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Spin Dependence of High-Energy Scattering Amplitudes. I*
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(Received 24 March 1967)

A formalism, useful for discussing spin dependence of scattering amplitudes in terms of complex angular
momentum, is given. The question of the spin dependence of elastic scattering amplitudes, its relationship
to coupling to Regge poles, fixed poles in the angular-momentum plane, and superconvergence relations are
discussed. It is concluded that general principles permit the coupling at a vertex of a Regge pole of integer
spin Jo and two particles whose spin projection is greater than Jo, provided the Regge pole has the wrong
signature to be a particle of spin Jo. In particular, the PonMranchuk trajectory at t=0 (J0=1) can flip
helicities by two or more units and hence yield spin-dependent cross sections. Several models which support
this conclusion are given. The possibility that a particular Regge pole s coupling does vanish is not ruled out,
however.

I. INTRODUCTION

HIS is the first in a series of papers devoted to
the spin dependence of scattering amplitudes at

high energy. The subject of this paper is the general
formalism for relating high-energy scattering to com-
plex angular-momentum properties for particles with
spin, and, specifically, the spin dependence of elastic
scattering. Subsequent papers will be devoted to the
special problems in the scattering of massless particles
and in inelastic scattering.

One way of asking the question that stimulated our
interest in this work is: To what extent does a Regge
pole behave like a particles &Vhen its trajectory func-
tion o. (t) takes on an integral value Js, can it couple to
vertices which involve helicity Aip greater than JOP
In particular, can the Pomeranchuk trajectory fiip
helicities by more than one unit at 1=0? This last
question is especially interesting since, if the answer
is no, then high-energy forward elastic scattering must
become spin-independent. ' Naive angular-momentum
arguments would yield a negative answer since any-
thing that Rips helicity by Ap must have an equal
angular-momentum projection and so must have
angular momentum at least Dp. Naive angular-mo-
mentum arguments can be very misleading, as is well
known. For example, the coupling of a spin-zero to a
spin-one meson is not forbidden by angular-momentum
conservation alone, but requires, in addition, the
assumption of coupling of the vector meson by a con-
served current. (Consider the virtual process s- —+ W —+

la+ p.) Since a Regge pole is evidently a rather complex
object, it is clear that considerable caution is needed
in using simple arguments. One thing is certain: If
the total amplitude involves helicity Qip Ap, it must
not have a pole at some value of t unless there is a
bound state or resonance with spin of Ap, or greater
with (mass)'= t.

With this question in mind, we summarize the con-
tents of the following sections. Section II: Some
properties of spin dependence from general arguments

* cwork performed under the auspices of U. S. Atomic Energy
Commission.' Y. Hara, Phys. Letters 23, 696 (1966).

are reviewed. The assertion that helicity Rip of one
unit or less in the cross channel implies spin inde-
pendence of forward elastic scattering is supported
(Hara's theorem). ' Section III: Complex angular-
Inomentum formalism for spinning particles is pre-
sented. This section is not limited to elastic scattering.
Although this subject has been discussed previously
by other authors, ' 4 we believe this presentation is more
complete and easier to use than the previous ones. In
any case, some redundance is useful in this complicated
subject.

Section IV applies the machinery of Sec. III to our
question. It is shown that the coupling of a Regge
pole to helicity fhp tlap at n( )t= Jp(dp need not vanish.
It will never lead to a pole in the total amplitude while
it can contribute significantly to the asymptotic be-
havior. Gell-Mann pointed out long ago that such
nonsensical couplings could exist. ' However, for poten-
tial scattering or for the "right signature" L(—1)~'= E,
=signature7 —the case of interest to him —the trajec-
tory had to choose either "sense" or "nonsense. "That
is, if there was a pole in partial-wave amplitudes with
Jo(hp, then there would be no pole in partial-wave
amplitudes with Jo+ Ap, and vice versa. It is shown here
that such is not the case for "wrong-signature" ampli-
tudes. It is shown that the last point is intimately
connected with superconvergence relations and fi.xed
poles in the angular-momentum plane. This feature
permits the Pomeranchuk trajectory (P,=+1) to
couple both to sense and nonsense amplitudes and,
hence, permits high-energy scattering to be spin
dependent.

Some simple models are investigated in Sec. V, the
purpose being to see if we can 6nd any more speci6c
dynamical reason for such couplings to vanish. The
result is negative.

~ S. Mandelstam, Nuovo Cimento 30, 1113 (1963).
~ M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, 8145 (1964).
J. M. Charap and E. J. Squires, Ann. Phys. (N. Y.) 21, 8

(1963).
' M. Gell-Mann, in Proceedings of the 106Z Annua/ International

Conference on High-Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962).
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We may summarize the result of the investigation of
our question: There is no reason from general principles
or from specific models that forbids a Regge trajectory,
when it passes through an integer value Jo, from
coupling to amplitudes of helicity Qip of any magnitude
when P, = —(—1)~& (wrong signature). ' When applied
to the Pomeranchuk trajectory, this leads to the con-
clusion that one must expect that high-energy scattering
of high-spin particles is spin-dependent. Unfortunately,
we have not been able to prove that the coupling cannot
vanish "accidentally" —i.e., as a result of the detailed
dynamics actually governing strong interactions. One
final "unfortunately" —with spin —,

' particles, the
maximum helicity Qip is 1 and so Hara's theorem applies
immediately and forward XS scattering must be spin-
independent if dominated by the Pomeranchuk tra-
jectory. We hope in the following papers to present
results which can more reasonably be tested than the
spin dependence of, say, high-energy m D elastic
scattering.

