Hence, it is reasonable that the
two possible sources of mass peakings shown in Fig. 1(a)
and 1(b) be studied separately.

We would expect a large contribution to the ampli-
tude from the box graph [Fig. 1(b)] when the corre-
sponding box singularity is “close” to the physical
boundary* for the process of interest provided the ampli-
tudes occuring at the vertices of our graph are “large.”s

We denote the external 4-momenta by p;; thus
pé=—M¢Z We also define the two invariant variables
s, i

s=— (p1—p2)?= — (ps-+p4)?,
t=— (p1—ps)*= — (pa+ps)*. ey

The invariant amplitude for the box graph depends
on the six invariants: M2, M2, M, Mg s, t. Our
mathematical expressions take a simpler form if we
use instead the following six dimensionless variables®

4 The physical boundary of a complex amplitude is the set of
points of the physical sheet which lies in the physical range of the
external variables of the amplitude.

5 A more precise meaning ot these statements will be given
later on.

6 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys.
Rev. 114, 376 (1959).
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(see Fig. 1 for significance of symbols):

S—ml2—’l%22 l—ulz—yzz
X=———"", y=—,
2mame 2papus
M 2= pit—my? M 2— ps2—mg?
x1='—‘—'—_ ) x2=—‘_‘__'—_ )
2pymy 2uyms
MP—ut—ms? M 2—pd—ms?
Y=, Y= (2)
2[12’}’}12 2I-’:ﬂﬂl

In terms of these variables the inequalities (“in-
stability’” conditions) in Fig. 1(b) become x:>1,
2o<—1, 25> 1, xa<—1.

It is convenient to write a dispersion relation for the
box amplitude B in the variable x3 and to investigate
the amplitude enhancement in the x; physical range.
Clearly, since the definition of x; [Eq. (2)] does not
involve the internal masses u; and m; of the unstable
particles, our integration contour will remain on the
real x; axis even after continuation to complex masses.

We shall thus be concerned with the singularities of
B on its x; Riemann surface. These are, apart from the
normal threshold at x3=-1, the triangle singularities’

Ly2i= —-yxzi[(yz—l) (x22“1):|1/27 (33‘)
LoiE= —wxgt[ (22—1) (x2—1) ]2, (3b)
and the box singularities?
1
wgt=——{ 21 (yx+%0%5) -+ yXot+ %24
(x12_ 1)
[ (@y—Lyi) (1— Lys)
X (#1— L) (01— Last) 112} . (4)

To orient ourselves we begin by reviewing briefly
certain pertinent facts about the triangle and box
singularities: viz., the conditions under which they
appear on the physical boundary® and their motion as
some of the invariants are continued along certain paths.

As an example consider the process of Fig. 2(a) which
is obtained by reducing the graph of Fig. 1(b). The
triangle singularity L,s~ of the graph lies on the
physical boundary of the x3 plane when

y>41, y4+2.<0; 5)

then L,s~>1. These conditions arise from requiring

x2<—-1,

7On the #; Riemann surface we have the triangle singularities
L,s* and L.o* defined analogously. We take all square roots to be
positive for x>1, y>1, 2, <—1, x,<—1.

8 On the x; Riemann surface we have the box singularities

xf’: =

{xs (ya+x224) +yxst2x22

£[(ws—Lys) (ws—Ly2™) (x3—Lzs™) (43— Loat) T2},
We again take all square roots to be positive for #1, 3> L%, L,

(x2—1
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X3=Ly2 x3=Lxa x3=LYyz

Fi1c. 2. By contracting the internal lines with masses »; and
in the graph of Fig. 1(b) one obtains the triangle graphs shown
in (a) and (b), respectively. The triangle shown in (c) arises from
contracting the line of mass m, in the diagram of Fig. 1(b) and
reversing the direction of m,. For the three cases indicated, the
triangle singularities Lys~, L.4~, and L, are singular on the
physical boundary of the amplitude when the external momenta
allow real internal particles to propagate in the directions given
by the arrows.

positive Feynman parameters and real external
momenta.?

The singularity L,»* on the other hand will lie on the
physical boundary only when x; is a “momentum-
transfer” variable, i.e., x3<—1; e.g. for the process
shown in Fig. 2(c). So that when conditions (5) hold,
it is on the wrong sheet.

In Fig. 3 we show the paths of L,.* as we continue
x2+1¢, (¢>0), from the region x:<—1, y>1, y4+x,<0,
to the region xo<—1, y>1, y+x2>0.

We now turn our attention to the box singularities
[Eq. (4) and Ref. 8. In Table I we give the conditions
on the x;, x, ¥, Ly~ Ly for the box singularity to lie
on the physical boundary. These conditions follow from
kinematical and geometrical requirements imposed so
that the graph be realizable as a “classical process.”?
When things are adjusted as in any of the four cases of
Table I, the singularity x;*(xs) of the graph of Fig. 1(b)
is on the physical boundary if, and only if, x3 lies in the
appropriate region indicated. When xi=x1"(x3) is on
the physical boundary of the x1 plane, xs=x5t(x1) is also
on the physical boundary of the xs plane and vice versa.
Inequalities such as x4, <0 imply that at least one L~
triangle singularity (e.g., L,s) will also be on the
physical boundary. The singularities ;™ and x5~ appear
on the physical boundary in processes for which x; and
x3 are “momentum-transfer”” variables, i.e., x1,x3< —1;
therefore box singularities with opposite signature are
never on the physical boundary at the same time.

