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High-Energy Interactions and a Multi-Regge-Pole Hypothesis
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It is assumed that in certain well-de6ned kinematic regions, production amplitudes may be described as
due to the exchange of a number of Regge poles, and formulas are given expressing the amplitude in terms
of the permitted trajectories. Experimental tests and consequences of the hypothesis are discussed. Tests
should be possible at present accelerator energies. The hypothesis leads to strong damping of production
cross sections in the invariant momentum tr'ansfers, and therefore could serve as the basis for the assump-
tions of a previous paper.

'N the previous paper, we have explored the eon-
' ~ clusions which can be drawn about high-energy
processes from the assumption that certain invariant
momentum transfers remain small as the energy in the
reaction increases. Here, we should like to investigate
the consequences of the more stringent assumption that

Regge behavior results whenever any or all of the
crossed cosines associated with these momentum trans-
fers becomes large.

We shall use the notation of the previous paper. In
terms of the variables defined there, a natural set of
crossed cosines can be defined by the equation

—2st;—t '+ (si+s,'+rrt'+rrt") t; (s,—rtt') (—s —trt")
gti
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The grouping of particles associated with this choice is illustrated in Fig. 1(a). Other sets of cosines can also be
used. For example, corresponding to the breakup shown in Fig. 1(b), we may define
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Many other choices are evidently possible. However,
as we shall make clear below, the Regge asymptotic
behavior associated with each leg will turn out to be
independent of which choice of cosines we make.

I.et us next make our "multi-Regge-pole" assumption
more precise. To begin with, we shall discuss the case
m=3. The amplitude is a function of five variables,
which we may choose to be s, t1, t2, s&, and s1'. Now we
Inay eliminate s& and s1' in favor of xt, and xt, . In the
physical region for the t1 channel, we may write a
partial-wave expansion:

2 ($1tl)t2)sttt&ts) 2 A tt ($)tl)ts)its)+tt (&tt) t
~1

and then repeat this for the physical region of the t2

channel. Thus,

2 (Sttlqts)Stt)&ts) 2 2 lttt($)tl)ts)Pit(Stt)+4(&ts) . (4)

That c4 $1$g should have these poles is plausible through
unitarity, which relates the three-particle amplitude to
the two-particle one. That the poles should also be the
leading singularities is not so plausible; nevertheless,
we assume it.

We now let s —& ~ and look in such a kinematic region
that —xt, and —xt, ~~ as well. We would then expect

P($)tbts)~i(ti)~s(ts)( —& )"'""(—&t )"'"' (~)

where 8;(t;)= (1&e ' *'"'&)/F(1+n, (t.)) sinsrn, (t,).Our
final assumption is that P becomes independent of s for
large s. The asymptotic form may then be visualized as
in Fig. 2, where two Regge poles are exchanged. '

The generalization of these assumptions to the
general case of e final particles is obvious. Under the
appropriate kinematic conditions, we may expect

The numbers l1 and l2 are the actual total orbital
angular momenta of the t1 and t2 channels, respectively.

Now we assume that 3&,&, has an analytic continua-
tion in both li and ls, and that the only singularities (or
at least the singularities furthest to the right) in li and
ls are the same poles at li=ni(ti) and ls ——ns(ts) that
would be allowed in the same channels of two-body
processes.

What is the kinematic situation which gives rise to all
'After completion of this work, we received CERN Report

Th 719 (unpublished) by H. Chan, K. Kajantie, and G. Ramft on
the Reggeization of the three-particle amplitude. In this paper we
found a reference to an earlier work by K. A. Ter-Martirosyan,
Nucl. Phys. 68, 591 (1965) on the Reggeization of the n-particle
amplitude. There is also a paper by T. W. B.Kibble, Phys. Rev.
131, 2282 {1963)which makes remarks similar to some of those at
the beginning of this paper.
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I'xG. 3. A simple example of
3-particle Reggeization.
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FIG. 1.Two possible groupings of the 6nal-state particles leading where all crossed cosines are large- —is that
to two different sets of crossed cosines.

P(t . t —)II &'(t') (s/s's'') *"*' (11)

FIG. 2. Double-Regge-pole
exchange. t2

Pl

From the pictorial representation of this form, it is
plausible to conjecture that the coeKcient P can be
factored. We should expect to be able to write

—x&,. —+~? It has already been outlined in the previous
paper. If we says. ; is finite butch, —&~, and iP Q; P —& 1
for i=1 u, while Q,"P~ —1 for i=a+1 e, then
it is easy to deduce that

~~))~2)& . ))~., ~ )&~ ~&) ))co.+~,

P(ti . t. 1)=J3,(t,)P1(ti, t,) . ~

~ —1(t -»t —1)J3 (t —1) (12)

Before we discuss tests of the multi-Regge hypothesis,
it Inight be best to review' the most characteristic
features of two-body Reggeization. There we find.

and
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i=a+1, 11—1.
(7)

(1) diffraction peak shrinkage, as in 1r p —& ir'm

Or m
—

p ~ rt11; (13)
(2) coupling zeros, as in 1r p -+ m.oe;

(3) signature zeros, as in 1r+P —+Pm+.

