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In the same way, the average number of particles is
- lne

(rt) = P No & "&(s)/as (s) lns . (24)
7L~2

We also deduce that the ratio o &"'(s)/o &"'&(s), that is,
the ratio of the probability to produce e particles to
that to produce e' particles, is independent of s.

The basic ingredient in both (23) and (24) is the
assumption that we can neglect all kinematic regions
in which any t; is large. Without this restriction, the
maximum number of particles allowed at a given s
might be expected to be as much as

= (v')/,

where p, is the average rest mass of the particle in the
anal state.

The principal conclusions to be drawn about the
multi-Regge-pole hypothesis then are (1) It is internally
consistent. (2) It is best tested by looking for diffrac-
tion-peak shrinkage and dips in the differential cross
section. (3) If the Pomeranchuk trajectory is a Regge
pole, then at ultra-high energies, the particle multi-
plicity grows like Ins, and the cross section to produce I
particles falls like 1/ina.

One of the authors (G.Z.) would like to thank G.
Jones, B. Sherwood, and A. Tollestrup for many
interesting discussions.
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We show that the presence of a fixed pole at J=1 in the process y+y ~ h+6 reinstates the coupling
of the 7-p state to the vacuum trajectory, and hence permits a 6nite total photon cross section as s —+ ~.

I. INTRODUCTION
' t'T has been observed by Abarbanel and Nussinov'

- and Mur' that in a naive Regge-pole model, the
Pomeranchuk Regge trajectory with n(0) =1 does not
contribute to the forward nonhelicity-Qip Compton
amplitude. Hence, by the optical theorem the total
photoabsorption cross section will go to zero as E~ ~.
Ke will show that as a consequence of the linear uni-
tarity (more precisely, the absence of bilinear unitarity)
for processes to low order in the weak and electromag-
netic interactions there exist fixed poles at nonsense
values of the angular momentum. The fixed pole in
the angular-momentum variable J will exist together
with the Regge pole (if it exists) in a multiplicative
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fashion. In particular, there is a fixed pole in the
Compton amplitude at the point 1=1, the first non-
sense wrong signature point for the relevant partial-
wave amplitude for the crossed channel. The fixed
pole at 7= 1 will not contribute to the physical scat-
tering amplitude, but will contribute in such a manner
as to restore the contribution of the Pomeranchuk
trajectory to the forward nonhelicity-Qip Compton
amplitude.

Section II is devoted to some kinematic preliminaries
for the Compton amplitude. In Sec. III the fixed pole
in the Compton case will be derived for the same model
which produces a fixed pole in the current commutator
case.' In Sec. IV we will show the existence of fixed
poles in general as a consequence of the unitarity of
lowest-order weak and electromagnetic processes.
Finally, Sec. V will be devoted to conclusions and
speculations.

All of our remarks on Compton scattering will be

e J.B.Bronzan, I. S. Gerstein. B.W. Lee, and F. E.Low, Phys.
Rev. Letters 18, 32 (1967); and V. Singh, sbuf. 18, 36 (1967).
See also J. B. Bronzen, I. S. Gerstein, B. W. Lee, and F.E.Low,
Phys. Rev. (to be published).
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III. DEGENERATE MODEL

The model we consider consists of I=2, spin-zero
particles (X's) interacting with scalar isoscalars ((r'sP)

through a K Ko coupling. We ignore, as usual, the
well-known difhculties associated with super-renorm-
alizable theories, since they are irrelevant to the ques-
tion under consideration. With this model, we consider
a further gauge-invariant approximation which excludes
both initial and Anal photons coupling to closed loops
of the I=

~ particles. Thus, we would keep the Feynman
diagram Fig. 1(a) and discard the diagram Fig. 1(b).
Diagrams like Fig. 1(c) we may keep, but they are in

any case zero by isotopic-spin conservation.
If we permit the photons to be charged, then the

isotopic-spin dependence of all the diagrams of Fig. 1(a)
is given by

T„„p ('&=rpr T„„(&(s,t)+r rpT„„('&(l,t) (3.1)

Fio. 1. (a) The diagrams included in our approximation. (1)
The diagrams not included in our approximation. (c) The diagrams
that do not contribute because of isotopic spin.

demonstrated on scalar hadron targets and to order
e'. The extension to non-spinless targets will be
straightforward.