In Fig. 4 we show the motion of the box singularities
x1%, x5F as x3 and x4, respectively, follow certain paths

X3 Plane
+1
o
‘-——4—_—- -——-4-—+—.
ysxgo Y2 y2

FiG. 3. Paths of L,»* as we go from y+x:<0 to y+#2:>0 by
increasing x, keeping .< —1 and #>1 throughout the continua-
tion. L,s~ leaves the physical boundary by looping around the
normal threshold at x3=1. Ly, is never singular when x.<—1.
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TasLE I. Conditions restricting box singularity to the physical boundary.
Restrictions on the x;,x,y: %1,%3,2,y> 41,  xo,xa<—1.
Restrictions on the L, L,* Location of box singularity in x; and x3
24%4<0, 1<Lye <Lz <Lypt<L.s*, then Ly <x3<ad<Ly*
1<Lgs~ <Ly4_ <L;z+ <Ly4+, y+x4< 0 x3°5 : x1+(x3°) = Ly4_;
then Ly4_< 2 =x," (xa) <xt (L,4_) <Lzt
1<Lys5 <Lgi<Lz4*<Ly*, then Lo <a3<x? <Lyt
1<Lys <Lz~ < Lgot <Ly4+, x+x.<0 29D : 4yt (x3°) =L,
then Ly <xi=x" (x;,) <wt (Lz4~) <Lt
y+22<0, 1<Lpi <Ly <Lzt<Ly*, then Lys~ <x3<x0<Lgpat
1 <L”4"' <Lz~ <L,,4+ <L;2+, x+x,<0 20D %t (130> =Lz}
then Lz~ <xy=x1%(w3) <otr*(Lye™) <Lyat
1 <Lz <Ly~ <Lyst<L.st, then Ly <xs<x?< Lyt
1<Lp3 <Lys <Lys*<Laet, y+x<0 20D a1t () =Ly~
then Ly <xy=x1%(x3) <oyt (Lye™) <Lygt
on their real axes, the remaining variables being Then, from Egs. (3) and (4),
restricted in the following domains (cf. Table I): o
1 1 1, (6) and® Ly =Lor =Ly =L,
x>1, y>1, re<—1, xs<—1, (6) Lyst=Loit=Lyit= Lt (11)
x+22<0, 2+x4<0, y4+2:<0,  y4x4<O0. (7)  moreover,
Thus a possible arrangement of the L* is (=) (x—2x5)?
gt (@) =——"+1, x(x)=——"-—1, (12)
+1<Lyy <Ly~ <L,*<L,* on the x; plane, (8) x1—1 x1+1
F1<L,s <Ly <Lgit<Lyt onthex;plane. (9) and
.. . . 2 )2
Inequalities (6) and (7) imply that all L~ branch points o (w+22) N (x—x2)
. art(ag) =———41, a1 (x5)=———1. (13)
are on the physical boundary. w—1 3

If we let xs=x4 and x=1y while preserving the in-
equalities (6) and (7), we have

Xo=x4<< —1 5

x=y>-+1,
and x+22<0. (10)
x, Plane
=1 o e ————— —— — —.————— -
Lys Lxe L% LYa .
x¥ X<
uk + 3
x3(Cya). -~ ~ X3 (Lxo) S~ Plane
L RET R g o
R e p—— _.____‘ _______ Yt Y, —— — — — ———
\\ LyZ _/7__ {\ Lyz// \
S~o - ~-—" + -
- - X x3 (Lyq)
X3 @ gy *3 *3thys
I I x3 Plane
- Ty et xa Ly 73 5T
L2 Lua -
+ 0+ - L
* (L/yzl,L:x\, X, (Cxq) ’l/_: SN %, Plane
. 1 2o, e chie
| _T-3IN)y \uTTsozI oo ya /&*‘"“—
Lya s pr [ AN TN
Y + *o- + Xy (Lyz)
X x; (Gxa) Xi

(b)

Fi1c. 4. Motion of the box singularities as functions of x5 and 1.
In the case shown [i.e., inequalities (6)—(9)], xs* is on the physical
boundary in (a) only on the segment of its trajectory on the real
x3 axis characterized by dxs* (x1)/d%,1<0,

x5t E[Lys, Lys IN[Las~ L2tz (cf. Table I).

Also, it is easy to show that as x; varies in [+1, 4]
a5t () Z (<)ows~(wr)

when (#1—Leo") (1i— Lot 2 (<)0, (14)

while
w5t (Lost) =25~ (Lost) =LooT

and that analogous relations hold for the xs*(xs).

The rather complicated trajectories of x*(x;) and
xgt(xr) (Fig. 4) reduce now to the simple paths shown
in Fig. 5. Finally we derive the limits of the physical
range of x5 or M3% From energy-momentum conserva-

X,(X3) Plane

+

L

- +ly =

Cxe e
X3(X;) Plane
-1 N Cxa X3m®»
\ ~—7 /'vx+
'-xz Xz-m) 3

F1G. 5. Motion of the box singularities when x;=x4 and x=1.

9 Under the circumstances we shall refer to the triangle singu-
larities simply as Lo*.
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tion we have, in the M rest frame,

M2=(2M ) {—M M2 (s+t+M24+M 2
— (s—M %) (M 2—t)—cosp
X [A (SiMlzyMZZ)A (t7M127M42>:II/2} ) (15)

where ¢ is the angle between p, and ps (recall that
p2=—Mp2), and A(a,b,c)=a?+b*+c—2ab—2ac—2bc.
Equation (15) for given M% M2?, M2, s, t limits the
physical 3% in the range

M2 (cosp=—+1)S M2 M (cosp=—1). (16)

Also, if »; and », are the rest masses of the two particles
which make up M3? [see Fig. 1(b)], we have

M= (vitv2)?. W)

If we now let Mo=M=M, ni=ve=mo=pus=u,
mi=u=m [see Fig. 1(b)], and s=¢, i.e., xa=x4, x=1,
the ranges (16) and (17) on the x; plane become!®

2s+2M%— M+

Max] +1, —11<xZ5%5. (18)

2u?

It is obvious that, in this simplified case, x3*(x1) can
lie on the physical boundary only in the interval
[L.o, Lo, i.e. when L5~ <x1=L,s%, since only then
xsT <x5 [see inequalities (14)7].1112

B. The Dispersion Relation

In what follows we shall neglect particle spins and
any structure at the vertices. This simplification is
based on the hope that in the region of interest, viz., in
the vicinity of the box singularity, the variation of the
amplitude will be dominated by the box singularity, so
that other effects will not be significant. (In this
connection see the 1966 paper by Month in Ref. 1.)
We shall return, however, to this subject in Sec. IV.