Since gs=&oi+ +~„, we find ~ai, cu„-',gs. Con-
sequently, we have

n—1

II (-x,) s.
i=1

—x, ,-~a;/(v;+1, etc., (1O)

exactly as in Eq. (7).
The unambiguous answer for the fully Reggeized

amplitude —i.e., the amplitude in the kinematic region

If the kinematics are such that not all —x&,. grow, it
is nevertheless true that for those which do become
large, we have

—x(;~s/sisi . (9)

A similar Regge-like limit could be obtained by using
any of the alternative sets of crossed cosines mentioned
previously. However, as long as the t; are all fixed, the
same limit is obtained whichever set is used. For
example, under the conditions outlined above,

;.'. =(Q.+Q ) --,/-;, .+-,, /-„
Sa, a+1 (Qa+Qa+1) ~aiaa+1 q

so that we get

As an example of what might be done to observe
three-particle Regge behavior LEq. (S)$, consider
1r P —+ m'p 6+ as shown in Fig. 3. We could look for a
coupling zero at the 6+pp vertex by changing ti while
searching for a t2 di6raction peak. shrinkage by varying
s&,3. For a general n-body process, observation of any
of the three characteristics simultaneously operating at
each Regge leg would provide a sensitive test of the
theory. Note that the particles participating in the
reaction should be chosen to minimize the number of
allowed trajectory exchanges. In addition, there is
enough suspicion that the Pomeranchuk trajectory may
not be a Regge pole of the usual type to make it
desirable to look for processes with no Pomeranchuk
trajectory exchange.

However, if we are willing to accept the Pomeranchuk.
trajectory as just another Regge pole, with a finite slope
and rather normal properties, then not only can we be
less Gnicky about which production processes we study
in the laboratory, but we can also say a few things about
cosmic-ray experiments. To see what kind of conclusions
can be drawn, let us turn next to the calculation of cross
sections for n-particle production. Our starting point
will be the expression

40 1

dt 16m'

Lsi' —2si(m'+t)+ (m' —t)'g"'Lsi" —2si'(m"+t)+ (m"—t)'J"
8$1 lE$1 0 1(slyt)X&1 ($1 ~t) (1&)

s' —2s (m'+ m")+ (m' —m") '

' V denotes a unit vector in the direction V.
3 S. Frautschi, Phys. Rev. Letters 17, 722 (1966).



1328 F. ZACHARIASEN AN 0 G. Z~E I 6

St s I

I
I F?G. 4. Factorization of the

production process.
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FIG. 5. Recursion diagram

llsc(1 to compllte ttlr/tttl ' ' 'ttt I
from tttt/dtt d.t

YVe And, for large s,

do (&)

dt~ ~ dt„~

/sr' —2sr(2)2'+t 2)+ (tt2' —tn 2)')"'
dsy—

$2

d~(n —j.)

This equation is represented graphically in Fig. 4. We
think of breaking the entire process into two parts, con-
nected by some sort of exchange (denoted X).0; is the
total cross section for p+X-+ the first group of final-
state particles and 02' in the corresponding cross section
for p'+X. sr and sr' are the two total c.m. energies
squared at which the cross sections 0-~ and 0-~' are
evaluated; in addition, (rr and 02' depend on the mass t
of the exchanged object.

The region of integration in s~ and s~ is rather com-
plicated, and we shall not go into it further here.

We can use Eq. (14) to relate the differential cross
section d(r(")/dtr dt„r for production of 22 particles
to the cross section for n —1 particles, by choosing

according as sr/s() is greater than or smaller than so. In
the first of these we use the (known) asymptotic form of
do ( ')/dtr dt„2 and replace [sr2 —2s((ttt'+t„r)
+ (t)22 —t„r)2$'t' by s&. In the second, the s dependence
comes only from the factors 1/s2 and X and is explicitly
given. As a result, we 6nd

dg (&& n-x

as s —&~, all t's Gxed.
We thus And a sum of contributions from each of the

Regge poles which can be exchanged between pairs of
Anal particles. It is important to remember that this is
for a particular ordering of the final particles as ex-
pressed by the particular set of t; we use. A different
ordering —that is, a different set of t;—would, of course,
allow a different set of Regge poles in general. The
contrast between Eq. (19),which gives the cross section
as a sum of Regge-pole contributions, and Eq. (11),
which gives the amplitude as a product of the same
Regge poles, is quite striking.

In the two-body case, the total cross section is usually
estimated by integrating (18) over a finite range of t:

The range of integration in Eq. (16) is, in general, a
bit messy. For the case of equal masses for all particles,
we have, when s is large, const. (s~(s and —s(t„~

2~2( 0
Iet us now assume that X represents a Regge

exchange. We should then expect

( & )2nn —2 (tn t)—
&n—1/ )

where o,„& is the trajectory appropriate to connecting
the nth Gnal particle to the erst e—1 particles. The
coniguration is shown in Fig. 5.

