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Reggeization of Elementary Particles
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Except in the scattering of vector bosons by spin-~~ nucleons, elementary particles of conventional field
theory correspond, in general, to Kronecker-delta singularities in the complex angular-momentum plane
of the scattering amplitude, and if there is a Regge trajectory, it does not pass through the elementary-
particle pole. However, this Regge trajectory induces a pole in the vertex function and a zero in the propaga-
tor of the elementary particle. These induced sects are such that under certain conditions on the renormal-
ization constants, all the Kronecker-delta singularities cancel each other and the Regge trajectory moves
to the elementary-particle pole. We demonstrate this Reggeization of elementary particles in a soluble-
model field theory.

1. IN'TRODUCTION
' 'T has been suggested by several authors' that the
- - elementary particle of conventional Geld theory may
be regarded as a composite particle when its wave-

function renormalization constant Za is set equal to
zero. This can be demonstrated in Geld-theory models

such as the Lee model and the Zachariasen model
where the vertex function is simple. Although the
elementary particles in these cases become composite,
it is trivially seen that they do not lie on Regge trajec-
tories but correspond to Kronecker-delta singularities
in the complex angular-momentum plane.

In theories with nontrivial vertex functions, the
condition Z3=0 is not sufGcient to make the elementary
particle composite; Gerstein and Despande' have shown

that additional restrictions must be imposed on the
vertex renormalization constant. On the basis of the
work of Jin and MacDowell, ' they conjecture that the
composite particle, to which the elementary particle
passes, corresponds to a Regge pole. The mechanism

by which the elementary-particle pole becomes a
Regge pole is as follows: The Regge pole arising from
the irreducible part of the scattering amplitude induces
Kronecker-delta poles at the position where the Regge
trajectory passes through l=0, in the vertex function
and the inverse propagation function of the elementary
particle. As Z3 is made to approach zero keeping the

H=Ho+Hr,

self-mass of the particle 8p' Gnite, the vertex pole moves
towards the elementary-particle pole and in the limit
coincides with it and cancels it; at the same time the
Regge pole moves to the position of the elementary-
particle pole. An almost similar type of Reggeization
of the elementary particles has been shown in a Geld

theory with two-particle unitarity' by Kaus and
Zachariasen. 5 In the present paper we shall demon-
strate this type of Reggeization in a soluble-model
Geld theory not restricted by the two-particle unitarity.
We consider a Lee model with U, V, E, and 0 particles, '
where the heavy particles U, V, and E are not fixed
in space, but can have nonrelativistic motion. We show
that the sum of the irreducible V-0 scattering diagrams
has a Regge asymptotic behavior and that the Regge
pole at l=0 induces poles in the UV8 vertex function
and the inverse U-particle propagator. The Jin-
MacDowell cancellation is exhibited and conditions
under which the Kronecker-delta singularities cancel
are examined. It is found that under these conditions,
the Regge pole at 1=0 moves to the position of the
particle pole, thus Reggeizing this elementary particle.

2. THE SOLUBLE-MODEL FIELD THEORY

Qur soluble-model Geld theory is described by the
Hamiltonian

Ho= d'p +mv "' 1lbv (p)tv(p)+ d'p1 +~o 14't '(p)4'U(p), (p'
2mv to& (2Mo

( gs tk'
+ dsg1 +m~ 4~'(ti)0~(tl)+ do&1 —+t 14'(k)4 (k),

E2mtv &2t

go
Hr= d'p dWv'(p)&tv(p —~)p(p)f(k)4 (k)yH. c.

2' 3/2

d p dW"(p+k)lb. (p)~(p)f(h)4(k)+H. . (1)

( )

(2n.)sts

' A. Salam, Nuovo Cimento 25, 224 (1960);M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258 {1961);S. Weinberg,
ibid 130, 776 (1963); B. . W. Lee, K. T. Mahanthappa, I. S. Gerstein, and M. L. Whippman, Ann. Phys. (N. Y.) 28, 466 (1964).