We proceed now to derive a dispersion relation in the
x5 variable for the situation determined by inequalities

10Tt is also clear that since x3~ now does not depend on , it
remains real when m — m—ia, while if ¥y, x5~ (m—ia) becomes
complex and of course the upper end of the physical boundary is
no longer x5~.

11 We remark at this point that when x;> L%, the upper limit
of the x; physical range, viz., x5, lies to the left of L.,~, which
implies that Z,e™ is no longer on the physical boundary, in spite of
the fact that it still satisfies the conditions derived in Ref. 3
(x+2x2<0, etc.). These conditions, however, always involved the
three external variables associated with the vertices of the triangle
graph, and no constraint was imposed on the other independent
invarianis; it is precisely this kind of constraint that we introduced
when we set x=y (Ref. 12), and it is for this reason that now we
need an extra condition for L5~ to be on the physical boundary,

viz.:
2mp (x~+wx2) — 2 (Lzg™—1)
1+ a1 =Lt
m2
When #; goes below the lower limit then
(2s+2M2—M+2) /22— 1> Lo~

2 The important thing is that we fixed y, not that we fixed it
equal to x.
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6), (1), (8), (9), and
Loy <wi<ziE(L,). (19)

Under the circumstances the branch points 41, L,s,
L., and x5+ are all on the physical boundary of the
3 plane while x5~, L,s*, and L,st are not. (Cf. Table I,
second case from top, and Fig. 4.) Thus we can write'

,diSCI.B[LyZ—-(_), Laa4_(—' ); x3+(—')]

x;;’— X3

1 0
B=— dxs
2wt J1

+__

1 o0 diSCLyg"B[sz("); ast(—)]
/ dx;;l
27t Lys™

23’ — x5
1 discr,Blxst(—)]
+— dxs

218 J Lpa™

xs' — w3
1 b disc,,*B
-*-'-*—/ dxg’—l—. (20)
:c3+

X3 —%3

Each contour runs above the corresponding cut and
all of them pass under the branch points 5=, L4, Lys™;
that this is the correct prescription will be shown later.

Now disc;B has all the singularities of B, and it is
clear that

1 ; (disciB[Lys™ (=), Lai™ (=), @5t (—)]
JE— X3
2t J1 x5’ —x3
1 disciB[Lys(4+), Lo (=), 257(—)]
=— dx;;’
2mt J1 %y — x5
1 = discr,,{disciB[ Lz (=), 57 (—)1}
—— dx3l N
28 J Ly ' —

(21)

Since the last integral on the right-hand side of Eq. (21)
is equal to
1 00
— dx
i ) 5

IdiscL,,z—B[Lap[(—), x5t(—)]

)
x;;'— X3

we have that

1 disciB[Lys (), Lo (=), 257(—)]
B=— dxs’
21 J1 x5 — %3
1 p discr,Blxst(—)]
+— / dxs'
27r’i Lz4~ xgl*— X3

1 = disc,+B
+— / darf—=—
23t

2w x5 —x3

B By disci B[ Lys~(+), Lza~(—), #37(—)7], for example, we mean
the discontinuity of B across the normal threshold (x3=-1)
continued above Lyz~ and under xs*.
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Continuing in the same way, we finally obtain

1 ol diSC]_B (x3’)
B=— | dxf——, (22)
2mi x3’ —x3
where the contour goes over Lys~, L4, x5+, and under

xs_, Lz4 ) Ly2+
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permutations of the pairs of variables (x,y), (x1,%3), and
(2,24)15; it is evident that the desired discontinuity is
formally identical to the discontinuity across the x-plane
normal threshold!® after relabeling x <> x3 and y <> ;.
[It is also clear that a double dispersion relation in
(x3,%1) exists and is identical to the usual one in (x,y) up
to relabeling.] So we write (up to over-all constant

The discontinuity across the normal threshold cut factors) ,
on the x; plane, disc;B, can be calculated by Cutkosky’s B(x )_1 © dwg i), (23)
rules.'* However, since the Feynman amplitude for the ¥ 1)1 xy—xs—ie 8 h
box graph is a symmetric function with respect to  where
1 art(xs) o (5)) — 20014+ 2{ [ (25)) — +(xs)— 1/2
flxy)= In[ (s 4o (w3) 1 2{ [ (xs') — a2 [t (2s) — 21 [} :I o)
W\/K x1+(x3’)+x1'(x3') — 2x1— 2{ [.’XJ1_ (x3’> — x1:|[x1+(x3’) - x1:|}1/2
and case Xo=ux4, x=1, i.€., Lyat=L,t=L,t° We now let
K= (x5"2—1)[wrH(ws") — @2 Lo (a05) — 201 ] 1<#1< Lys~; then (see Fig. 5) L,st<x;~ and unless
= (02— 1) [oes(201) — 205’ L5~ (1) — x5’ ], (25) Lot lies above the contour it will give rise to a singu-
. L larity of B on the physical boundary through a pinch
Equation (24) is given for 41<x’<L,s~. The with the pole at axs+ie.

simplest way to see that the branch of the logarithm in
Eq. (24) is thus correctly defined is to let x;=x4 and
x=1y [inequalities (10) etc.]; then x;~ is the upper
limit of the physical boundary [Eq. (18)] regardless of
ils position on the real axis. From the rules of Ref. 3 it
follows that x3~ should not under the circumstances
give rise to a singularity of B on the physical boundary.
It is a simple matter to convince oneself'” that this can
be avoided if and only if x3~ is not a branch point of
f(xs') anywhere along the prescribed integration con-
tour for ;> 1, which in turn is possible if and only if
the logarithm in Eq. (24) is on its principal branch when

H1<wy <min{ Ly, Lo x5} . (26)

Finally all that remains to be shown is that the con-
tour in Eq. (23) should pass #nder the branch points
L.t and Lyt of f(xs'). These branch points should
not give rise to singularities of B on the physical
boundary for x3>1 and inequalities (6) and (7) (Ref. 3).
Again in order to simplify the discussion we go to the

4R E. Cutkosky, J. Math. Phys. 1, 429 (1960).

