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The discussion of spin dependence at high energy is extended to the case of zero-mass particles. Crossing
relations for zero-mass particles are derived, showing that the helicity of massless particles is simply reversed
under crossing. These are used by way of a Pomeranchuk-Martin —type theorem to obtain restrictions on the
high-energy spin dependence. The problem of fixed poles in the angular-momentum plane and the coupling
of the Pomeranchuk trajectory to photons is discussed. It is shown that if there are no fixed poles at positive
integers for any Compton amplitude, one obtains the (presumably ridiculous) result that the asymptotic
total cross section for photons on any particle is proportional to the square of its charge. An approximate
dynamical calculation is given which relates the coupling of photons to the Pomeranchuk trajectory with
the derivative of the trajectory at t=o. This yields a prediction for the high-energy total cross section of
photons on protons which is consistent with present data. The convergence of the Drell-Hearn sum rule is
discussed; it is argued that even with cuts in the angular momentum, the sum rule will converge. Certain
sum rules of Beg and of Pagels and Harari are discussed brieQy.

I. INTRODUCTION

'HIS paper, second in a series' dealing with spin
dependence of high-energy scattering, is con-

cerned with the special problems when one of the
particles is massless. In particular, we are concerned
with photon processes.

In Sec. II, it is shown how the derivation of crossing
relations for helicity amplitudes Inust be modified to
cover the zero-mass case. The result is simple: The
helicity of massless particles is Ripped, on crossing.
Section III gives an easy application of these relations to
obtain restrictions on the asymptotic spin d,epend, ence
by Pomeranchuk-Martin —type arguments.

Section IV is devoted to the question of fixed poles in
the angular-momentum plane for photon processes, and,

the relation of these to high-energy scattering is ob-
tained. It is shown that, contrary to the belief of some
authors, the Pomeranchuk trajectory very naturally
couples to photons and. contributes to their total cross
sections. An approximate dynamical calculation is
given which relates the coupling of photons to the
Pomeranchuk trajectory to the derivative of the tra-
jectory function n(t) at f = 0. This yields a prediction for
the high-energy total cross section of photons on
nucleons which is consistent with present data.

Section V is concerned with the convergence of the
Drell-Hearn sum rule. It is argued that even though the
Pomeranchuk trajectory can couple to photons, along
with its associated cuts, the Drell-Hearn sum rule will
converge. The rate of convergence depends on the
strength of the cuts. Certain sum rules of Beg and of
Pagels and, Harari are discussed brieRy.

*Work performed under the auspices of the U.S. Atomic Energy
Commission.

' A. H. Mueller and T. L. Trueman, Phys. Rev. 160, 1296 (1967)
(preceding paper, hereinafter referred to as I).

II. CROSSING RELATIONS FOR
ZERO-MASS PARTICLES

b— 0
0

-1.
(2.1)

' T. L. Trueman and G. C, Wick, Ann. Phys. (N. Y.) 26, 322
(~964).

The derivation of the crossing relation for helicity
amplitudes' does not apply directly to zero-mass par-
ticles. The reason for this is the path of continuation
chosen there. Recall that in continuing p~ —P the
path was chosen so that + (Ps' —m')'" —+ + (Ps' —trP)' '
and 0, p ~ s-—0", ~+C. (0, y are polar angles of p, 0", C

of P.) The absence of a branch point in the relation
between

~ p ~

and ps in the zero-mass case means there is
no such path here. Thus the continuation must result in

~p~
—+ —)P), 0, q ~ 0~, C. {One could just as well have

chosen this path for massive particles. The resulting
relation between general helicity amplitudes LEq. (31)
of Ref. 27 would then be different. However, one must
keep in mind that the equation relating the general
helicity amplitude to the center-of-mass helicity ampli-
tudes LEq. (20) of Ref. 27 must also be continued along
this path. The resulting equation relating the two sets of
center-of-mass helicity amplitud. es is exactly the same as
obtained in Ref. 2 LEqs. (39) and (41)7, as it must for
consistency. }

We outline below the derivation as modified for the
zero-mass case. The result can be obtained from the
formulas of Ref. 2 by setting the mass equal to zero for
s/0, t&0 (as must be the case since there should be no
significant difference between m=0 and, ms&0 but