IIx'x(q P2i2ql)P1) ex' ex vTl (2.2)

and its imaginary part is related to the total photo-
absorption cross section by

gz = gs ImTy. (2 3)

The authors of Refs. 1 and 2 have shown that normal
Regge behavior of II implies that ImTi(v) -+ v

(n —1)b(t) in the neighborhood of n= 1, where n is the
leading Regge trajectory in the I, channel. Thus, a
nonsingular reduced residue 6 would imply a vanishing
contribution of the trajectory near a=i and hence a
vanishing cross section as v —+ ~. On the other hand,
if the coefficient b(t) has a pole at n(t)=1, then the
total cross section would be 6nite as v —+ . This is
precisely the behavior which is predicted by our models.

4 R. F. Dashen and M. Gell-Mann, in Proceedings of the Coral
Gables Conference on Symmetry Princip/es at FIigh Energy (W. H.
Freeman. and Company, San Francisco, 1966), and S. Fubini,
Nuovo Cimento 4B, 1 (1966).

II. KINEMATIC PRRLIMINARIES

The Compton amplitude T„„can be expressed in
terms of two invariant amplitudes: y(qi)+h(pi) ~
V(q2)+t (P2).

T„„=Ti(P„P„qi.q2 v(qi„P„+q2„P—V)+ v'ov„)

+T2(5„„q2.qi qi„q2„) ) (2.—1)
where

P„=,'(Pi+P2) and-v = (s—I)/4.
The forward Compton amplitude is obviously

(where we have included the crossed diagrams), whereas
that of Fig. 1(b) will be

Pa(b) —
bp T „(&)(s t) (3.2)

Thus, the diagrams of Fig. 1(b) do not contribute to
the I=1 amplitude of the t channel, whereas those of
Fig. 1(a) contribute to both I=1 and I=O in the t
channel.

We now recall the Dashen —Gell-Mann —Fubini sum
rule4:

q, q, ImTi (s,t)ds=g(t), (3.3)

n=e' 4x.
Thus, if we let

g(t) =1+ltf(t), (3.5)

where f(t) is in general nonsingular at t=O, we have

(mama) 2

ImT, ( &(s', t)ds'= f(t). (3 6)

Since f(t) is a vector form factor, it will have a pole
at the value of t corresponding to n (t) =1, where n
is a negative signature. trajectory.

We now notice two related and compensating de-
generacies of our model.

(a) The I=O part of ImT„„( & is equal to the I= 1

part. This is evident from the factorization of Eq. (3.1).

where g(t) is the form factor of the I= ', particle. Som-e

caution should be exercised in interpreting Eq. (3.3)
in the neighborhood of t=2q& F2=0. By current con-
servation, g(t) = 1. On the left-hand side, ImTi'(s, t) has
a kinematic pole at t= 0 due to the one-particle state:

ImTi('& (s,t) =4e'8 (s—2)2)r')/qt q2+nonsingular

continuum contributions, (3.4)
where
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Therefore, the same sum rule Eq. (3.6) holds for the
I=O part of the absorptive amplitude.

(b) The theory is so degenerate that the I=O
trajectories concide with the I=1 trajectories. Note
that the I=0 trajectories have even signature and the
I= 1 trajectories have odd signature. This is because 6
is + for the two I=1 photons, so that C=(—1)
= (—1)~ for the neutral KK state.

Putting (a) and (b) together, we find that the
asymptotic form of the I=O absorptive part, in order
to give the n= 1 pole of the form factor, must be

Ti Eq. (2.3) by

Tg i i(s,~)=qi q2 pP sin 0~ Ti;, (4.2)

Ti;&+& (s,t) = Q (2J+1)Pg"(s,)b&+ (J,t) (2p, q)
' (4 3)

J=2

p; and gg being the c.m. final momenta and scattering
angle in the t channel. Since we will be working only
with the helicity amplitude a; i i(J,t), we will drop
the photon indices 1, —1 in all of the following. The
even-signature amplitude T~ +~ is free of kinematic
singularities in s, and has the partial-wave expansion

with a P (t) which is not zero as n (t) ~ 1 (where n is the
leading even signature trajectory).