We conclude this introduction with a few definitions.
The amplitude' Gq, q, ,i„q,(s,t) will be the center-of-mass

amplitude for the reaction for which s'" is the center-
of-mass energy and whose asymptotic behavior in s
we are interested in. F„,„,,„,»(s, f) is the center of mass
amplitude for the reaction obtained by crossing par-
ticles 2 and 3. The quantity I,'" is the center-of-mass
energy for this reaction, whose partial-wave amplitudes
will be extended into the complex angular-momentum
plane. The indices ) and p, denote the helicities (see
Fig. 1).F and G are related by the equationr

G~3i4 iris(~ f) Z»»»sr(~)f)~sr4 ( t)~»is ( s)
p, S

s; denotes the spin of each particle. X; are angles given
in Ref. 7 and are real for s and t in the physical region
for either reaction. For f=0 and elastic scattering (of
nonzero-mass particles) X;=z/2 for all i.

I

II. BACKGROU5'D —HARA'S THEOREM

It is interesting to see how much can be said about
the spin dependence of the scattering amplitude

Gz, i, ,i„i„(s,t) by making fairly weak assumptions. There
are well-known relations between amplitudes with
different indices which follow from parity or time-
reversal invariance or from statistics in the case of
identical particles. ' Do "reasonable assumptions"
about asymptotic behavior lead to further relations?
It was shown by Foldy and Peierls' that if one assumes
that high-energy elastic scattering is dominated by the
exchange of a unique isotopic spin —Regge pole,
elementary particle, or what-have-you —unitarity alone

M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).' T. L. Trueman and G. C. Wick, Ann. Phys. (5. Y.) 26, 322
(1964); I. 3. Muzinich, 3. Math. Phys. 5, 1481 (1964).' L. L. Foldy and R. F. Peierls, Phys. Rev. 130, 1585 (1963).
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(b)

FIG. 1. Center-of-mass scattering amplitudes for (a) s-channel
and (h) t-channel scattering.

required that this have isotopic spin zero. When, in
turn, they assumed such dominance actually occurred,
they found an amplitude diagonal in, and independent
of, the charges of the particles. It is then natural to
ask the same question about spin. Of course, the problem
is substantially different because of the coupling be-
tween spin and kinematics. It seems unreasonable to
assume that scattering be dominated by the exchange
of a system of definite angular momentum J, and so one
cannot expect to obtain such strong restrictions from
reasonable assumptions as are obtained for an internal
symmetry. Guided by the notions of complex angular
momentum, Peierls and Trueman' asked: Suppose
forward high-energy elastic scattering is dominated by
the exchange of a system of definite parity (P), charge
conjugation parity (C), and signature (P;). Does
unitarity give a restriction on these quantum numbers?
The answer was yes, with the obvious set

P=C=P, =+1
allowed. Assuming that such a system did, in fact,
dominate, they showed that the scattering amplitude
was diagonal in spins but not necessarily independent
of spin:

Gi,x, ,x,x, (~ 0)-Gx,x, (~)4,x,~)„x, (2.1)

but Gi,&„(s)AGi,.i„.(s), in general. It was also shown

that if, in addition, helicity Qip in the crossed channel
was negligible [F»„,,»» (s,0)~8»»8»„,F»» (s) with

F»»(s) possibly depending on lit and lie), then Gz,i, (s)
=G(s) independent of Xt and Xs.

In a recent paper Hara' has argued that, if forward
elastic scattering is dominated by the exchange of the
Pomeranchuk trajectory whose trajectory function rr(t)
satisfies rr(0) = 1, these conditions on F»„,,»»(s,0)
must hold. There are only two essential steps to the
argument, which we present in a slightly simplified
form here': (a) Because at t=0 the Pomeranchuk
trajectory behaves like a spin 1 particle, it cannot
couple to helicity Qips greater than 1. ; this step will

' R. F. Peierls and T. L. Trueman, Phys. Rev. 134, 31365
(1964).' Dr. K. Y. Lin of Cornell has also simpli6ed the assumptions
needed to prove Hara's theorem LK. Y. Lin, Phys. Rev. 159,
1363 (1967)g. We thank Dr. Lin for sending us a copy of his work
prior to publication.
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but
~PSP4 P1PS( ) t P2P4 PSP1( ) 1

~-, , '(s)- (—1)"d.. '(s)

(2.4)

(2 3)

for large s and so we must have

P... ,"(o)=0 f» lpt —»l=»r I»—p41=1 (26)

LSee the Appendix for the steps in (1) and (2). The
strong result (6) relies very heavily on conservation of
angular momentum in the forward direction. )

It will be apparent from the following sections that
step (a) involves an assumption of dubious validity.
In particular, we shall show that, even for a trajectory
of the right signature (F,= —1) to be a particle with
J=1, (a) does not follow from angular-momentum
conservation but from high-energy bounds and a
shrinking diffraction peak. For a trajectory of the
wrong signature, like the Pomeranchuk trajectory, it
does not seem to follow from any reasonably general
assumptions at all. Models will be given for which it
does not hold.

III. FORMALISM

This section contains the basic formulas that are
needed in discussing the scattering amplitudes in the
complex Jplane for particles with spin. ' 4 The formalism
presented here is general and not limited to elastic
scattering, but we do assume that the reaction de-
scribed by F contains an even number of fermions in
the initial and final states.