Introduce the basic helicity state for a zero-mass
particle which has four-momentum b:
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and, define Zs(p) by

0 0
Zo(p) 0 0 (2 2)

P2

k', p

Following Jacob and Wick, ' we define the helicity states
for general p by

I p, ) )=H, (p) Ib, ) ), (2.3a)

HD(p) =R.(v)R.(e)R.(—9)Zo(p) (2 3b)

where R, (n) denotes a rotation through the angle n
about the i axis. Under the arbitrary Lorentz trans-
formation I. the helicity state undergoes a rotation
r(L,p) given by'

FIG. 1. The processes described by the amplitudes of
Eqs. (2.7) and (2.8).

For the same reason, it is not possible to conclud. e that
pz is independent of X. However, if parity is conserved,
then rti, = rt z and (2.10) is independent of helicity. Thus
the crossing property for zero-mass particles is very
simple: the helicity is reversed. This agrees with the
well-known property of photons.

Since
r(L,p) =H p '(Lp)LHp(p) . (2 4)

III. POMERANCHUX THEOREM
—llP+(1/P)j 0

0
0 0

.—-', I:P—(1lP)j 0
= —Zs(P)R, (ir),

Zp( —P) =

and since 8, q ~ 0, 4 we have

0 —sLP —(llP) j
0 0
1 0

—ll:P+ (1/P)].
(2.S)

r(L; —P)=R, '(tr)r(L; P)R, (~). (2.6)

Fg(ps, k; pi, q) =p„n„i,*Lr(L; k)j
XF„(Lps,Lk; LpilLq), (2.7)

Gi, (p&,
—pi, q,

—k) =p„n „, i,*Lr(L; k)$
&(G„(Lps, Lps,' Lq, —Lk) . (2.8—)

For simplicity, consider the crossed processes shown
in Fig. 1 which involve three spinless particles and one
massless particle with spin. The spinning particle is
crossed in going from one process to the other. From
invariance under Lorentz transformations and Eq. (6)
we have

The crossing relations plus a few standard assump-
tions can be used to obtain restrictions on the spin
dependence when the massless particle is its own
antiparticle. Since this is surely academic except for
photons, we shaB call the particles photons, although
the derivation obviously does not depend on the spin of
the particle. Thus, if we cross the two photons, whose
helicity we denote by n~ and 0.2, we obtain

Gi,...., i„., (s,t) =wGg. , ..g. , ..(N, t). (3.1)

The 'A's denote the helicities of the two uncrossed,
particles which are not changed, in the crossing.

By following Martin, ' we may easily construct a
generalization of the Pomeranchuk theorem. One as-
sumes the diagonal amplitude Gi„, q, ,(s,0)—=Gq, ,(s,0)
is analytic in s except along the real axis and, over some
finite region like the Bros, Epstein, and Glaser region.
With the ad.d,itional assumptions:

(1) Gi„,(s,0) (C(e)e't'~,

We are thus led. to id,entify

F~(ps, k; pi, q)=G-~(ps, —pi, q,
—k) (2 9)

IG...,(,o) I

(2) lim =0,
s lns

up to a phase. I Equations (2.6)—(2.9) hold also in the
massive case when this alternative path of continuation
is used. ] Since the helicity of the zero-mass particle is
invariant und. er Lorentz transformations, the same
relation must hold between center-of-mass amplitudes:

Fi, (s,t) =rti,G i, (s,t). (2.10)

' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
4 G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).Strictly speaking

r(J; p) is not a rotation but an element of the little group of the
vector b. On the helicity state (b,)) only the rotation about the
s axis is effective; the other generators of the little group annihilate

~
b, X). See, for example, S. S. Schweber, Relativistic Quantum Fiefd

Theory (Row, Peterson and Company, Evanston, Illinois, 1961),
p. 52. We wish to thank Dr. J. H. Lowenstein for a useful com-
munication regarding this and for pointing out an error in the
matrix Zv( —P) in Eq. (2.5) in an early draft of this paper.

(3) lim Im(1/s)LGi„, (s,0)—Gi„, , (—s, 0)$ exists,

lim(1/s) ImLG&„, (s,0)—Gi„,(—s, 0)j=0. (3.2)

The first is the familiar temperedness condition; (2) is
stronger than the Froissart bound, , but is necessary for
the result (3.2); (3) is needed to avoid cancellation
through oscillation as s —+~.