Thus, the total photon cross section will be finite
as s~ ~, in the absence of accidental vanishing of a
coupling constant.

where

s~= cos|I g

IV. FIXED POLES IN WEAK PROCESSES

General Considerations

The model we have just considered is so degenerate
that it is probably not totally convincing. We have
presented it here only because it is transparent. Next
we will consider a model that satisfies unitarity in some
limited region and permits Regge behavior for the
hadronic processes. We will then show that when the
corresponding approximation is made in the weak and
electromagnetic processes and unitarized with respect
to the hadrons that fixed poles and Regge behavior will

both emerge. s

The approximation will consist of keeping a Gnite
number of two-particle channels in the unitarity con-
dition for the hadrons. We will label the various two-
hadron states AA by i, and the particular weak. channel
we will study is yy. We will use the unitarity in the t

channel (y7 ~ AA), (AA ~BB),etc., where AA is one

of the hadronic states with the same quantum numbers
as two photons or any other weak channel under con-
sideration. Consequently, we will discuss the Regge
poles of the crossed channel (yy~AA) and their
corresponding contribution to the high-energy behavior
of the Compton amplitude (yA —+yA). The hadron
A is spinless in all that follows.

Since unitarity is expressed most simply in terms of
the partial-wave amplitude, we define the partial-wave
amplitude in the t channel, a;, for the process yy ~ AA

by

and q=(at)'I', q being the photon momentum. The
physical amplitude is given by T(s,t) = T+(s,t)+ T+(N, t).

For our purposes the amplitude b&+&(J,&!) is defined
for large real J by the Froissart-Gribov formula.

The analytic structure of the amplitude b, &+&(J,f) in
the t plane is the normal right- and left-hand cut.

In our approximation the unitarity condition for the
amplitude b &+&(J,t), is for real J, and t above the
threshold for all open channels

Imb;&+& (J,t) =P I m, &+'& (J,t) j*p&, (t)b&, &+& (J,t), (4.4)

where m;&, &+&(J,t) is the even-signature partial-wave
amplitude for the many-channel hadron processes.
In Eq. (4.4), k runs over all open channels.

The corresponding quadratic unitarity condition for
m+(J, t) would be given by

Imm;, &+& (J,t) =P t
m&„&+&j*pi(t)m&„&+&(J,t), (4.5)

where

p~(&) =
(2pi') gt

Again the analytic structure of the partial-wave ampli-
tude m&+&(J,&!) is the usual right- and left-hand cut.
A solution for the unitarity condition Eq. (4.5) can be
written

where the helicity-two amplitude T» for 2p~AA
is related to the coefficient of the gauge-invariant tensor

See Ref. 8, where it is shown that it is possible for fixed poles
to exist in hadron processes in the presence of third double-spectral
functions.

where N has the left-hand cut and D the right-hand
cut. The phase of the determinant of D in the region of
one open channel t;„,i&t&t, i is b, i, the elastic-scatter-
ing phase shift. The D matrix which contains only the
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right-hand cut can be written

FxG. 2. Born
diagrams.

The Born term v; will have 6xed poles at the nonsense
values of angular momentum through the Q function in
Eq. (4.3). Note that the fixed poles will generally occur
in the amplitude in a multiplicative way, since they
are poles of the p, function. In the vicinity of the 6xed
pole for the Compton case, where the 6rst nonsense
value is J=i,

dt'u;t&+& (J,t')t;(t')
D;;(J,t) =b;t-

er t' —t
(4.7)