The starting point is the partial-wave expansion for
helicity amplitudes' and its inversion formula:

P P4»P (s t) + (2~+1)FPSPS PSPs(t)~PP' (t)) (3 1)
J=n

p=p] ps~

tI'

p =pp p4~

n=m a{xlpl,, lp'I);
1

Fpil 4, l il 2 (t) = ds dpp' (0)Fp2p4, pips(s&t) 1 (3 2)
2 ]

where
s= cosa.

be discussed at length in the following sections. (b)
Because of its quantum numbers, the contributions of
helicity Qips of &1 vanish asymptotically compared to
those of helicity fhp zero. To see that (b) is true, use
the crossing relation (1.1) with Eq. (1) above to show
that

li2P4 P1PS( 1 ) P2P4 PSPl( 1 ) 1 (2.2)

a restriction stronger than that implied by the quantum
number alone. Dominance by the Pomeranchuk
trajectory implies

F'. ,...(s,0)-P.....,..., (0)d..'(s) (2 3)
with

are analytic in s for fixed t, free from kinematic singu-
larities in s.""If F(s,t) is bounded by sP(4) for large s,
then F (s,t) will satisfy a dispersion relation with
42(t) —n+1 subtractions. " (When this number is
negative, we have negatively subtracted or "super-
convergent" dispersion relations. ")

This assumption, in conjunction with Eq. (3.2), may
be used to construct the generalization of the Froissart-
Gribov continuation. "According to our assumption

F„,„,, „,„,(s,t) =x„,„.(s) P a„(t)s"

Fl42p4 pips (s t)S+— ds'
s'"(s' —s)

(3 4)

M denotes the smallest non-negative integer greater
than or equal to n(t) —e. (One could explicitly use a
negatively subtracted dispersion relation when that
number is negative. For our purposes there is no
advantage to this. ) If this is substituted into (3.2) for
J—e(M, the subtractions play no role. Before pro-
ceding further, it will be convenient to express the
rotation matrices in terms of Legendre functions and
Clebsch-Gordan coeS.cients, primarily because the
properties of the latter are much better known than
the former. The relation we will use extensively is

(1 s) (P'—P) ls(1+z) (P'+P) Isd, &(tl)

J+n
= E C((p,p', ~)F((s), (35)

with

, t'( '—p). (p'+p).)'"
C((p,p', J)= (2t+1)2 'I 2'!(p)

t p' t'J t p' 1)

p,
' 0 —p' kp, 0 —pf

p,') 0 and pi) I&l (3 6)

Those which do not satisfy these inequalities may be
obtained by using symmetry properties of d» J. We

"Y.Hara, Phys. Rev. 136, 8507 (1964).
1 L. L. C. Wang, Phys. Rev. 142, 1187 (1966).
» T. L. Truemani Phys. Rev. Letters 17, 1198 (1966).
'4V. DeAlfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.

Letters 21, 576 (1966).
"M. Froissart (unpublished talk at La Jolla Conference on

Theory of Strong Interactions, 1961);V. N. Gribov, Zh. Eskperim.
i Teor. Fiz. 42, 1260 (1962) )English transl: Soviet Phys. —JETP
15, 873 (1962)g; F. Calogero and J. M. Charap, Ann. Phys.
(N. Y'.) 26, 44 (1964).

It will be assumed that the amplitudes

FP2P4 P1Ps (sit)
F....,.„.(,t) =

2

&p, '(s)
(s) = (1—s) IP P Il (].+s) IP+P I (3 3)
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will choose our amplitudes so that the above inequali-
ties hold. This relation is a special case of the addition
theorem for rotation matrices in which we have used"

1+s ( '+ )I 1—s)( '—)I
X ( 1).—.

2 2 I)

to complex J.Note that the amplitude has already been
separated into positive and negative signatures F~"(f)
which agree with the physical amplitudes for (—1)~
equal to +1 and —1, respectively. The reason for
this is to remove the (—1)~ factor that naturally
appears between the two terms in (3.7), just the same
as in the spinless case.

Because Q)(s) behaves asymptotically like (1/s)'+'
the integrals will converge for

Then,
2n

ysy4, s)ss ( ) = 2 n+& &(»P t )—
7r uM

1.e.)

Re (L(r (I)—n]—(p+J—)4) ) &0,

ReJ)(r (t),

dS j InlF @2@4

syrup

(S+$p,f)

W(—1)" "Imf„,„,,„,„,(—s+ip, f))Q~g „(s) (3.7)

provides the equation which allows F + to be continued

is the condition that J must satisfy in order that the
continuation F~+(f) be given by the integral (3.7).

In order to use Eq. (3.7), it is necessary to know
some properties of the C((P,P',J). The explicit expres-
sion we have used is

(P' P) (P'+P—) '(2J+p 2P') (J+—p P'). —
C.+~ '(P P' J)-=2"'(2Lp+J P'3+1)— (—1)"' "

(2J+ +1)!

x
~ ~

~ ~ ~ ~

(J+P') (J—P) '(J+P) l'"
(3.8)

(J—P')! j s=o k!(p—k)!(P' —P—k)!(J+p—P' —k)!(P'+P p+k)!(J——P'+k)!

or

~ P ~
&~ Jp(P'(sense-nonsense'),

C~~-. (P,P',J)" (J—Jo)'" (3.9)

0 ~( Jp(
~
P ~

(~ P) ("nonsense-nonsense"),

for P &~
—1+2(p' —J'p), C~~ „,(p,p', J) cc constant;

for P)—1+2 (p' —Jp),
Cn+~ s( P, J)"(J—J-o) (3 1o)

(c) C„+J „(p,p', J)
= (-)" "'C-.-~+'-t(P P' J-1) (3 11)

even4 for complex J. Properties (b) and (c) will be
important in the discussion of the next section.