' A. Martin, iXuovo Cimento 39, 704 (1965).' S. Bros, H. Epstein, and V. Glaser, Commun. Math. Phys. 1,
240 (1965). Note that the proof of crossing given here does not
apply to zero-mass particles and so must be considered as an
additional assumption.
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Now for large s, u ~ (—s) and so we have

lim —Im [Gg, , (s,0)—Gg, , , (u, O)]

invariants as"

where
5„„=A (s,t)P„P„+

1
= lim —Im[Gq, , (s,0)WGq, ,(s,O)]

=0

P= s (pl+ps) ) s— (pl+kl) ) t= (p2 pt)

Pts=Pss= —ps, kts=kss=0.

(A is normalized such that if only I=0 in the t channel
contributes, then

The & in (3.1) is determined to be + since otherwise
both cross sections would be required to vanish. Hence.

(s—gt') IrnA (s,t)-
(r (s) = lim (-,')"' (4.1)

lim[og, ,(s)—og, , „,(s)]=0. (3 3)

The result (3.3) is of interest with regard to the
convergence of the Drell-Hearn sum rule. ~ It is, how-
ever, not quite sufFicient to guarantee that the sum rule
converge. See Sec. V for further discussion of this
question.

IV. FIKED POLES AND THE COUPLING GF
PHOTONS TG THE PGMERANCHUK

TRAJECTORY

From the crossing relation of Sec. II, it follows that
the total cross section for a photon on any target in-
volves helicity fIip of two units in the crossed channel;
1.e.~

G)„+,)„+(s,p) =Q d„,)„'(tr/2)d„, g, '(s/2)F„, „, p(s,0).

' S.D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908 (1966).' The question of the convergence of the Drell-Hearn sum rule
was originally called to our attention by Professor F. E. Low.

9 V. D. Mur, Zh. Eksperim. i Teor. Fiz. 44, 2173 (1963);45, 1051
(1963) LEnglish transls. : Soviet Phys. —JETP 17, 1458 (1963);
18, 727 (1964)g. See also C. H. Chan and T. K. Kuo
(unpublished); H. K. Shepard, Phys. Rev. 159, 1331 (1967);
H. Abarbanel and S. Nussinov, ibid. 158, 1462 (1967).

's S. Mandelstam and L.-L. Wang, Phys. Rev. 160, 1490 (1967),

Because the leading terms of ds „s(0~) vanish at J=1
[see Eqs. (3.9) and (3.10) of I] it appears as if the
Pomeranchult trajectory, with tr(0) =1, cannot con-
tribute to the total photon cross sections. This situation
and the difFiculties with it were first noticed by Mur. '
He realized that a fixed singularity of the partial-wave
amplitudes at J=1 would allow the Pomeranchuk
trajectory to contribute to the total cross section, but
assumed that unitarity ruled out such singularities. As
we now know, this is not the case' "and we must expect
the residue of the Pomeranchuk trajectory to be singular
at J=1.

In this section, the relationship between this singular
residue and a fixed pole at J=1 is discussed, and an
approximate calculation of the numerical value of high-
energy Compton scattering is given.

The amplitude for s (pt)+y(kt) ~ m. (ps)+y(ks) with
isotopic spin 0 in the t channel is written in terms of

where

X ds'Qs s+, (z') ImF+ (t,z')+F+ ~s(t),
ZP

I"+- ++
(1—z')

(', t gs')-—
A

and P~ is the Born term. De6ning Ji+ ~ by

F+ s(t) = prat —p']—'[stt(4tt —p )]—&s—»&sF

we And the explicit form

2e 4

F~ (t)= P Cs s~„(0,2,j)
[4t(4t g')]" "—".=o

st )2
[-', t (-', t—gt')]"') V3

4me'

s—p'+-,'t+ Qs s+r-
2[-',t (-,'t —p')]' ')

X ImA (t, s+is) . (4.2)

"S.Fubini, Nuovo Cimento 43, 476 (1966).

is the total cross section for y's on pions. The (—s')'gs is an
isotopic spin factor. ) The amplitude, F+ (s,t), for the
scattering of two photons, one of helicity +1 the other
of helicity —1, into two pions in an isotopic-spin-zero
state is given by

F, (s,t)= —(-', t—g s)-,'(1—s')A(s, t),
where

s gs'+ —,'t-
2[it�(-'t

—
g ')]'"

From Eq. (4.1) it is clear that ImA (s,t) goes to zero at
t=0 while ImF~ (s,t) remains finite at t=0.