We have chosen to normalize the D matrix to 1 at
t ~ ~ in analogy with potential theory. Similarly, a
solution of the weak unitarity Eq. (4.4) can be written

b"+'(J t) =z ED '(J t)O'R (J t) (4.8)

where again g is the corresponding numerator function
for the weak amplitude having a left-hand cut only.
That Eq. (4.8) is the solution of Eq. (4.4) can be checked
immediately. We take the imaginary part of Eq. (4.8):

b,.(+&(J t) '-' (J—1)D(J,t)
(4.12)

The arguments produced here will give 6xed J poles
at nonsense values in all weak amplitudes at both cor-
rect and wrong signature points. The current algebra
case is an example of an amplitude with a 6xed pole at
a correct signature nonsense point. ' The main reason
that the 6xed poles are possible is the linear unitarity
relation Eq. (4.4); the argument does not depend upon
any results from current algebra. Note that the residue
of the Regge pole in Eq. (4.12) will be singular. Such a
singularity will not acct the factorization theorem of
Regge residues.

Imb &+& = (ImD-')t1 . (4.9) Some Particular Features of Comyton Scattering

1mb&+&= (Irr&m)N
—'g=m+pmN-'g.

We remind the reader that the even-signature
amplitude Ti, ~+&(s,t) may have a kinematic pole atUsing Kqs. 4.6 and 4.5 in the matrix form of

Eq. 4.9, we have t=0 because of the one-particle intermediate state
Ãq (34)3:

Again using Eq. (4.6) we obtain finally

Imb&+& =m+pb, (4.10)

8e 1 1
Ti;&+& (s,t) = +-

t m —s

ImTi;(s', t)ds'

s —s
(4.13)

which is the result to be proved. Next we use the fact
that the Regge poles emerge through the right-hand
cut, and the positions of the Regge trajectories are
given by the condition Bet(D) =0.

In Eqs. (4.6) and (4.7) if we encounter any fixed
poles in the E function (which we in general do, since
E has the fixed poles of the potential at nonsense values
of J), the D matrix turns the fixed poles into moving
Regge poles. As is well known, the Regge poles are
asymptotic to the 6xed poles at t= ~. The strong
unitarity does not permit any fixed poles in the
amplitude.

In contrast, if g; develops a fixed pole at a nonsense
value of the angular momentum, the D matrix, which
is determined entirely by the strong interactions, will
not remove the 6xed poles of g;. The g function will, in
general, have the 6xed poles of the Born diagrams
(Fig. 2). In particular, if we ask that the amplitude b;
have the left-hand discontinuity of the Born term e;, the
y; function is then given by

~'f(J, t) =t '(J,t)

«&'(J,t)t'(t)Lt (t)—~ (t)j
(4.11)

The second term in Eq. (4.13) is the nonsingular con-
tinuum contribution, and e, is the charge of the par-
ticular hadron in question &e and 0. The partial-wave
amplitude t&; corresponding to the Born term )Eq.
(4.13)] is given by projecting into the helicity ampli-
tudes, Eqs. (4.1) and (4.2).

1 (1) q
1/2 4&.2

t "+'(J,t) =
~

—~QJ—2
~

(4 14)
(2p;q)' 'k~) t—4t-tt;2) t

All other contributions are less singular at t=0.
We can now construct a solution with the following

properties.
(a) b, (J,t) is analytic in the t plane with the right-

hand cut starting at the lowest threshold and the left-
hand cut of the Born term. '

(b) The discontinuity across the right-hand cut is
given by Eq. (4.4).

(c) b, (J,t) —+t&,(J,t) at t=0
' The Born term can be rewritten

Qm. r'(J—1), ~1 J J—1 ~ 1 t—4»t'
2~ 'r (J+-,') t 2' 2 ' 2' t

where F21 is the usual hypergeometric function since the hyper-
geometric function analytic in the cut plane between —1 and—~, the Born term has only the left-hand cgt between Q an/ —~,
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The solution can be written in general

b"+'(J,t) =Z LD '(J,t)l's

where

4e s R(J t)
b;i+& (J,t) =

~(J—1)t D(J,t)
(4.19)

R;(J,O) =D(J,O),
' Equation (4.16) is a solution of a well-known integral equa-

tion of the Omnes-Muskhelishvilli type. R. Omnes, Nuovo
Cimento 8, 316 (1958); N. I. Muskhelishivilli, Sirrgllar IrItegral
Eqmafiols (Erwin P. Noordhoff, N. V. Groningen, Netherlands,
1953).