15 The Feynman amplitude for the box graph can be written
(see for example Ref. 2) as follows:

[t dB1dB2dBsdBS (1 —2 i1 B:)
_]0 mymappe 2818914281855+ 28184x4-+2BB85%2
+2B2B4y+2B3Baxs— 2 ir? BEL.

Note that each pair (x,y), (x1,43), and (xs,21) appears in the de-
nominator multiplied by a complete set of 3;’s.

16 See, for example, S. Mandelstam, Phys. Rev. 112, 1344
(1958); C. Fronsdal, R. E. Norton, and K. T. Mahanthappa,
J. Math. Phys. 4, 859 (1963); J. Tarski, 2bid. 1, 149 (1960).

17 For example let Lyo~ <1 <Lge™, then Ly~ <wxst <ag <Lyt
(see Fig. 5). (The contour passes above L.~ and x3*.) If the
logarithm in f is not on its principal branch when 1<xj’
<min{L,2™,xs*}, then as x5’ approaches x5~ along the prescribed
contour, it will find x5~ a branch point of f. Hence x5~ should lie
above the contour in order to avoid a pinch with the pole at x3-47e.
If we now continue x;47eso that x,>L;e™, x5~ will loop clockwise
(under) L.s~ dragging the contour along with it (1<wx;~<wxst
<L.s"), and thus making a pinch with x;-+ie unavoidable.

Our dispersion relation for B, Eq. (23) is now un-
ambiguously determined for the case of inequalities
(6)-(9) and hence for any other case by analytic
continuation.

III. CONTINUATION TO COMPLEX
INTERNAL MASSES

A. Investigation of the Motion of Singularities as
Functions of Particle Widths and
External Variables

In this section we shall study the motion of the
singularities Lyot, Lye&, x5 (21 plane), L., Lygi, x5t
(%5’ plane) and the corresponding effect on the size of the
amplitude squared, | B|?, as we continue 7, — m;—ia,
a>0, 1 — u1—1B, >0 and vary the external variables
in their physical ranges. The parameters « and 8 are
related to the full width at half-maximum I' of m,
and uy by

a=T,/2, B=T,/2.

A convenient model for our investigation, possessing
a certain amount of symmetry, is obtained by letting
m1=u1="m, (Oi'—‘—ﬁ), and M2=ﬂ2=M2=M4=[J, in
Fig. 1(b).

Clearly xs=x, and thus the triangle singularities are
at the same points on both the x; and x3(x;") plane.

Even with xe=ux4 the problem still retains its full
complexity; i.e., the number of singularities and the
number of variables has not been essentially reduced.

Because of the large number of cases one would have
to examine, and because it would be desirable to get a
comparatively simple and clear picture of the essential
features, it is advisable to begin by restricting the
investigation to the cases for which x=y. We shall
assume this to hold throughout the present section,
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Fi1c. 6. Motion of the box singularities for x=y, xs=x4 and
s=110, p=1, m=9—:(0.1). (I'>~28 MeV if pu=p.=1) x5~
= (s—1)2/2M 2—1, so it moves on the real axis.

except where it is otherwise specifically indicated. The
x7%y case will be considered briefly in the following
section.

So, we consider the case determined by inequalities
(10) (consult last part of Sec. IT A with M=y).

We let u=1 and m=9—1 (0.1), (which would corre-
spond to I'»,=28 MeV if u=pion mass), and plot the
motion of the box singularities x5, x,* as we vary x;
and x;, respectively, keeping s=¢=110.1% This is shown
in Fig. 6. Note that since x; passes under L,.*, x5+ passes
over Lo~ on its way to +1 (cf. Fig. 5).

In Figs. 8, 9, and 10 we plot the paths of L,s~ and x5+
as the width parameter a increases from 0 to 0.36
(I'»w=100 MeV for u=pion mass). The variables s and
M2 are fixed in each case so that the singularities lie on
the physical boundary when a=0.

An examination of the above plots leads to the
following conclusions:

(1) x5t is much more sensitive to the variation of
the width parameter « than is L.,s~, except when
x5t (e=0)~L,s~(@=0), or when « is extremely small;
the larger we make x3t(a=0)—L,s (a=0), the faster
xgt moves downwards with increasing « (Figs. 10
and 8).

(if) Since xs3* on its way to 41 passes over L5~ as
we increase M, (keeping x fixed) (see Fig. 6), it is

xs Plane
A+
.
[}
x3(x,x,)
NG
L2 (x
W A
N
i §
N
B

F1G. 7. Relative motion of xs~ and Lo~

18 Which means that for I'n=0, > 1, x+x2<0.
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F16. 8. Motion of the triangle and box singularities. The
numbers along the curves denote the value of the width parameter
a. For all curves we have x2=x4, x=v, p=1, m=9—i(a). For
purposes of comparison we show two cases, one in which
Lz (e=0)=xst(@=0) and the other in which L. (a=0)
<<x5+(01=0).

obvious that we can make Imxst~ImL,s~ for arbitrary
a by moving x5+ close enough to L,;~. Now suppose
that for some o, x(s), 2 1 and x,(M+?) the singularities
are at the points 4,B of Fig. 7 with | Imxs*| < |ImL,s~|.
If we now increase s the singularities will follow the
paths of Fig. 7. We see thus that after a certain point
| Tmaxs*| > [ImL,s~|. However, if we fix + when agt
and L,;~ are at the points A’,B’, respectively, and
increase M2, x5t will move up to L,,~ along the path
A’B’ so that again |Imwxst| <|ImL.s|.

(i) In general it seems possible that we can always
make |Imxst|S|ImL,s| although this most of the
time requires extremely small c.