(d) C~~ '(P,P' J)= ( 1)'C-~~ s( P—P',J) (3 -12)—

(e) The C's have poles at positive half-integer values

of J from the factor (2J+p—2P')!.LNote that C) (P,P',J)
"M. Hammermesh, Group Theory (Addison-Wesley Publish-

ing Company, Reading, Massachusetts, 1962) .

The reader may verify the following properties:

(a) C~q „.(P,P',J) goes to a constant as
~
J~ ~ po;

this is important in allowing (3.7) to be used for com-

plex J and is also important in the Sommerfeld-Watson
transformation.

(b) For J near an integer 0~&Jp(P, C~+j s (P P J)
behaves as follows:

For C-+-- ( P' J)+C --(, ' J),
which must evidently be finite. Turning to Eq. (3.7)
and recalling that Q)(s)=Q ( t(s) for l half integral,
we see that the poles will cancel out in the sum in
pairs:

C~~ -(p,p' J)Q~~ -.(s)-
+C (& p) i y(P, P ~

J—)Q—(r—p—) t—— —

is 6nite for J equal to a positive half integer less than e.
The scattering amplitude F(s,t) may be expressed in

terms of the continued partial-wave amplitude F~(t)

J PLANE

I 2 n:I ~ n+I
Cn

Fto. 2. Contour c„for Sommerfeld-Watson transform ppq. (3.]3)g.

is finite at l= —tsbecause of (2l+1) factor in (3.8).j
These are not passed on to F~(f). To see this, observe
that d» ~ is regular at the half integers (cf. the hyper-
geometric expression for it)' and that Eq. (3.5) is valid
for all z. In particular for large s, using F((s)=F 4 i(s),
the coefEcient of s'(" ) ' in Eq. (3.5) at the half
integers is
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by means of the Soimnerfeld-Watson transformation: (see Fig. 2)

(2J+1)
F»„4»»(s,t)= p (F»„,»»+(t)[d» (z)+(—1) d „,„( z)—]+F»p4»p3 (t)

J=n
1

X[d».«(z) —(—1)&'d „,„.«(—z))}=—— dJ(2J+1)(F„,„4,„,„,«+(t)[d» «(z)+( 1)&—'d „,„«( z)]-
4i

F»~4.»» (t)[d»' (z) ( )"'d—y, y' ( z)j}(' ~J) (313)

the relation, valid for integral J, (—1)«d»«(z)
=(—1)&'d „,„«( z) ha—s been used here. The next step
is the opening of the contour c„and the movement of
it to the left. Note that in the process poles will be
crossed at integers J(m, from the factor (sinn J) ',
in addition to the singularities of F«(t). (If one is
interested in other than the leading asymptotic terms,
one must keep the background integral under control.
This can be done by means of Mandelstam's trans-
formation. "') Finally notice that the sense-nonsense
amplitudes F~ with apparent square-root singularities
at integers ~p~(JO(p' are always multiplied by
Ci(p, p', J) which behave like (J—J3)'"and so there is no
branch point of the integrand of (3.13) at those points.

IV. FIXED POLES, SUPERCONVERGENCE RELA-
TIONS, AND NONSENSE TRANSITONS

In this section we shall discuss the relationship
between 6xed poles in the angular-momentum plane
and superconvergence relations, along with the form
of the sense-nonsense and nonsense-nonsense transitions
in the presence of fixed poles.

Equation (3.7) expresses the Froissart-Gribov con-
tinuation of It~ as a sum of integrals over Legendre
functions of the second kind. For ReJ suKciently
large these integrals necessarily exist since Q«+~ „(z)
goes as z & «+&'—' as z tends to infinity. If we call n(t)
the trajectory function farthest to the right, it is
clear that the integrals over the Q functions will

converge for ReJ)n(t) since ImP z &" "'. Now
consider only the term in (3.7) which has P=O and so

leads to the singularity farthest to the right in the J
plane.

00

»V4»» ()= « S'(» ~—
zp

X{1~„,„,,„,„,(zygo. ,t)~(—1)'
X»P4»P3( +' "))Q«'—P'()+'' ~ ( ~ )

C«—~ (p,p', J) 1
dz

(J—J3)
X I{~ »4, »»(z+i6 t)3W( —1)~ ™A+4»p3

X(—z+i', t)}P„.« i(z)+ . (4.2)

F8384»» (t)

» S. Mandelstam, Ann. Phys. (N. E) 19, 254 (1962).

At integral Jo(p', Q« „has a pole in J giving the
equation

for J=Jo and Jo(p . The upper sign indicates positive
signature while lower sign indicates negative signature.

For integral Jin the rangen(t)(J(p' the function

Pu' « i(z)F—v—u nv(zt)

goes to zero faster than z ' at large z which requires
that"

0= dz Pp' « i(z)Fp—3p4—,p3»(z3t) ~ (4.3)

Writing the superconvergence relations expressed in
(4.3) as integrals over positive z, one obtains

dz'{1~„,„,,„,„,(z+z~,t)+(—1)"-«-i

»y4»»( +'3)) p' —«—i(z) ~ (44)

(1yz) &"'+"~13(1—z)("'—"~"F„,„,,„,„,(z,t)

00 2p

Z 2 (+3) —P+y(P3gy )X{»»,»»+(t)
J=s' u=o

X[P« „,+.(z)+(—1)&+"'

XP«;+„( z)j+F„,„4„,„, (t)

X[P« ;+,(z) ( 1)"'"'P«—'+.(——z)j—) (45)-

Comparing (4.4) with (4.2), we separate the discussion
into the following cases:

(i) J3(~p. In this case C« „(p,p, ',J) is finite at
J=Jo, and we see that for amplitudes of the right
signature [(—1) 3=P;]F + is regular in J at J=Jo,
since the superconvergence relations (4.4) require the
residue of the pole to be zero. However, (4.4) gives no
restriction on amplitudes of the wrong signature so
that high-energy behavior does not require that the
residues of such poles vanish.