The partial-wave amplitude is given by
I

F~ s(t)= ds dm—s(s)F~ (t,s).
2

Using Eq. (3.7) of I we obtain

2 4

F+ '(t) =- 2 G-.+~.(0,2,~)
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I The expression P~ o'C~ ~+„(0,2,J)P~ 2+„(s) is equal
to the C~o +(s) of Ref. 12.j

There are two sources of axed poles in F+ ~ at J= 1.
Due to the presence of a third double spectral function
F+ ~ must have a Axed pole at J= 1 for the same reason
as the strong-interaction amplitude discussed in I and in
Ref. 10. Also, since the photons are treated to lowest
order in e2, there will, in general, be axed poles even in
the absence of a third double spectral function.

Near J= 1 we ind from (4.2)

1 2e
F+-'(t) = (a)"' -2(a)"'

(J—1)"' J—1

ds ImA(t, s+ie) . (4.3)
4vre2

For t(0 the integral in (4.3) will converge. If n(t) is the
trajectory function for the Pomeranchuk trajectory and
if we write

01
(1+e %1I'll)

F~ ~ 5s (2o.+1)I~00 'E 2 sinn+ )

/
C +2(0,2,o.) (n —1)"Q

xI Ip(t)"", (4.6)

where C +2(0,2,o) (a—1)'/'=-,'(-', )'/2(n —1) near o(= 1.
Thus, the total high-energy cross section for the
scattering of photons off pions is given by

~P(o) d
(o), (o)=—(t)

v2 dt, 0

Now we would like to point out that if one is willing
to make some additional assumptions a very strong
result can be obtained, a particular case of which gives
the numerical value of p(0) in (4.7). If we use elastic
unitarity for the process yy ~ xw in the I=0 state we
can write the amplitude F+ as

Imd(t, s+ie) ~ (6)'"(n—1)P(t)s -'~

then

1
F.-'(t)

(J 1)1/2

2e' P(0) 2
(a)'/' (6)'/' +J—1 4e' (3)'/'

(4.4)

near J= 1 and near t=0 LWe have .chosen to write ImA
in this way in order to agree with the definition of p
in (4.5).)

In the absence of the f(xed pole, p(0) =0. However, as
we have argued in I, P(0) WO violates no general prin-
ciples and, furthermore, appears to follow in dynamical
models from the fact that the left baud cut con-tributiou

to F+ has a fixed pole at J= 1. With this in mind we
write

F+-'(t) = D~(t)P(t)
Dg (t)

/, (t')X, (t') f'(t')dt'

7r t'(t'-t)
(4.8)

The integral in (4.8) goes from 4p' to ~. (There is a
branch point in the t plane which moves with J and
which reaches t=0 at J=1." If we neglect the third
double spectral function, which we must do in order to
proceed further, this branch point is absent. ) E~ and
Dg are the continued numerator and denominator func-
tions for m7r scattering in an isotopic spin-zero state. The
factor t multiplying the integral in (4.8) guarantees the
behavior of F+ ~(t) near t=o which is required by (4.2).
f~(t) is the left-hand cut contribution to F+ ~(t). If we
now suppose that the Pomeranchuk trajectory appears
through a zero of Dg according to

D~(t) =/ (t)I:J—~(t)1,

then the p of (4.5) becomes

v(t) p(t)
F, ~(t)= ~ ~ ~ (4.5)

(J—1)'" J—1 J—n(t) J o/(t)— p(t) =
(t)—1j"' (t)

.-(o(t')~-(o (t')f-'" (t')
dt'.

t'(t' —t)

e2

f '"(t') ~ ——;42
(~ 1)1/s

(1—s')F~ (t,s)

near J=n(t), where P(t) is exPected to be nonzero at As t~o or equivalently as~~ 1

t=o Using the inve. rsion formula (4.5) of I we 6nd that
a pole of the type given above contributes to F+ as

(4.9)

//1+e —' gs(2++1—)PC +2(0,2,o() (o/ 1)"I—
4 2 sinsn )

X (-', t—//, ')L-', t(-,'t —/a') j -' 'P ~2(s)+

LWithout the neglect of the third double spectral func-
tion we would not have (4.9)."Thus, the neglect of the
third double spectral function appears to be essential. )

'3 S. Mandelstam, Nuovo Cimento 30, 1128 {1963);30, 1148
~ M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and {1963).