(iv) The farther the singularities are from the normal
threshold (4-1) the faster they move downward with
increasing o (cf. Figs. 8-10).

So the distance between L,s~ and x5+ when they are
on the real x; axis («=0) and their distance from -+1
enables one to guess how they will move as a increases.

B. Amplitude of Box Graph as a Function of
Widths and External Variables

For xy=x4 and x=y the dispersion relation for B
[Egs. (23), (24), and (25)] can be written as follows:

W12 13 14 15 16 L7
T T T T T T T
- === Ly (@) x3 Plane 05 i
— x5 (@)
—i.2 —
Xq X /I
—1.3 ! 1 3 o -
bp AN 2/ 4.
1 s
y m i /
—i4r- ! . 43/, ( ]
mo 1 X ;
2 1 4 2 _
—15 M x 367 \2loimo M 22000 |
I I | 1 | 1 | 1 |

F16. 9. Motion of the triangle and box singularities. The num-
bers along the curves denote the value of the width parameter a.
For all curves we have x2 =4, =y, u=1, m=9—i(a), and s =110.

19 Assuming again x+%2<0 for =0.
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x5’ (624 202) 4 20— 21 (52—

where xs* are now given by Eq. (12).

The integral in Eq. (27) has been evaluated for given
X, %1, X2, @ Over a set of x; in its physical range [Eq.
(18)7], using complex-arithmetic FORTRAN IV on the
IBM 7094 at the UCLA Computing Facility.

It is worth noting that since the definition of x; (or
x3'), Eq. (2), does not involve any of the unstable
particle masses, the integration path remains real when
m— m—ia, («>0), which is convenient in view of our
numerical (computer) integration. Furthermore since
x5~ is not a branch point of f(x;") (see Sec. IIB), in
evaluating the integral, one only has to worry about
the principal value due to the pole at x; (all other
singularities being in the complex plane and thus off
the integration path).

Since we cannot know a priori how close to the
physical boundary a singularity (xs+ or L,s~) should be
in order to give a reasonably strong peaking, our purpose
here has been to investigate, by explicit calculation of
the square of the amplitude, |B|2, the effect of xs*
(mainly) as we vary a and the external variables.

In general, peaks can be made to appear anywhere
within the x3; physical range by properly adjusting #;
and x (see for example Fig. 14).

Figure 11 shows in a rather striking way the relative
magnitude of the x5t versus the L,s~ effect (we have
used the unrealistic =0.01 or I',,~2.8 MeV). As ex-
pected, the xs+, being an inverse square-root branch
point, is much stronger than the logarithmic L5~
branch point; hence, when the singularities are close
together, the effect one sees is due mainly to xs*. We
point out in passing that an interaction proceeding via
two ¢ particles (I'¢=<3.3+0.6) could give rise to such

X3 Plane
94 95 96 97 98 .99 { 101 102 103
T T T T T
=0l -
! -—=L%, (@)
—
Ziozk x3 (@)
eso BOTH BOX AND TRIANGLE
SINGULARITIES COINCIDE
—io3
Xg %
—i.04 i ® i \3

Fi16. 10. Motion of the triangle and box singularities. The num-
bers along the curves denote the value of the width parameter c.
For all curves we have xy=x4, x=y, u=1, m=9—i(a) and s =150.

wgt—a5) (w5 —25") ]2
1 (st —as") (w5 —24') ] ]’ o

D~ [~ 1) (52— 1) (5t —05") (05~ — ") ]2

a striking peak if it were the dominant contribution to
the amplitude.

From Fig. 12 we see that, other things being equal,
the amplitude enhancement is very sensitive to varia-
tion of width; in this example, increasing the width by
a factor of 3 (which increases |Imxst| also by about a
factor of 3) cuts down the peak by about a factor of 10.
Note, though, that even with as large a width as 84
MeV we still get a fairly well-defined rise in |B|2
near Rexs*.

We have plotted in Fig. 13 | B(xs) |2 for various #; and
x keeping a=0.3 for all curves; it is interesting that
though one might expect the height of the peak to in-

©
T

o sllm

181 5

I 1
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X377 Relye

1
|
3} 35 4 a5 |
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FiG. 11. Triangle and box effects for very small decay width.
For this curve we have xs=x4, =7, s=110, M,2=1000, «=0.01
(Tm>22.8 MeV), Ly =21.77—14(0. 016), and x5t 08—-1.(0 030).
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8- =
Fic. 12. Effect of decay
width variation on |B|%. For |52 71 -
both curves xs=x4, x=7y, 5= .
110, u=1 (pions), M? ~2148. 8- .
For solid line: L, =~1.75
—4(0.16), x3t~1.76 —3i(0.11). 5 ]
For dashed line: L, =21.62
—3(0.43), x3t~1.73—4(0.32). ar n
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F16. 13. Variation of |B|2. For all curves x;=uxs,
x=1v, and «=0.3 (I'n=84 MeV).

crease as x3+ approaches +1 and consequently (see
Fig. 6) |Imxst| decrease, what occurs is actually the
opposite. This appears to be due to the fact that
f(xs’=1)=0, and thus Ref and Imjf have narrower
peaks than they would if x5+ were farther to the right
and Imx;t more or less unchanged. It is instructive in
this connection to examine in some detail the variation
of Ref and Imf; this variation is shown on Fig. 14 for
two of the curves of Fig. 13, and on Fig. 15 for the
example of Fig. 11. We stress, however, that because
the function we are dealing with is rather complicated,
the above inferences should be taken only as rough
guides for preliminary orientation to be followed by a
more or less detailed investigation of | B|? for each case
of interest.

In the next section we shall continue the investigation
of |B|? as a function of the external variables in con-
nection with two real processes (I'» fixed) which have
been studied to some extent experimentally.

T T T T T T

.8 A -
A
;M 28
A4fy ! \  s=lo .
! ] \
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M { \ —==:Imf
JdOf ! N —:Ref -~
!y
! K N
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osi \ . i
. \ s=150 N

MZ:3000
$=150 M3 2148

s=110

1 1 I | Il 1
11 .5 2 2,5 3 3.5

’
Xz—=

F1G, 14. Variation of the real and imaginary parts of f(x3")
for two of the curves of Fig. 13.