Now, as s —+~ and t j is held Axed, we have
—xt, s/s&. Therefore, in Eq. (16), we shall choose

(S/Sr)2nn —1(tn—1)

Any additional factors depending on t„& can be
absorbed in the function f. We assume the only sr de-
pendence to be that explicitly written down.

For the case e= 2 we know the asymptotic behavior
as s —+~, t Axed, is

dn")/dtr ~P(tr) (s/so)'nt('t) ' (1g)

if the Regge-pole approach is assumed. This fact and
Eq. (16) allow us to calculate do'(n)/dt& . .dt„r. The
integral on s& may be broken up into two integrals

tr(»(s) = dt(P(t, )(s/s, )2nt(tt) —2

=F(0)(s/s())'"'") '/2nr'(0) ln(s/s()) . (20)

We may do the same thing for n particles, and we obtain

0 "'(s)=P F; " (0)(s/so)' ' —'/2n (0) ln(s/so). (21)

ar(s) = g tr(")(s) const, (23)

which, of course, is consistent with the optical theorem.

The largest n;(0) will, of course, dominate this sum. Let
us assume this to be the Pomeranchuk trajectory. Then
we expect

0'") (s) const/lns. (22)

Insofar as we believe the constant to be independent or
only weakly dependent on e, we deduce that the total
cross sections for producing n particles all behave com-
parably, and all behave like 1/lns. Furthermore, as we
saw in the previous paper, the condition t; bounded
forced the maximum allowable number of particles at
a given s to be like lns. The total cross section is
therefore a constant,

«les
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In the same way, the average number of particles is
- lne

(rt) = P No & "&(s)/as (s) lns . (24)
7L~2

We also deduce that the ratio o &"'(s)/o &"'&(s), that is,
the ratio of the probability to produce e particles to
that to produce e' particles, is independent of s.

The basic ingredient in both (23) and (24) is the
assumption that we can neglect all kinematic regions
in which any t; is large. Without this restriction, the
maximum number of particles allowed at a given s
might be expected to be as much as

= (v')/,

where p, is the average rest mass of the particle in the
anal state.

The principal conclusions to be drawn about the
multi-Regge-pole hypothesis then are (1) It is internally
consistent. (2) It is best tested by looking for diffrac-
tion-peak shrinkage and dips in the differential cross
section. (3) If the Pomeranchuk trajectory is a Regge
pole, then at ultra-high energies, the particle multi-
plicity grows like Ins, and the cross section to produce I
particles falls like 1/ina.

One of the authors (G.Z.) would like to thank G.
Jones, B. Sherwood, and A. Tollestrup for many
interesting discussions.
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We show that the presence of a fixed pole at J=1 in the process y+y ~ h+6 reinstates the coupling
of the 7-p state to the vacuum trajectory, and hence permits a 6nite total photon cross section as s —+ ~.

I. INTRODUCTION
' t'T has been observed by Abarbanel and Nussinov'

- and Mur' that in a naive Regge-pole model, the
Pomeranchuk Regge trajectory with n(0) =1 does not
contribute to the forward nonhelicity-Qip Compton
amplitude. Hence, by the optical theorem the total
photoabsorption cross section will go to zero as E~ ~.
Ke will show that as a consequence of the linear uni-
tarity (more precisely, the absence of bilinear unitarity)
for processes to low order in the weak and electromag-
netic interactions there exist fixed poles at nonsense
values of the angular momentum. The fixed pole in
the angular-momentum variable J will exist together
with the Regge pole (if it exists) in a multiplicative

*Work supported by the U. S. Air Force OfBce of Research,
Air Research and Development Command, under contract
AF49(638)-1545.

1' This work is supported in part through funds provided by the
U. S.Atomic Energy Commission under contract At (30-1}-2098.

f, Present address: Physics Department, Rockefeller University,
New York.
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2 V. D. Mur, Zh. Eksperim. i Teor. Fix. 44, 2173 (1963);45, 1051

(1964) (English transls. : Soviet Phys. —JETP 17, 1438 (1963);
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fashion. In particular, there is a fixed pole in the
Compton amplitude at the point 1=1, the first non-
sense wrong signature point for the relevant partial-
wave amplitude for the crossed channel. The fixed
pole at 7= 1 will not contribute to the physical scat-
tering amplitude, but will contribute in such a manner
as to restore the contribution of the Pomeranchuk
trajectory to the forward nonhelicity-Qip Compton
amplitude.

Section II is devoted to some kinematic preliminaries
for the Compton amplitude. In Sec. III the fixed pole
in the Compton case will be derived for the same model
which produces a fixed pole in the current commutator
case.' In Sec. IV we will show the existence of fixed
poles in general as a consequence of the unitarity of
lowest-order weak and electromagnetic processes.
Finally, Sec. V will be devoted to conclusions and
speculations.

All of our remarks on Compton scattering will be

e J.B.Bronzan, I. S. Gerstein. B.W. Lee, and F. E.Low, Phys.
Rev. Letters 18, 32 (1967); and V. Singh, sbuf. 18, 36 (1967).
See also J. B. Bronzen, I. S. Gerstein, B. W. Lee, and F.E.Low,
Phys. Rev. (to be published).