F. Zachariasen, Phys. Rev. 133, B145 (1964). "S.Mandelstam, Nuovo Cimento 30, 1113 (1963l.
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Vsing (4.9) we obtain

t 1~s1 t, (t')X, (t')dt'
P (t) =—-'s V2e'

cr —1 tz(0) z.

arbitrary 3,

~+-'(t)

(J 1)1/s

1 4v2 e'
Di(0) .

Di(t) 3 J—1

near k= 0. We can identify the integral as

t, (t')A, (t')dt'
= ——Di(t)

dt 8=0
=ti(0)n (0)

so that

P (0)= ——;v2e'. (4.10)

Combining (4.10) with (4.7), we obtain"

o. ,(~ )= (16m'/3) (e'/4z-)n'(0),

where e'/4z = 1/137.
According to the factorization of residues,

o.~~ ( ee) 16vr e' )o~v(") = —la'(0)
o~.( ~) 3 4n-/

(4.11)

(4.12)

If one takes" cr'(0) =-' BeV—' and"

o~~(~)/o~~(~) =38/21,

then o. ~ir(~)=95 tabb. This is within the experimental
limits of 75—120 pb" and is consistent with values found
by Stodolsky using vector-meson dominance. " How-
ever, the experimental errors and theoretical approxi-
mations are such that it is dificult to know what
significance to attach to such agreement. If the Regge
pole picture is approximately correct and cuts are not
very important for the predictions of high-energy scat-
tering, then our neglect of the third double-spectral
function may be reasonable. As far as justifying elastic
unitarity is concerned, , we are unable to give any strong
arguments. We have carried out a two-channel calcula-
tion (yy ~ z.7r and yy~ KE) and find the same result
if all the integrals which begin at the EX threshold are
slowly varying compared with those beginning at the xw
threshold. Whether or not this is true is a diS.cult
dynamical question which we will not attempt to
answer.

Returning once more to the question of the existence
of fixed poles, we see from (4.8) that near J'=1 for

e' t "ImF+ (s,t) e' Dr(0)
(4.13)

v3 4z. „(s tz') +st— v3 Di(t)

It is apparent now that the relation between n'(0) and
the cross section is more a property of the approximate
dynamical calculation than of the presence or absence of
fixed poles. It is probably illuminating to remark thatif
one insisted there be eo axed poles in any Compton
amplitude one would obtain the astounding result that
the asymPtotic cross section would be ProPortional to the

square of the particle's charge, e.g., the total cross section
for y's on neutrons or on x"s would vanish, while those
for y's on protons and ~+'s would not.

Before leaving this subject, we might mention that if
one replaces the SU(2)-symmetric calculation by an
SU(3)-symmetric calculation, with the Pomeranchuk a
singlet, the calculation is trivially modified and elastic
unitarity over the two-meson states gives

-.( )= .( )=, (")=4 '('/4 ) '(0) (414)

instead of (4.11). The difference is about 25%. Aside
from noting that the Pomeranchuk does not appear to
be a pure singlet in SU(3),'r we have no comment on
(4.11) versus (4.14).

V. DRELL-HEARN SUM RULE

In this section, we discuss the question of the con-
vergence of the Drell-Hearn sum rule'.

2X' 0!
K22

2=
S22

dp
og p —og p (5 1)

But Di(0) =0 so that (J'—1) 'tsF~ s(t) no longer has a
fixed pole at J=1 and a new type of superconvergence
relation is obtained ' ' "We remark that none of these
results are sensitively dependent on n(0) = 1.The reader
may verify that if u(ts) = 1 for ts sinall and positive, the
Regge residue and cr'(0) are related in the same way
that we have found here; o(s) ~ s~&" ' with the pro-
portionality constant determined; the new supercon-
vergence relation becomes

' This same result has been obtained independently by H. D. I.
Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov, and J. H.
Schwarz, Phys. Rev. 160, 1329 (1967). We thank B. W. Lee and
M. L. Goldberger for telling us about it."R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336
(196S).