F16. 15. Variation of the real and imaginary parts of f(xs')
for the curve of Fig. 11.

IV. APPLICATIONS
A. General Considerations

Let us consider the box graph shown in Fig. 16.%
Here the blobs represent the amplitudes for the proc-
esses taking place at the vertices; these amplitudes are
unknown functions of the momenta and spin
parameters.

As a crude approximation valid only in the neighbor-
hood of the box singularity enhancement we can write

1 © dAC3’
A®~4 ™4 (f)»yn,2_/ ’*—-’_“f
1 X

Iy 3,— X3— 1:6

=AMA (f)’YngB(x;;, .o ) , (28)

where A @ represents the average effect of the double-
resonance production amplitude (Fig. 16) at the in-
coming center of mass energy (M) of interest; similarly
A represents the final state interaction for Ms? in the
neighborhood of the peak, and finally v; (1=1,2) is
proportional to the square root of the decay width of
the resonance.

N
M; > (e )

F1c. 16. Exact box graph. A(® is the exact
box amplitude. (p2=—M32.)

20 Readers who have skipped Secs. IT and III should consult
Egs. (1) and (2) in conjunction with Fig. 16 so as to familiarize
themselves with our notation. We mention here that under our
conditions (Table I second case from top) only the triangle
singularities L,2~, L2~ and the box singularity xs* can appear
on the physical boundary on the x3 plane (or correspondingly M 3
plane). When this happens and x3=_Lys~, %3=_Ls4", or xs=wx3s", the
graphs shown in Figs. 2(a), 2(b), and 16, respectively, can be
thought of as occurring with real intermediate particles (Ref. 3).
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We can write the nonresonant final-state?! total
amplitude 4 as
A=A¢+A® (29)

where A4, represents all contributions except that of
the box graph.

It is impossible to make reliable quantitative esti-
mates of the relative importances of 4® and 4,. In
fact, a conclusion based upon some attempt to do so
might be more misleading than helpful, in as much as an
extremely unreliable result may be worse than none.
Despite this, however, we use a very crude model and
the data in Table IT to make a calculation of 4 ® rela-
tive to A, for the reaction discussed in part C of this
section, namely, pz') — AAxtr—. It is found that for not
unreasonable 77~ scattering lengths, 4® could com-
pete favorably Wlth or dominate, 4, in the neighbor-
hood of the box singularity. What the physical situation
is, when the actual angular distributions and phases of
all the amplitudes are included, is anybody’s guess.

Despite our inability to be quantitative, it is clear
that 4(® will have a good chance to dominate over 4,
if A® and AY in Eq. (28) are “large.” It is therefore
desirable to look for the box effect in processes where
for some M2 there is considerable double-resonance
production and at the same time the amplitude 4 ¢ is
appreciable. Finally the resonance widths should be
neither too large nor too small, since although very
small widths would give a high narrow peak in B, the
vry2 factor would cut down 4 ® relative to A4,, while
in the case of very large widths, the situation would be
reversed. This behavior has a simple physical inter-
pretation.”? Let us for convenience consider the case
where the two resonances involved are the same
(mi=pi=m). When x3=x;+ and the necessary in-
equalities hold, the box can be interpreted as a classical
process. Introducing widths for the resonances is equiva-
lent to allowing a mass spread around = (i.e., all
resonances produced will not have the same mass but
their mass spectrum will exhibit the characteristic
Breit-Wigner shape).2 It is clear that x;=x5* (with all
invariants fixed) will be fulfilled only for some events,
while for most events particles #, and us will not take
off in exactly the right direction for a collision to occur.
This has the effect of broadening and decreasing the
maximum of the peak centered at x3*, and accounts
for the behavior of the peak in B as a function of the
width, which is shown in Fig. 12. We note here that
taking into account the quantum-mechanical nature of
the particles does not essentially alter the above
picture.

21 Events having one or more resonances in the final state fall
in specific Dalitz-plot bands and can be separated out.

2 See C. Kacser, Phys. Letters 12, 269 (1964) and J. B.
Brongan Phys. Rev. 134, B687 (1964) in connection with triangle
graphs

% We recall that in our dispersion relation [see Eq. (28)] the
widths appear in B as negative imaginary parts of the masses of
the resonances; i.e., for the cases considered here we have m;=u
=m—ia, a= I‘/2 where T is the full width at half-maximum.
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Taste 1. Relative production rates for processes
leading to the final state A&xrtr—.

Process Fraction
(a) pp— Yi*Y,*—(1385) 0.20
(b) - V¥t 0.30
(c) — Y**Ax~ and c.c. 0.20
(d) — V1* Azt and c.c. 0.10
(e) — AAx7~ (nonresonant) 0.20

On the other hand the resonance width is inversely
proportional to the particle lifetime, so that when the
width is large the resonances will decay while they are
still close to each other and thus particles m, and ue
will have a chance to interact due to the de Broglie
wavelength spreading even if they are not aimed in the
right direction. When the width is small, the resonances
will get to travel a long distance apart before decaying,
and thus even a small deviation from the correct
direction will cause m, and ps to pass each other a
relatively large distance apart. (When the width is
zero the “resonances,” of course, will never decay.)
This behavior is manifested through the over-all 2
factor on B [Eq. (28)].

We now turn our attention to two reactions, which
we believe might well exhibit the box amplitude
enhancement. These are

pp— AAwta—, (30)
at an incident 5 momentum of 3.7 BeV/c, and
pp— KKz, (31)

at rest.

Proton-antiproton annihilations leading to the final
states of reactions (30) and (31) have been studied
experimentally?* at the above momenta, and in both
cases a rather large amount of double resonance produc-
tion was found.

We quote in Tables II and IIT the pertinent data
from Ref. 24.