'I. S. Gerstein and N. G. Despande, Phys. Rev. 140, B1643 (1965).' Y. S. fin and S. W. MacDowell, Phys, Rev. 137, B688 (1965).
4 It appears to be true quite generally in any local-field theory. See T. Saito, Phys. Rev. 152, 1339 (1966).
' P. E. Kaus and F. Zachariasen, Phys. Rev. 138, B1304 (1965).
' A Lee model oi this type with recoilless U, V, and Itt has been solved by Bronzan; see J.Bronzan, Phys. Rev. 139, B751 (1965).
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The V-8 scattering can be represented by Feynxnan diagrams (Fig. 1), where the irreducible part, Fig. 1(b),
consists of the ladder diagrams (Fig. 2). In these diagrams the double lines represent complete V-particle propa-
gator whose integral equation is diagrammatically represented. in Fig. 3. The complete V-particle propagator,
therefore, is given by

with

and
2

"9'~,t) = (e 2mv

where

~~v'(po, p) =Z~l:&(po,p)3 ', (2)

g2 d'k f'(k)F'(p)
ZV —I

(2n)' (Pp'/2m&$+mp —co&—t (p—k)'/2m&j —m~)

~~= (k'/2~)+N

g2 d'k f'(k)F'(p) ((p'/2m&]+m& po)—
X 1+-

(2s.)' (Lp'/2m~]+my —a&~—p(p —k)'/2m~] —mN)'(po —~q —L(p—k)'/2m~j —m~)

Here m~ is the renormalized V-particle mass and g is the renormalized. VE8 coupling constant. The form factor
F(p) is chosen in such a fashion so as to make Zv, the V-particle wave-function renormalization constant, in-
dependent of p.~

The integral equation for the U-particle propagator, appearing in the reducible part of the scattering matrix,
is represented by Fig. 4. Therefore the complete propagator of the U particle, in its rest frame, is given by

where

~~U'(E) = LE—No &(E)7',—

d'kd'k'Tg(E, k k') f(k)f(k')F (k)F (k')—

h(E—(op, k)k(E—(op. , k')

7%,0'Zv d'k f'(k)F'(k)
Z(E) =

(2n.)' k(E (aI„k)—

(3a)

(3b)

T~(E,k k ) is the irreducible part of the V-e scattering amplitude. The U-particle wave-function renormalization
constant and the renormalized mass M are given by

M =3IIp+Z (3II),

BZ(E)
ZU =1

This is equivalent to saying that the complete propagator has a pole at E=M with residue ZU. The UV8 vertex
function appearing in the reducible part of the scattering amplitude, of Fig. 1(a), can be expressed in terms of T~,
as shown in Fig. 5. Therefore for the U particle at rest

P' ) ~of(p)F(p)
riE,

2m' I (2s)@'

d'k 2'~(E, p k)f '(P)f(k)F '(P)F(k)-

k(E—a)p, k)

The vertex-function renormalization constant, by de6nition, is

(2')'I'I'(E= M, Lp'/2nzp)+my)
Z$

&of (P)F(P)

d'»~(Kp k)f-'(P)f(k)F-'(p)F (k)=1+
k(M —o)g, k)

The renormalized UV8 coupling constant is given by

X=Z,»2Z, ~12Z -&Z (7)

This type of introduction of a form factor has been suggested by Fried and Sartori; see D. L. Fried and L. Sartori, Phys. Rev. 128,
2879 (1962).
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3. ASYMPTOTIC BEHAVIOR OF THE IRREDUCIBLE V-e SCATTERI56 DIAGRAMS

In this section we shall consider the behavior of the irreducible part of V-8 scattering amplitude in the limit of
large momentum transfer in each order of perturbation expansion and show that it exhibits Regge asymptotic
behavior. It is easy to see that in this limit the lowest-order graph, Fig. 2(a), tends to

gPfP(p)FP(p)m„ I
Tg"'(E,s) -+—

(2~)'p' s
where

s= &"pr/p'.