"V.Barger and M. Olsson, Phys. Rev. 146, 1080 (1966).' DESY Bubble Chamber Group, in Proceedings of the Inter-
national Symposigns on Electron and Photon Interactions at IIigh
Energies (Deutsche Physics Gesellschaft, 1966), p. 36.' L. Stodolsky, Phys. Rev. Letters 18, 135 (1967).

~„=1.79 is the anomalous magnetic moment of the
proton, m the proton mass, v the lab energy, and
n=1/137. oz(v) and o.z(v) are, respectively, the total
cross sections for the absorption of photons on protons
with parallel and antiparallel helicities. In terms of the
scattering amplitudes, and by use of the crossing

so J. H. Schwarz, Phys. Rev. 159, 1269 (1967l.
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relations, (5.1) read. s

2x' cx

Ku
m2

-ImG++, ++(s,0)—ImG+ + (s,O)-
ds

(s—srt')'

ImF ~, ~(s,0)+ImF+, +(s,O)
(5.2)

m2 S—SZ '

(see Fig. 2). Conservation of angular momentum at t= 0
requires that

learn that the amplitude has positive parity. Since'

P~ J),),)=(—1)&~J —), —),),
the partial-wave amplitudes satisfy

F), , ), , ~ t(t)=P;F )„)„+~~(f),

where P; denotes the signature of this amplitude. The
total amplitude has the form

F), x, +(s,&) ~( QPx, ), + '+(t)ds, g, '+(8t)
&s+

ol
G++.—+( 0)=G—+,++( 0)=0 (5.3)

where

Hence

F++,-+(s 0) =F--,-+(s,O),

F-+,-+( 0) =F+-,-+( 0)

P~-~ + "(&)=a& g~ + "(f).
(5.4)

(The sum contains integrals over the cuts. ) Asymptoti-
cally, however,

2Ã Q

Kp =2
m2

' ImF p, g(s,0)
ds

(s—srt')'

For the sake of comparison, note that

(5.5) ds, sx '(«)- —ds, n '(et)

Thus, if the amplitude were dominated by the exchange
of P=C=P; =+1 we would have

~g (o)+~&(v) = ImF+~, ~(s,o).
(s—rtt')

As we have seen in the last section, the fact that
helicity Rip of two is involved at the photon vertex does
not imply that the Pomeranchuk trajectory cannot
contribute to the amplitude in the integral of Eq. (5.5).
In view of the results of Sec. III, however, we do not
expect ImF ~, ~(s,0) s but we must be careful about
behavior such as s/lns. Such behavior could be induced.

by cuts in the angular-momentum plane and would
yield a divergent integral in (5.5). We will now argue
that such behavior is not compatible with the common
picture of Regge poles and cuts. The argument is based
on quantum numbers.

First, notice that under CP the proton-antiproton
state is

~
p~,),) CP

~
p),),)= ~ p —), —),).

Hence, the amplitude F + +(s,t) is a pure CP=+1
amplitude. That is, the final photon state must have
CP=+1, too. Since C=+1 for a two photon state, we

F+.—;-+(»0)-—F-+;-+(»0)
in contradiction to (5.4). This does not mean that such
trajectories cannot contribute. They simply cannot
dominate. [Presumably, one can have a "conspiracy'"'
between amplitudes of opposite signature, just as in EX
scattering where essentially the same argument' proves
that P=C=P;=+1 cannot dominate the amplitude

f =F++,++( 0)—F++,—( 0) j
Since the Pomeranchuk trajectory has P=C=P;

=+1, we see that it cannot contribute directly to the
Drell-Hearn sum rule, as anticipated, ."What about the
associated cuts' These might be expected to produce a
branch point at J=1 when l=0 and hence a (1/ins)
behavior for [o.t (s)—o z (s)$. It is clear from the analysis
just presented that the leading term of the cuts which
reach J=i at t=0 cannot contribute if they are of
positive signature. The only source of trouble then is
cuts of negative signature which reach J=1 at t=0.
Such a cut is expected to have the form