(ii) p'&Jo&~p~. Now C« „'(p,p', J) goes to zero
like (J—J3)'" near J=J3. For the right signature
Eq. (4.4) requires F«" (J—J3)'", while for the wrong
signature F«" 1/(J —Jo)'" is possible.

We can also see some of the diBerences between right
and wrong signature amplitudes by looking at the
expansion of the full amplitude given by (3.13).
Using (3.5) we obtain the representation
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Suppose FJ has a fixed pole of the form

FP2l14 siss (t) (4.6)

for some 0&Jo( ~/i ~, /l'. This is precisely the form we
found for amplitudes of the wrong signature in the
previous discussion, but now we wish to see what con-
tribution to the full amplitude such a pole gives. We
shall take only the leading contribution at large s to
(4.5). Writing (4.5) as a Sommerfeld-Watson contour
and opening up the contour to obtain the leading con-
tribution of (4.6), p=2/l', we find

(I+s) (v'+p) /s(I s) (p' p) /sp — „(st)
z-moo

—p(t)(Jo+s)z'~"'l. l+ (—I)"j

as for Jp& p,p, '. These conclusions are in agreement with
those found by Mandelstam. "

We now come to the question of what happens to a
trajectory when n goes through an integral value
Jp( p, . At Jp there are three types of transition ampli-
tudes: sense-sense, sense-nonsense, and nonsense-non-
sense. It was shown in Ref. 5 that in potential theory or,
indeed, in any theory not having a third double spectral
function, a Regge trajectory chooses either sense or
nonsense at J0. We shall review the argument of Gell-
Mann for potential theory' and then consider theories
possessing third double spectral functions. For sim-
plicity only the relatively simple example of nucleon-
nucleon scattering will be considered.

In a potential theory of nucleon-nucleon scattering
the coupled triplet amplitudes" would have the form

X(t(Jo+/ ') Cz+, (/—l,t(',J)
dJ J Jp

f«'(t) foi'(t))
F'(t) =

foi'(t) zii'(t) J

1 p(t)

(J—Jo)'" J—Jo
FP2P4. ~les +(t) = (4.7)

Equation (4.7) gives a contribution to the full amplitude
at large 8

(I+/) (ll'+lo/s(1 —s) (ll'—lo/sp ($ t)
z-+()o

—(Jo+s)s"+"'(I~(—I)")P(t)&&n(Jo+/ ')

&& (J Jo)'"C~+; (/, /—",J)—
dJ J=Jp

Since (J—Jo)'/sCq+„(/i, p, ',J) has a simple zero at J=Jo
for

~
/l

~

&Jo(/i' the conclusions are essentially the same

where P (s) a(n)s as s~ ~. Cg+„(ti,/i', J) has a
simple zero at J=Jp so that the contribution to the
asymptotic behavior of F is proportional to sJO for
the right signature while the contribution vanishes for
the wrong signature. Thus if Il J did have a fixed pole
at Jo( ~tl~, p,

' in an amplitude of the right signature,
this fixed pole would violate the unitarity bound on F
if Jp)1. The superconvergence relations have also
shown us that no such fixed poles exist. However, there
is no reason why IlJ cannot have a fixed pole at
Jo( ~/l ~,/i' in amplitudes of the wrong signature. Such
a pole gives no contribution to the asymptotic form of
the full amplitude as we have just seen. In fact, one
can consider the complete contribution of the fixed pole,
(4.6), to the full amplitude if the Mandelstam version'7
of the Sommerfeld-Watson transformation is used and
then pushed back into the left half J plane. Such a
calculation shows that a fixed pole of the type (4.6)
in a wrong-signature amplitude contributes asympto-
tically only as s ~' to the full amplitude. We can
carry out a similar analysis for a fixed pole at Jp for
which

~
ti

~
(Jo(t(' taking the Axed pole as

p p, (t) J''p, &(t)~

J—n(t) V'/sPoi(t) Pii(t) )
near J=O and near t= to if n(to) =0. The J'/' is simply
the square root due to a Clebsch-Gordan coeKcient as
we have seen in the analysis presented earlier in this
section.

Factorization of residues gives the relation poo(t) pii(t)
=n(t) po, (t)O'. If poo(to) is finite the pole at to represents
a physical particle. Then P»(to) must be zero, the pole
does not appear in the nonsense —+ nonsense transition,
and one says that the trajectory chooses sense at J=O.
On the other hand, if p»(to) is finite the trajectory is
said to choose nonsense. In this case the pole at tp

does not represent a physical particle.
In the presence of a third double spectral function the

above conclusions are valid at a nonsense value of J
in an amplitude of the right signature, since such an
amplitude has no fixed poles. For amplitudes of the
wrong signature, the situation is somewhat different
because of the presence of fixed poles. Nucleon-nucleon
scattering at J=O in the coupled triplet amplitudes of
negative signature illustrates what now occurs when a
trajectory passes through a nonsense value of J. Il J
has the form

00 01
p'(t) =

01 11

1 ( goo(t) J '"Voi(t))

J—n(t) + '"Voi(t) J '7»(t) &

We discuss the general structure of such amplitudes in

' S. Mandelstam, Nuovo Cimento 30, 1128 (1963); 30, 1148
(&963).