The full width at half-maximum of the ¥,*(1385)

TasLE III. Proton-antiproton annihilations
producing K0K*7¥702

Process Rate
(@) pp— KEK,%zFx0 (total) 5.19X103
(b) — K*K*0 1.43X1073
(c) — K*K*= 0.77X1073
(d) — K*:K0r¥ 1.04X 1078
(e) — K*EKF70 0.97X10™*
(f) — K*K*gF 0.57X1073

a For the various rates in the annihilations leading to the final states
KiKir*tn~ and K1(K9)w*r~, see Ref. 24

% For annihilations into AAx*=~ see C. Baltay, J. Sandweiss,
H. D. Taft, B. B. Culwick, J. K. Kopp, R. J. Louttit, R. P. Shutt,
and A. M. Thorndike, Phys. Rev. 140, B1027 (1965) ; for
annihilations into K Krr see N. Barash, L. Klrsch D. Miller, and
T. H. Tan, ¢bid. 145, 1095 (1966) and references therein. We are
indebted to the authors for sending us their results prior to
publication.
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F16. 17. Box graphs contributing to the nonresonant final state
in reactions (30) and (31).

resonance is 53 MeV while that of the K* is 50 MeV %
so we have in units of the pion mass

iTy*=ay*=0.19 and 3Tk*=ax*=0.179.

The box graphs that we study in connection with
reactions (30) and (31) are shown in Fig. 17.

Anticipating the results of the following sections [in
both cases the peaks appear close to the Ms* threshold
(xg~1)7], we would want the 77— and KK scattering
amplitudes and in particular the .S-wave scattering
lengths to be large.

The S-wave =tn~ elastic scattering amplitude
A+~ is given in terms of the (S-wave) isotopic spin
amplitudes A7 by

Apt-=3(A0424,). (32)

Experimental evidence points to a strong S-wave
T=0, = scattering length effect.6 A reasonable set of
values for the scattering lengths appears to be?”

a1,
as~0.12%,.
T
T }
i
!
i
! '
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ik 5=984I /‘/\\_*\‘ : .
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: O e ™ e 1054
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Sl X3NsXe y
o —s=984l
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Fi1c. 18. Motion of singularities for pp — KK= [annihilation at
rest, M12=180.8, pu,=1, mg*=6.38—2(0.179)7. In the x5£y parts
L.~ (s=98.41) is fixed, while L,.~(¢) and the rest move as ¢
increases from 98.41 to 154.8. (¢= (M1—M,)>~155.0.)

%5 A. H. Rosenfeld ef al., University of California Radiation
Laboratory Report No. UCRL-8030, 1964 (unpublished). The
later values for these widths appeared during the course of this
calculation [A. H. Rosenfeld ef al., Rev. Mod. Phys. 37, 633
(1965)7] and are I'y;*asssy =44 MeV, T'gx=49 MeV; they would
improve our peaks slightly.

26 N, E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1964);
J. Kirz, J. Schwartz, and R. D. Tripp, 7bid. 130, 2481 (1963);
T. Maung, K. M. Crowe, and N. T. Dairiki, Phys. Rev. Letters
16, 374 (1966). P. D. B. Collins, Phys. Rev. 142, 1156 (1966) ; see
however, F. T. Meiere and M. Sugawara, ¢bid. 153, 1702 (1967).

27 J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763
(1962); Aachen-Birmingham-Bonn-Hamburg-London (I.C.)-
Miinchen Collaboration, Nuovo Cimento 31, 485 (1964).
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F16. 19, Variation of |B|? for the case pp — KKurr.

Unfortunately, there is no experimental information
on KK scattering, but we would expect 4 for the
box graph of Fig. 17(b) to be roughly as large as the
atr~ amplitude. [For example, SU(3) and octet
dominance give {(rtr—|rtr)/(K*K~|KTK~)=1.]

B. pp — KK==

In this section we study the possibility of an enhance-
ment arising from the graph of Fig. 17(b). Clearly we
have x;=x4, and we proceed by setting s=¢ or equiva-
lently x=1y without loss of generality since we would
have to look for the peaks in «x3 for some fixed x and y
anyway ; we shall, however, consider later the effect of
making x#y.

All masses, elc., in this and the next section are measured
in pion mass units. Thus for proton-antiproton annihila-
tion at rest we have M,2~180.8, mx*~6.38—1(0.179),2
while

+1=5x=<—x, or equivalently 98.413s3105.4; (33)

T T T T T T

———PHASE SPACE FACTOR
——1BI%x PHASE SPACE FACTOR
_d®R,(M3)

$=9841

(T
4 K

dM3 dsdt

X3

F16. 20. Effect of phase-space factor on the curves of Fig. 19.
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i.e., for s larger than the upper limit, the triangle
singularity will loop clockwise around x3=-1 and
move onto the upper half plane of the second Riemann
sheet of the amplitude B. (Cf. Fig. 3.)

Figure 18 shows the paths of L.s*°® (dashed lines) and
x3E (solid lines)?® on the x5’ plane. We remark that al-
though x5t has gone through the Lo~ cut (which we take
parallel to the real axis from L5~ to + o 44 ImL.s7),
both singularities stay rather close to the real axis.
[Recall that the physical range of x; extends from -1
to x5~ see Eq. (18)]. In Fig. 19 we have plotted some
typical |B|? curves (arbitrary units) for s varying
through practically the entire (33) range. The best
peak is that for s=~102.2; however, we have more-or-
less good peaks throughout the entire range getting
narrower as s approaches 105.

We now calculate the three-dimensional partial
distribution of events for fixed M s, and ¢ as a con-
sequence of the matrix element squared |B|2. This is

T SURNL
s=118.87 NG x3 Plane
+|.5" ————

+i.02
]

=il

i~ \

N\,
s=11881 <.