For the next higher order given in Fig. 2(b), the Feynman matrix element is

d'k f'(p) f'(k)F'(p)F'(k)
T'~(4)—

(—i)(2 )' ( P'
(kp —a) p)

~

+mr —kp-
amv

(u' —k)' ( P'—mx
~

+mv —kp-
2m~ &2m'

(yf-k)' —m~ ~h(Z —kp, k)
2m~

The integration can be performed with the aid of details of the procedure for our sixth-order matrix
Feynman parameters and the final result in the limit element are worked out in Appendix A. The result of
of large s is this calculation is

g'f'(P)F'(p)m~ ~

g (4)

(2m)'p' s

-g'm~ dk f'(k)F'(k)
X lns . (9)

2~' h (E—cop, k)

For the sixth-order graph given in Fig. 2(c), the
integrals occuring in the Feynman matrix elements
cannot be carried out analytically. However, the large-2'

limit can be obtained by the standard methods
discussed, for example, by I'ederbush and Grisaru, '
Polkinghorne, Tiktopoulos, " and many others. The

g'f'(p)F'(p)m~ & &

T', (6) ~
s 2!(2')PPP

-g'm~ dk f'(k)F'(k)
X lns . (10)

2'' h(F. (up k)—
Examination of the asymptotic limits of T'~(', Tj.('),
and T&(') reveals that they are the first three terms of
the series expansion of the function

g'f'(P) F'(P)m~
(&)

~ (&)

(2m)'p'

+
Q (BARf)

FIG. 3. Integral equation of V-particle propagator.

FIG. i. Complete V-0 scattering amplitude.

-Py Py -Py

/PE-k $ Pj -«$

I'i k l'i k

U (BARK) FIG. 4. Perturbation expansion of the irreducible part of
V-8 scattering amplitude.

F&G. 2. Integral equation of U-particle propagator.

SP. Federbush and M. Grisaru, Ann. Phys. (N. Y.) 22, 263
(1963);22, 299 (1963).

9 J. Polkinghorne, J. Math. Phys. 4, 503 (1963).
'0 G. 'Xiktopoulos, Phys. Rev. 131, 2373 (1963).

FIG. 5. Vertex function expressed in terms of irreducible
part of V-8 scattering amplitude.
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where

n(E) = —1—
dk P(k)F2(k)

2m' h(E—cop, k)
(12)

-Pg

I'; p~t

We shall presume that the asymptotic limits of the
higher-ordered diagrams will form the higher members
of this series expansion. In that case it is quite clear
that the irreducible part of the V-0 scattering amplitude
exhibits Regge asymptotic behavior. This result can
also be obtained by an independent method which
consists of taking partial-wave projection of the integral
equation for T~ represented diagrammatically in Fig. 6,
and then solving it. This is done in the Appendix B.
This method gives us the residues of the Regge poles.
It is easy to check that n(E), the Regge-pole parameter,
is real below threshold and complex above threshold.
The zero of n(E) occurs below threshold showing the
existence of an S-wave bound-state pole in T~.

PL
-Pt Pe

FIG. 6. Integral equation for the irreducible part of
the V-8 scattering amplitude.

Rg ——g'm~/g (m) . (14b)

energy plane at E=m, the residue of which has been
calculated in the Appendix 3. We therefore have

f'(P)F'(p)

(2~)'p' E—m
where

Our vertex function F, given in Sec. 2, has been ex-
pressed in terms of T~. From that expression it is clear
that t will have a pole at E=m corresponding to the
pole of T~ discussed above. In the neighborhood of
this pole, the vertex function is given by

4. INDUCED POLES OF VERTEX AND INVERSE
PROPAGATION FUNCTIONS

We shall show in this section that the Regge pole
in T~ gives rise to poles in the exact vertex and inverse
propagation functions in such a way that the net
contribution of these three poles to the scattering
matrix is identically zero. Let the value of E for
n (E)=0 be m, i.e.,

f(p)F (p)
r(E m) = (15a)

(2~)'t2p E—m
where

Xg'mug d'k f'(k)F'(k)
E-2— (15b)

g(m) (ZvZv)"' (2~)'kh(m —(u„k)
m~g' dk f'(k) F'(k)

= —1.
2m' h(m —cop, k)

(13)

The inverse U-particle propagation function will also
orresponding to this pole at a=0 in the angular- have a pole at E=m. From our expression for this

momentum plane, there occurs a pole of Tq in the function given in Sec. 2, Eq. (3a), wehave

where

P „'(E~m)7-'=—
E—I (16a)

—
y2g2yg NZ 12

R3—
g(m)zpzv

d'kd'k' f'(k) f'(k') F'(k)F'(k')

(2gr)6kk h(m My k)h(m —b3y ) k )— (16b)

The complete V-8 scattering amplitude can be written as

f'(p)F'(p)
Tg(E) —= t((E) =8(OZvr'~ E, +mv ~BLED U'(E)+ Ty$(E) .