» M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).
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)ll)l4, )li)ll
+ ( ) =

J—n(t) J—Jp
(4 9)

for Jp(
~
t( ~,tr' where F~+ is of the wromg signature at Jp.

Using (4.5), writing a Sommerfeld-Watson transforma-
tion to pick up the leading term at large s, we obtain

(1+S)(y'+/l) /s(1 S) (g'-)l) /sF (S t)

y(t)C (l)+„(t(,/i', n(t))= —s Ln(t)+-,'g
Ln(t) —Jpj sinprn(t)

XL(—1)"'F-(l)+'(—s)~F.(l)+, (s)j+ (4 1o)

Since E is of the wrong signature at Jp, the + in
(4.10) is such that

Also,
1+(—1)"=0.

C~,+„()M,t(',Jo) =0

(4.11)

(4.12)

as we have seen previously. Equations (4.11) and (4.12)
show that F does not have a singularity as n goes through
Jp since the zeros of n(t) Jp and sin)rn(t) are cancelled

by the zeros of the signature factor (4.11) and the
Clebsch-Gordan coeKcient (4.12). We can explicitly
calculate the asymptotic form of (4.10) at n(tp) —J'p as

F)llll4 )llll2 (sit)

=(—1)'" "'" (Jo+ ) ( (t)+-.) (t)

X CJ+)l'(t(/a lJ) + ' ' '
~

J J0
(4.13)

If ti is such that ~t(~ &Jp&/((' the form

1 v(t)
F/lr) 4, ) i/lp +(t)= (4.14)

(J—J )'" P- (t)3(J-Jo)

detail since this structure has a heavy bearing on the
question of spin independence at high energies. The
J ' factor in f»s comes from the Q function as we have
already seen in Eq. (4.2). The J '/' in fpis occurs as the
product of a pole at J=O from a Q function and a J'"
from a Clebsch-Gordan coefficient. Factorization gives
the relation ppp(t)y»(t) = (ypi(t))'. In general, happ,

and Ppy will all be nonzero as will be argued on the basis
of two strong interaction models in the next section,
and so the pole at n=O will appear in fpp suggesting
that there is now no such a thing as choosing sense or
choosing nonsense. Of course the pole at a=0 does not
correspond to a physical particle, since it occurs in an
amplitude which itself is not physical.

We shall now examine the implications which an
amplitude of the form shown in Eq. (4.8) has for the
full amplitude. More explicitly, suppose

gives the analog of (4.13) as

F.. .~ (s,t)=(1—)'" "'" (Jo+/') ( +-')7

X L(—J Jo)—'"C +I ( /' J)j + . , (415)
dJ J=Jp

and if Jp& ~/i~, /i'

gives

()
l4384 ill ll2 (t) J—n(t)

at n= Jp. All of the nonleading terms can be calculated
by using Mandelstam's version of the Somrnerfeld-
Watson transformation. It may be directly verified that
no singularities in the amplitude F arise from the
assumed forms (4.9) and (4.14). The interested reader
may verify that even if F~+(t) has the form (4.9) or
(4.14) for the right signature, no singularity is produced
in F(s,t) for nonsensical values of the helicities. ""It
is thus apparent that the naive angular-momentum
arguments are not applicable.

The significance of Eqs. (4.13) and (4.15) is now

apparent. A Regge trajectory passing through a non-
sense value Jp can contribute to helicity Qip larger than
Jp in the Regge-pole channel. In the light of this result,
there would seem to be no reason why helicity flip
larger than 1 should not be allowed to couple to the
Pomeranchuk trajectory as it passes through J=1.

V. MODELS

The fact that fixed poles in the J plane are present at
nonsense values of J in strong interaction amplitudes
of the wrong signature is a direct consequence of the
presence of a third double spectral function. '" In a
certain region of small negative values of t, the residues
of the fixed poles in ImF)„)„~(t) can be calculated
explicitly in terms of a finite integral over a product of
two on-shell Horn terms and a known function. "When
two bosons having spins ~7~ and 02 scatter into two
identical spinless bosons, the fixed pole farthest to the
right in the J plane lies at J=or+os —1 if oi+ors is even
or at or+os —2 if or+o.s is an odd integer. "This fixed
pole farthest to the right is on that sheet in the J plane
reached by continuing from large real values of J
along the real axis to the integer in question. In weak-
interaction amplitudes there are fixed poles at nonsense
values of J in both right- and wrong-signature
amplitudes. ""

~ J.B.Bronza, n, I.S. Gerstein, B.%.Lee, and I'. E. I-ow, Phys.
Rev. Letters, 18, 32 (1967).

"V. Singh, Phys. Rev. Letters 18, 36 (1967).
ss I. M. Charap, Nuovo Cimento 31, 459 (1964).
~ Ya. I. Azimov, Phys. Letters 3, 195 (1963).
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The existence of fixed poles raises the possibility
that when a Regge trajectory passes through an integer,
Jo, which is a nonsense value of J the form of the
amplitude of the wrong signature for the process
described above is

()
Fg, g, (t) =

(J—Jo)'" J—Jo J—rr(&)
(5.1)

FIG. 3. Born terms for f+

where y(to) =y[n '(Js)j would not be zero in general.
If the above form is realized, it would mean that at to

the Regge pole contributes to high-energy scattering
amplitudes involving helicity Rip greater than Jo in
the t channel. There are several models which indicate
that Eq. (5.1) is the correct form when a trajectory
passes through a nonsense value of J in a strong inter-
action amplitude of the wrong signature. The form
shown in Eq. (5.1) was found by Bronzan, Gerstein,
Lee, and Low" for weak. amplitudes in the right signa-
ture and will be extended in this section to wrong-
signature weak amplitudes.