(o] 5

T16. 21. Motion of singularities for pp — AAx*7— [annihilation
at 3.7 BeV/e, M2=456.9, p.=1, my*=9.9—4(0.19)]. In the
x5%y parts Lyo~ (s=118.8) is fixed, while L, (¢) and the rest move
as ¢ increases from 118.81 to 179.0. [t< (M1— M,4)2~179.3.]

given by

d3R4 s /xs—l 1/2
N PR
dsdtdM @ SM2\xs+1

with the boundaries given by Egs. (15) through (18).
In Fig. 20 we compare the density of events given by
Eq. (34) (solid lines) for the |B|? shown in Fig. 19,
with that of pure phase space (dashed lines). Since the
scale for | B|? is arbitrary, it is the shape of the curves
that is significant. We conclude that for s~¢~102, one
should be able to detect a comparatively large accumula-
tion of events near threshold. Returning to Fig. 18 we
let s=98.4, i.e., L, is at the lower end of its path, and
increase #; thus L,s— follows the (dashed) path that
L.~ followed before (when s=t¢). It turns out that x5+

28 Dash-dot curves refer to the x>y case and should be ignored
at this point.

2 See, for example, P. Nyborg, H. S. Song, W. Kernan, and
R. H. Good, Jr., Phys. Rev. 140, B914 (1965).
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T1G. 22. Variation of |B|2 for the case pp — Ahxta.

follows the same path as before®® We indicate the
position of x5t when L5~ is at the lower end and L5~ is
about to loop around +1. We therefore expect little
change in the curves of Fig. 20 for s#¢ (but not too
different). (It is in fact conceivable, since x;+ remains
close to the physical boundary for a great part of the s
and ¢ ranges, that if the box graph dominates suffi-
ciently over the background, the enhancement may
survive in the integrated distribution dR4/dM 2.)

C. pp— AAxtm

For the graph of Fig. 17(a) we again have xo=ux4,
and as in the previous case we set s=¢ (x=1v). Here
M 2~456.9, my+*~9.9—14(0.19),” while

+1=<x=<—x, or equivalently 118.815s3134.18.
(35)

Figure 21 shows the paths of L..* (dashed lines) and
xs= (solid lines)?® on the x;’ plane. The singularities
L,s~ and x3* are farther away from the physical
boundary than in the previous case. We do, however,
get good peaks for 122555133 (see Fig. 22), the best
one being that for s=~129.7.

In Fig. 23 we compare the corresponding partial
distributions of events [see Eq. (34)] with that for
pure phase space. Again we conclude that one can
reasonably expect a relatively large accumulation of
events near threshold for sm~~129.7.

Finally we examine briefly the motion of the singu-
larities for s%¢ (x7%y). Setting s=118.81, we increase
t. The singularity L,s~ follows the path previously
followed by L,s~ and subsequently moves on the upper
half-plane of the second Riemann sheet, while wxz*
follow the paths shown in Fig. 21 (dash-dot lines). We
note that under the circumstances the path of xs* is
farther from the physical boundary than before and
therefore we should expect the peaks to flatten out as

30 x5~ is now complex (dash-dot line) so that the physical x3
range is given by (16) and (17).
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F1c. 23. Effect of the phase-space factor on the curves of Fig. 22,

s becomes different from ¢ Thus it is clear that the
s=1 cases are the best cases for experimental study.
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APPENDIX

We obtain here a crude estimate of the ratio |4 ® |2/
|A|? for the pp— AAntz— case, which we treat in
Sec. IVC. The amplitudes 4® and A4 are defined at
the beginning of Sec. IV.

We use a field-theoretic model in which all fields are
scalar and carry charge (or strangeness). The effective
interaction Hamiltonian density is given by

HLr=rvp: ¢Y*¢Y¢p*¢p:
Fyvar: (@roadtoror*e.):
FYrribr bbb . (Al)
Using this Hamiltonian, we find for the box amplitude
A®

2,
ArYmmw
A T

16my?m 2

(A2)

where B is defined by Egs. (23) and (24). [An over-all
factor of $ missing from Eq. (24) has been incorporated
in the factor that multiplies B in Eq. (A2).] Similarly,

we find

Yyaqt (IN[A(my?ma2m,2) 2

C L U
drmy\2 dmy?
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where I'y is the ¥1*(1385) width (see Sec. IVA). The
effective coupling constants vy, and v, appearing in
Eq. (A2) are connected to the total cross sections for
pp— Y*V* and wtr— — 7tr—, respectively, by

2
YYp

= Wa, (A4)
(27) 2052w, | Va— Vy|
and

Orp™= 'Y7r1r2/7TM32 ) (As)

where W, is the n-particle invariant phase space and
M3 the two-pion c.m. energy.
Finally, using the effective interaction Hamiltonian
density
Ir=vy :¢A*¢A¢7r*¢1r¢p*¢p:
we get

A=v, (A6)

and for the total nonresonant final-state cross section

,YZ

We. (A7)

OAATT =
(2m)* 20520, | V53— V|

Now, from the experimental results appearing in
Table II [reactions (a), (b), and (e)] we have that

Uyy/O'AA,,-,r= 5/2 (Ag)
Equation (A8) along with (A4), (A6), and (A7) gives

the ratio
'pr2 1 <5>W4
42 @n\2/w,’

so that using Eqs. (A9), (A2), (A3), and (AS), we obtain

(A9)

[A® |2 Tymy2o..(v3+1) | B|25W,
A At e,

, (A10)

where
x3+ 1= M32/2m,,2 .

For the cases shown in Fig. 22, we find that in the
range 1.02=5x3<1.57 or equivalently 280.6 MeV=M;
=<316.5 MeV, we have on the average (x;+1)| B[2~8.6.
Thus, for example, in order to have |4A®|2/|4]|*~1,
we need o,-~160 mb near threshold; this cross section
corresponds roughly to an S-wave, I=0, =r scattering
length |ao| =~1.2 pion Compton wavelengths. A scat-
tering length of this magnitude is not unreasonable?
(see in particular Collins who reviews the situation). We
remark also that since A=A4,+4® we could in
general have box dominance over A4, even if
[A®[2/|4]2<1.