(2~)'p' ( 2mv
(17)

Using Eqs. (14b), (15b), (16b), and (17) we see that t~(E) has the following pole structure:

4=o(E)=Z,Z,r (E=M, I p'/2m 7+m ) (2 )'p' R'/R R,

f2(p)F'(p) E—m E—m

- Zvz~r2(E=3E, $P'/2mv7+mv) (2~)'P' — (R~R3—RP)/R,

-f'(P)F'(P)
~ ~ ~

It is easy to check that R22=R~R3. We thus have the well-known Jin-MacDowell cancellation' between the vertex
pole and the Regge pole at o, =O.
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S. REGGEIZATION OF THE U PARTICLE

In the energy plane, the 5-wave vertex pole and the Regge pole at n=0 cancel each other, and ti=o(E) is left
with only the elementary-particle pole at E=m. In the complex angular-momentum plane, however, the situation
is diferent. The elementary-particle- and the vertex-pole terms of the scattering amplitude are Kronecker-delta
singularities, whereas the irreducible part has a Regge pole, i.e.,

where

— Rg R22/R3- p(E)
ti(E) =&io

— —— +
E ME——m l—n(E)

~ ~ ~

p' — (2m)'p'
Rs ZvZ——UI'~ E=M, +mi

2m' f'(p)F'(p)

Ti&(E) has a pole at energy where the Regge trajectory passes l= 0. Inspection of Eq. (6) reveals that the position
of this pole of TU(E) depends on the renormalization constant Zi. Therefore we can make both the Regge pole
and the vertex pole move by changing Z&. From Eq. (6) we get

Zi (M —m) 8(M)
mNg'

(M—m)g(M)+
d'k f'(k)F'(k)

(2m.)'kk (M—(og, k)
for m 3I. (20)

It is thus clear that m —+ M as Z1 ~ 0 and in the limit the vertex pole, the Regge pole with n =0 and the elementary-
particle pole coincide. If in addition, the residues of the elementary-particle pole and the vertex pole could be
made equal, i.e.,

R~=Rp/R3,

then the Kronecker-delta singularities would completely disappear, leaving a Regge pole at the position of the
elementary-particle pole. Since the residue of the pole of t&=o(E) in the energy plane corresponding to the Regge
pole also equals R22/R~ (note that this leads to the Jin-MacDowell cancellation) as discussed in the previous
section, it can be said that the Regge pole has completely replaced the elementary-particle pole which gets can-
celled by the vertex pole. In other words, the elementary particle gets Reggeized under these conditions: Z&=0
and Rs=R2/R~. Using Eqs. (15b), (16b), and (19) we see that the latter condition is equivalent to

1=X'p'b (3E)/m~g'. (21)

By further making use of Eq. (20) we see that for Zz-+0 Eq. (21) becomes

)2~N~12g2

g(M) (M —m)'

d'kiPk' f'(k) f'(k')F'(k)F'(k')

(21r)'kk'k(lv —Mi„k)k(le' Cdj;, k')— (22)

From Eqs. (4b) and (14a) we see that when Z& ~ 0, Eq. (22) is equivalent to Zz ——0. Hence the latter condition
is fulfilled if g& ——0 in addition to Zi ——0. Although the elementary-particle pole gets replaced by the Regge pole
under these conditions, the theory is not yet completely dynamical. This is because the contribution of the re-
ducible part of t&(E) at points other than E=M still remains. For the theory to be completely dynamical these
contributions must also disappear, leaving only the Regge-pole contributions. Since the reducible part in these
regions can be shown to be proportional to Zi2/Z~, we must demand that Zi2/Zp=0 in addition to Z, =O and
ZU=0 for complete Reggeization of the theory.
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APPENDIX A

In order to show the required Regge asymptotic behavior of T&i'&(E,s), we shall pick up only the asymptotic
leading term of the form (ins) /s from the sixth-order graph, Fig. 2 (c).The sixth-order matrix element is given by
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k 1(g k0) kk,)p2(p) p2(k) p (