1
F ++ (t)

[-'t(-,'t—m') jt —'t" (-,'t —m') (J—1)"'

s "' p(y, t)
dy cot (srJ/2), (5.6)

O' I 2

f

I" I PP2 4'

FrG. 2. The processes described by the amplitudes Ii and G of
Eq. (5.2). Particles 1 and 3 are photons; 2 and 4 are protons.

where u, (0)= 1, and p(y, t) is a spectral function which

"D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 44,
1068 (1963) /English transl. : Soviet Phys. —IETP 17, 720
(1963)g; M. Gell-Mann and E. Leader, in Proeeedertgs of the
Thirteenth International Conference on IIigh-Energy Physics
Berkeley, 1966 (University of California Press& Berkeley, California,
1967).

"This particular result was obtained already by V. D. Mur,
Ref. 9, using the factorization of Regge residues. We are grateful to
Dr. H. Pagels for drawing our attention to this part of Mur'
work.
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depends on the details of the dynamics. Near t=0,
p(y, t) =tp(y) from the fact that F ~,+ (t,s) is finite at
I=0 and, furthermore, F~ has the reality property
F ++ s*(t*)= F—++ ~(t). The lower limit of the
integral in (5.6) is somewhere in the left-hand J plane.
The above form has been found, for cuts arising from
three-particle intermediate states by Anselm, Azimov,
Danilov, Dyatlov, and Gribov" and, would seem to be
reasonable for cuts arising from intermediate states of
four or more particles. The cot(n J/2) guarantees that
the d,iscontinuity across the cut in the t plane vanishes
for J=odd (right signature).

Expression (5.6) contributes to the full amplitude a
leading term

(1—)'"( + )"'F, (t, )
chic( &)

~v p(7,») (-'t—~')I='t(4» —~'))" ""

F~+e(—«) —F,+e(«)
cot(wy/2) (2y+1)

2 sin~7
(C„~e(1,2,y))

Xi i
+" (57)( (~ 1)rte &

K3 s
F- .+-(0, ) — (0)—

8~00 2 lns

The reality property of Fs requires that p(0) be real so
that the s/lns term does not contribute to the Drell-
Hearn integral (5.5). The leading imaginary term ob-
tained from (5.7) is

ImF ++ (O,s) ~ —x-'p(0)—
8 ~ 4 (lns)

which allows the integral in (5.5) to converge. This
result, based on (5.6) and finite p (0), serves as a concrete
illustration of a more general result. Since the Regge
cuts cannot move past J=1 at t=0, and since the

~ A. A. Anselm, Va. I. AziInov, G. S. Danilov, I. T. Dyatlovs
and V. N. Gribov Ann. Phys. (N. Y.) 37, 227 (1966).

Pomeranchuk pole itself cannot contribute, it seems
reasonable to assume that lim, „LF + + (s,0)/s] exists.
Given this assumption, it follows that the integral
converges. '4

It is also of some interest to ask how fast it converges
and so obtain some idea of the accuracy of saturation
calculations. From a pure Regge pole point of view, the
lowest-mass candidates for the allowed set of quantum
numbers are the A~ at 1080 MeV and the D at 1285
MeV."With slopes of the order of 1 BeV ', both of
these trajectories would be negative at t=0 and, so lead
to an integrand dropping off faster than 1/s'. In general,
the rate of convergence of the sum rule will depend
critically, however, on the strength of the cuts involved,
i.e., on the value of p(0).

In closing, let us remark that similar arguments give
no support to the hope that a number of sum rules which
have appeared in the literature will converge. These are
the sum rules which have no energy denominators; for
example, Eq. (15) of Beg,"and also Eq. (2) of Harari, "
and Eq. (6) of Pagels. ee Since these involve large isospin
and/or helicity Rip, a simple Regge pole model would
lead, one to conclude that they might converge. On the
other hand, even if the integrals do converge, these
amplitudes all have fixed poles at J'=0 (right signature)
to the lowest order in e', which contribute asymptoti-
cally to the real parts and would, vitiate the no-subtrac-
tion hypothesis that is speeded in the derivation of the
sum rules. In fact, the difference between the two sides
of these sum rules is then just the residue of the Axed

pole at J=0, which might vanish accidentally but must
depend on the details of the dynamics.
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