X[Ds/(J, O)et&+&(J,t)+l;i+&(J,t)], (4.15)

where l;&+&(J,t) contains additional contributions from
the left-hand cut. These additional contributions will
also be singular at J=1 but without the pole at t=0 of
the Born term.

[If by some miracle it should suflice to consider only
one strongly interacting channel and t', were negligible,
the solution would be

b &+'(J,t) = t&&+& (J,t)D(J,O)/D(J, t), (4.16)

where D(J,t) is the single-channel D function. ' Equation
(4.16) can be written in the neighborhood of rr(t) =1
and J=1 as

1 4e' [J—n(0)](t)D/aJ) J= (p&
b&+& (J,t)= (4.17)

s. (J—1)t [J n(t)](/l—D/r)J) g .(,&

An inspection of Eq. (4.17) shows that the fixed pole
will be cancelled for o.(0)=1,I=0 and will be present for
n(0)/1 1=1 and 2. In this approximation the I=O
even signature Compton amplitude will satisfy a super-
convergence relation for t(0. By the standard argu-
ments of Regge theory, Eqs. (4.1/), (4.3), and (2.3)
yield the following result for the contribution of the
Pomeranchuk Regge trajectory to the total photo-
absorption cross section:

Sx'
o r—— rr'(0) P I's+-s, I(I+1)] (4.18)

137

for a target of hypercharge F and isotopic spin I. The
nonsense factor of Pz" [Eq. (4.3)]in this approximation
is cancelled by the 1/t in the residue Eq. (4.1'/). Either
additional right-hand- or left-hand-cut contributions
will invalidate Eq. (4.18).

In general, the Porneranchuk Regge trajectory with
a(0) =1 will be restored in Eq. (4.15) by the multi-
plicative fixed pole which produces a singular residue
at t=0. This mechanism is indistinguishable from the
singular residue arising directly from the 1/t in the
Born term. We may see this in the following way. We
write for b;&+&(J,t)

and therefore, to 6rst order in t

4e s D(J,O)+tR (J,O)
(4.20)

D(J,t)
b,.(+& (J t)—

~(J—1)t

If n(0) =1, then, since D(J, t) J rr(t)—, D(J,O)

(J—1) and the fixed pole is cancelled in the first
term of Fq. (4.20). If R (J,O) happens to be zero, we
then obtain the magic result of Eq. (4.18). If n(0) N1,
i.e., for an I= 2 channel, then the fixed pole cannot be
cancelled. Finally, it is clear that both terms in Kq.
(4.20) contribute indistinguishably to the forward
Compton amplitude; the 1/t in the first term producing
a singular Regge residue without the help of the fixed
pole, and the second term producing the singular residue
by means of the ftxed pole. ]

Although we have used unitarity including only two-
particle channels with the neglect of three-particle and
higher states, we do not feel that the existence of the
fixed pole depends upon this approximation.

It has been proven independently that inelastic
unitarity' allows for fixed poles in hadronic amplitudes
at nonsense wrong-signature points. These fixed poles
are a consequence of the Mandelstam third double-
spectral functions. Of course, they will also be present
in the rt function. Eq. (4.11) In the presence of third
double-spectral functions both fixed poles will be
present, and without more detailed knowledge of the
relative size of these contributions, it is diKcult to
estimate their cumulative eBects. The fixed poles found
in this section will remain even in the absence of third
double-spectral functions, at both correct and in-
correct signature points.
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V. CONCLUSIONS

We have shown that there will be fixed poles in weak.
amplitudes at nonsense points of both signatures.
The fixed poles were proven first in a model that related
this process to the scattering of virtual charged photons,
using the current algebra. Next it was shown that the
linear unitarity relation satisfied by weak amplitudes
does not provide a mechanism for the poles found in
lowest-order perturbation theory to disappear.