(Pr-—k')'
k '—~2)l +—m~ '

&2m~

( k—k')'
Ixl &-

g—ko', k')4kd4klf2(P) f2(k)f (

(12,.—k)'
mv —ko(k, „„) +m~

2m~2m7

(A1)

nd pp' Integ

,(k,)p2(p) p2(k) p (,,„k dkf (~)f'()f'
k)k(&—""'

g6
Z (6) =

(2~)'

d~~d~~

( k—k')'

we etintegrat'angulard separatingo "Car y "g'"

(p,—l ')'

2mN

(p*—k)'

2mN

(

(
&&

p2 —mx ll P-my —~~

il, integrat

&2m'

, „,and sIm»a y
~

l the d~"' Ipe man pb 'ntroduclng eynbe performed y '
'

part of T1""
The dgk jnteg

lt for the angula
ation ca

inte ration pcan be done. The result or

d$1dX2

4x 1—x x — ' 'k'k"s —D(xi, x2)4x 1—xi)x, (1—x2)m~
—2p — xXi Xi X2

(A3)= —16+2
0 0

2 4 m 2 2 —2 /~2xi mQ +p x2 ming

k"(1— ) j
2

1—x,)+
2mN

2 g2 2g

k'+k"

~2 1 &1

where

m —
COIs~ $2

&
mN

p2+ k' —m~ (1—xi).—m~ xi+ E
2mN

eof

p

z. The only rang

2mi2'

A3) for large s.

. 2m+

ex ression
r x1and from o e2

'nant terms of the p
Iolnill extract the desire

from 1—e2 to 1 or
we get

= —16+2
dX1dX2

g —8 2k2k 2z D(g1 g2)1—xi)(1—g2)m~ 2pp 4X1X2 1—X10

s d$2

k k' s—D(*„x), 4xix2(1 —xi) (1—x2)mi21—em &1&2

dX1dx21 eg

-' k'k"s —D(xi, x2)4xix2 (1—xi) (1—x,)m~—'
P $1X21—eg

dX1dX2

—2 2k2ki2 D( )x 1—xi)(1—x2)m~
—2p

—16x2
=0, x9=0)-2 2k2k&2z D(gl—0 4xix2mi2.p

s
'

I it of largez w gwe ets in the |mix2 integratIons

7r z2

f rmlng Ã1 and $2

2vr2m~ (lns)

Af ter performin

p2k'k" z

1—e1 1—e24x1 2(

=0 an x2=
'

xi x2). This term reduces toion A4) weputx1=0an x2= xiof the expression

dx]1&2

In the first term o

(A4)
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The other terms of (A4) can be evaluated similarly. Substituting these in expression (A2), we get

g'f'(P)F2(P)m~1 1 gpmx dkf'(k)F'(k)
y~(6)— 1ns

(2m)2P2 s 2! 22r2 h(E—(gp, k)
(AS)

APPENDIX B

The integral equation for T&(E,s) represented by Fig. 6 is

Tg(E,s) = g'f'(p)F'(p)

(12'+sf)'

2mv

,
p'

(2~)2 + mv —~,—
-2mv

(2~)'(—2) (y;—k)'( p2

(kp —
clap)

i
+mv —kp-

&2mv 2m2I

d'kf(P) f(k)F(P)F(k)Tg(E, Pr k)h '(E—kp, k)
(81)

The partial-wave amplitude can be obtained by using

and

p2

+mv —~2,—
2m+ 2p'

2.(E, p; If)=Z(»+1)2'. (E)F (),

(@~+If)' ($p /2mv]+mv con Lp /mN]
Z(»+1)Q i iZ, (s)

2m~ p l
(&2)

and, carrying out angular integrations. This integral equation for the partial-wave amplitude is

g'f'(p)F'(p)mx (t p'/2mv]+mv —
ppy

—Ep'/mx] —mx)
&2~(E)= Q~l

(2~)pp2 )2

2

2m'
i(27r)pp

dkdkpk f(P)f(k)F (P)F (k) T&& (E,k) (PP'/2mv]+mv kp P(P2+ k—2)/2m—&) m~'l-
Q~l I- (~4)