A. Weak Amplitudes

Let Ii+ ~ be the Froissart-Gribov continuation of the
helicity amplitude for the scattering of two isovector
photons of mass m, one of helicity +1 and the other of
helicity —1 into two m mesons of mass p, . Then with
threshold factors explicitly removed

has the usual unitarity and left-hand cuts. If we call

f~~(t) the contribution of the left-hand cut to F~~(t),
we can impose two particle unitarity by means of the
Omnes' solution

F+ ~(t) near J'= 1

1 p&(t')X&(f')df'
D,(f)+-

or t' —t

Dg(t) =p(t)[J—rr(t)i (5 4)

near J=1 for some trajectory function o,. Then

1 C 1
P~ (t) =

(J—1)'" J—1 p, (f) J—rr(t)

[We have taken Dq(t) —+ 1 as f ~ ao.j
If the two pions in the Anal state have isotopic spin

1, Ii~~ is of the right signature at J= 1, and the residue
of the fixed pole in (J—1) '"F+ is proportional to
the electromagnetic form factor, Dt(0)/Dt(t). We are
unable, however, to calculate the scale factor between
the residue of the fixed pole in (J—1)—'"F+ and the
form factor in this simple model. Now suppose that the
two pions in the 6nal state have isotopic spin 0 or 2.
Then I'+ ~ is of the wrong signature at J=1, and the
residueof thefixedpolein (J 1) '"F+ ~ispr p—oroti onla

to the inverse of an unphysical zx denominator function.
Further suppose, for any of the possible isospin

states, that

(5.3)

where E signifies an integration along the two x uni-

tarity cut. XJ and D& are the continued numerator and
denominator functions for ver scattering.

If we take f+ ~ as given by the Born terms in Fig. 3,
then near J=1 we have

which gives (J—1) '"F+ ~(t) a singular residue func-
tion for a trajectory passing through J=1.The point
to be emphasized here is that fixed poles and singular
residues can occur in weak. amplitudes of both the right
signature and the wrong signature in contrast to the
strong-interaction amplitudes where fixed poles and
singular residues only occur for the wrong signature.

B. A Simple Model for Strong Amplitudes

+-'(&)=
J—1

C Let P+ ~ now be the Froissart-Gribov continuation
of the helicity amplitude for the scattering of two

(J—1)'" stable p mesons, one of helicity +1, the other of
helicity —1, into two m mesons. Again dehne Ji+ ~ by

where C is a known constant which depends on the Eq. (5.1), and call g+ ~ the left-hand-cut contribution

isotopic spin of the two pion system. This gives for to F+ . If one wishes all of the cuts except the two-
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but this would appear to be purely accidental. The
point which we have tried to emphasize is that singu-
larities of f~ in J' at wrong-signature nonsense values
of J can lead to singular residues when Regge trajec-
tories pass through these values of J.This phenomenon
of singular residues also occurs for production ampli-
tudes as we shall now demonstrate.

(&) (b)

Fro. 4. (a) Production process 4+5 ~ 1+2+3. (b) Coordinate
system for process (4a).

pion unitarity cut can be included formally in f
The full amplitude, F+ ~, is given by (5.3) with S and
D as before.

We can now illustrate one of the basic differences
between amplitudes of the right signature and those of
the wrong signature. Suppose F~ refers to scattering
in an isotopic spin state I=1. Then near J=1 )see
(3.9)], one has"

f '(t) = (J—1)'" (t),

since J= 1 is of the right signature for f~. A pole in F~
due to a zero in Dg near J= 1 appears as

p (t')S (t')r(t')dt'
X

B h' —h

where D is defined by Eq. (5.4). One sees that the Regge
residue of (J—1) '"F+ ~(t) is a nonsingular function
at the value, ts, for which u(ts)=1. However if F~
refers to scattering in an I=0 or an I= 2 state, then
near J=1

where dQ=dsdp and A is the production amplitude.

fz is nonvanishing only for even values of J such that
m& J. In order to get the correct continuation in J,
we write, following Ref. 24,

Pg„(s)=
Zgi7I m/2

from which
—1&a(1

C. A Production Model

The above arguments can also be illustrated in a
production model in which two scalar mesons (inter-
acting through a ps Lagrangian) scatter into three of
the same scalar mesons. Much of the development is
taken from Anselm, Azimov, Danilov, Dyatlov, and
Gribov'4 and the notation is theirs. The process under
consideration and the kinematics are illustrated in
Fig. 4. Figure 4(b) refers to the center-of-mass system
of 4 and 5. s= cos8 is the cosine of the angle between ps
and ps in the center-of-mass system of 4 and 5. p is
the azimuthal angle between pt and ps with ps taken
as the pole, and x is the angle between the momenta of
particles 1 and 3 in the center-of-mass system of 1
and 2.

The amplitudes at positive integral J and m are
defined by

dQ

fg„(t,t,s,x) = Pg (s)e '—"&A (tttts, x—,s,y),
4x

since g+ ~ is of the wrong signature at J=1, and the
form of F~ near a zero of D is

1 1 1 1
F '(t)=

(J—1)'" p(t) J—1 J—n(t) s-

ze™» 7 ds—Qg (s+ie)
71 7 2

' ds—Qg„(s—ie)
7 2

21I —e—
~m~A(s ~)

2x

2 7I

e
—~m(y+~)A (s ~)

2'
p, (t')E, (t') r (t')

X —Ch'.