(kp —a&2)h(E —kp, k) 2kp )

The analytic continuation of T&&(E) in complex angular-momentum plane can be done, since the analyticity of Q&

functions in the / plane is well known. We are interested in the solution of this equation in the neighborhood of
l= —1. Since for l —1,

Qi-1/(1+1),

the kernel of Eq. (B4) becomes the separable type, the solution can be done by the method of iteration. The
desired solution is

where

g'f'(p)F'(p)m~
Trn(E) =

(2m-)'p'D (n,E)

h(E—pp2, k)

m2tg' dk f'(k)F'(k)
D(n, E)=n(E)+1+

27r2

(&S)

(&6)

Hence the Regge trajectory is given by

m~g' dk f'(k)F'(k)
n(E) = —1—

22r2 h(E—
ppp, k)

The existence of the 5-wave V-0 bound state at Z= m imp1ies that the Regge trajectory passes through the point
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l=0 at 8=m,

cr(E= m) =0= —1-mt' g' dk f'(Jt) F'(h)

2m' h(m —top, h)

Corresponding to this Regge pole of Tt there is a pole in the energy plane at E=m. The residue at the pole at
E=m of the irreducible part of the V-8 scattering amplitude, as seen from Eq. (B5), is

where

g'f'(p)F'(p)mt'

(2 )'p'8(m)

D(E)()
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We have studied the scattering processes like P+8 —+ P+B and P+B —+ P+D within the framework
of broken SU(6) w, the breaking being provided by a W-spin scalar spurion having I=0=P and belonging
to the 35-dimensional adjoint representation of SU(6)s . It is found that many of the bad results of the exact
SU(6)s and exact SU(6)w schemes are absent. At the same time, some of the results which agree with
experiment are retained. The Johnson-Treiman relations, however, are no longer valid.

I. I5'TRODUCTION
'"N a recent paper' we studied the meson-baryon
- - couplings within the framework of exact and broken
SU(6) s symmetry. It was found that whereas the pre-
dictions of exact symmetry are not very good, those of
broken symmetry are in very good agreement with ex-
periment in the case of decuplet decays; in the case of
meson-baryon couplings, the predictions seem to be
consistent with present experimental knowledge about
them.

It was shown by Jackson' that the SU(6) s predic-
tions for meson-baryon scattering in the exact sym-
metry are in very poor agreement with experiment
except for the Johnson-Treiman' relations. In view of
the better agreement of the couplings with experiment
as predicted by the broken SU(6) w, we are encouraged
to investigate the scattering process within the frame-

*Present address: Roorkee University, Roorkee, India.
' Sachchida Nanda Gupta, Phys. Rev. 151, 1235 (1966). We

have followed the notation of this paper. Other references on the
application of the group SU(6)w are listed in this paper.' J. D. Jackson, Phys. Rev. Letters 15, 990 (1965).

3 J. C. Carter, J. J. Coyne, S. Meshkov, D. Horn, M. Kugler,
and H. J.Lipkin, Phys. Rev. Letters 15, 373 (1965).These authors
have studied the various scattering processes in the exact SU(6)w
symmetry using the Clebsch-Gordan coeKcients. Our results, ob-
tained here by using the tensor techniques are in agreement with
theirs for the exact symmetry if we put all g's =0.

4 K. Johnson and S. B. Treiman, Phys, Rev, Letters 14, 189
(1965).

work of broken SU(6) s and examine whether there is
any improvement for the scattering predictions. We
shall confine our attention to the processes of the type

(A) P+8~P+8,
and

(B) P+8~P+D,
where P, 8, and D are taken to mean pseudoscalar
meson, baryon, and baryon resonance, respectively.

We break the symmetry by a lV-spin scalar spurion
having I=0=F and belonging to the 35-dimensional
adjoint representation of the group SU(6)s. Such a
spurion is given by

S = b '(k, ) "',
where

0 0
)ts 0 1 0

,0 0 —2.

II. MESON-BARYON SCATTERING

In exact symmetry the scattering is described by the
following 4 invariant amplitudes:

fry' tsar'0""0 r'4 s"
~

f lh«s '4""4 '4.",
fed' ttv'4""0:4 s",
f4&att7V"A'&"