1 1 1
(t) =

n(t) —1 p(t) ~

Of course, it is possible that

1V, (t')p, (t')r(t')
dh'.

(t'—t)

& (t)p (t)r(t)
dh'=0,

E h h0

Now the Regge residue function P(t) of (J—1) '"F~
is singular near h0 since

The above expression can be written as an integral over
the contour, c, around the interval (—1,1) in the
clockwise sense.

where

Zgi~m/2

fr-= —Q~-(s)A-(s),
c 2

(5.5)

A (s)=
27' d q7

e ines (s +)—
2'

The contour c can now be expanded to a contour c'

24 A. A. Anselm, Ya. I. Azimov, G. S. Danilov, I. T. Dyatlov,
and V. N. Gribov, Ann. Phys. (N. Y.) 37, 227 (1966).
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I

2

Fro. 5. Born terms for production amplitude fs

move in the t plane around the branch point at t=4p~
of the integrand to pinch with the singularity at t= tp.

The resulting singularity will not be zero if Nsp(tp) is
not zero.

APPENDIX

over the other singularities in the complex s plane. For
ReJ suKciently large the part of the contour at infinity
gives zero contribution. We shall now take the par-
ticular case of the graphs indicated in Fig. 5.

The helicity amplitude, fz~p(t&, t»,x), defined by
Eq. (5.5) for the diagrams shown in Fig. 5, is given
explicitly by Ref. 24. c' includes regions in both the
right- and left-half s plane. The signature is introduced
at this point in order to define an integral in which the
argument of Qs lies entirely in the right-half s plane.
This is achieved by using

Qs-(s)=(—1) +'Q s(—s)

in the integral over the cuts in the left-half s plane. Now
that the signature has been introduced, the continued
amplitude fs '+ does not vanish for odd J&tts nor
does it vanish for odd J(rts. fs '+ does vanish for
even J(rtt, however. (Odd values of J correspond to
the wrong signature, and odd J&nz are nonsense values
corresponding to the wrong signature. )

Taking fs p+(t, tts, x) as the left-hand-cut contribu-
tion, we can impose two-particle unitarity in the t
channel by the Omnes solution

fz +(t,trs, x) = fg '(t, t„,x)+
DJ' 27I1

fs '+(t, 'trs, x)Ns(t')
X pg(t') dt',

where N~/Ds is the two-particle elastic scattering
amplitude.

Suppose DJp(t)=tt(t)Pp —n(t)j near t=tp for some
even Jo. Then

1 1

tt(t) Jp n(t) 27ri—
fop„p+(t', trs, x)Ns, (t')

X ps, (t') dt'.
t' —to

If m& Jo this expression is identically zero since

frp +=0 implying that the residue of the Regge pole
in fq + vanishes for nonsense values of J in amplitudes
of the right signature. However if Jo is odd, the residue
does not vanish for m) Jo.

It can be verified that

ps, (t)fJp '+(t, trs, x)Ngp(t)dt

t—tp

cannot vanish for all t~~ and x. One can see this ex-
plicitly by forcing the singularity (A14) of Ref. 24 to

Here we give a derivation of the result of Peierls
and Trueman, Eq. (2.1). Although the derivation is

quite simple, it has caused some confusion to readers
of that paper.

Assume that only P=C=+1 contributes (PC=+1
is sufhcient). Then

F„,„,,„,„,(s,t)=F„,„,, „,, „,(s,t).
For t=0, the crossing relation

G. . . , ($,0)=P d„, ,"( /2)d„, ,"( /2)d„, ,"( /2)

(A1)

Xdti4&a' (n'/2)Ftietii, tiitie(si0) =2 d—tip&i (~/2)
S

Xd-„,~,"(prt'2)d, ),"(n'/2)d ~ "(n/2)

XF„.,..($,0)=G»,4"(s 0)(—1)"' "' (A2)

Gxpxe, Iiixe(si0) Gxiks($)5xixp5xpke ~ (A3)

One may use this in the crossing relation to calculate
F„,„,,„,„,(s,0) and obtain Eq. (2.2):

Fo.o,u o.(s 0)= 2 G44($)de 4"(~/2)do ~."(~/2)
) 1X2

Xdo ~ "( /2)de ~ "( /2) =F.. o o ( 0), (A.4)

This condition is stronger than the symmetry implied
by P=C=+1 from which we started since angular-
momentum conservation has been used. This is closely
related to the "conspirator" condition. 25 For example,
in NN scattering the amplitudes

F++ +++F++
and

ftt=F++.~ F++.

both have CP =+1.Obviously, from (A4), if f» is not
identically zero, there must be present amplitudes with
CPUT+1 of equal importance.

"D.V. Volkov and V. N. Gribov, Zh. Kskperim. i Teor. Fiz.
44, 1068 (1963) LEnglish transl: Soviet Phys. —JETP 17, 720
(1963)g; M. Gell-Mann and E. Leader, in Proceedings of the
Thirteenth International Conference on FXigh-Energy Physics,
Berkeley, lP66 (University of California Press, Berkeley, 1967);
F.. Abers and V. Teplitzi Phys. Rev. 158, 1365 (1967).L. Durand,
III, Phys. Rev. Letters 18, 58 (1967).

Conservation of angular momentum in the forward.
direction requires

Xg—'Ag=) 3
—X4

and
X3—X2=) g

—X4

or
Xg= X3,Xg= X4.

Thus, P= C=+1 implies


