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In this work we deal with a "nucleon-exchange" model for pp annihilation in Qight into pions. The aim of
the model is to explain the observed fact that, in the c.m. system, charged mesons seem to prefer the direction
of the nucleon of equal charge. As suggested by Minami, it is assumed that a virtual annihilation with
multipion production (treated in the spirit of the statistical model) is preceded by a peripheral emission of
one pion by both nucleon and antinucleon. We have taken into proper account the conditions that Lorentz
and isospin invariances impose on the structure both of the contributions of the peripheral-emission verti-
ces, and of the virtual-annihilation amplitude. A anal formula for the 7r+ (or s- ) angular distribution is
given. With the help of some physical simplifying considerations, this formu]a is reduced to a numerically
evaluable one (by using some phase-space techniques), and the results are compared with the available ex-
perimental data at the entering laboratory momenta of 1.6 GeV/c, 3.3 GeV/c, and 5.7 GeV/c. Despite the
fact that our model neglects resonance production, a satisfactory enough accord has been found.

I. INTRODUCTION

ECENTLY it has been observed that the charged
mesons emitted from annihilation in Right of

antiprotons with a laboratory momentum of a few
GeV/c have a rather definite orientation with respect
to the incoming particles' '. Negatively charged mesons
prefer small c.m. angles with the antiproton momentum
direction; positively charged mesons prefer large ones. ' '
That is, charged mesons from pp annihilation in flight
seem to prefer the direction of the nucleon of equal
charge, in contrast with a purely statistical model.

A mechanism for producing angular asymmetries of
annihilation mesons is easily established in the Koba-
Takeda model. ' ' In this model, the pp annihilation is
considered to proceed via a "core" annihilation (treated
for instance according to the statistical theory),
coupled to the dispersion of the pion clouds without
further interactions.

Thus, in pgr annihilation, the proton cloud, in which

positive charge dominates, ~ continues its forward Qight

*Work partially supported by the Consiglio Nazionale delle
Richerche, by the Ministero della Pubblica Istruzione, and by the
Fondazione Italiana A. della Riccia.

' For the first experimental evidence of this fact, see B.Maglic,
G. Kalb6eisch, and M. Stevenson, Phys. Rev. Letters 7, 137
(1961).

~For subsequent experimental work related to four-pronged
annihilations, see e.g. Refs. 12-15.

e As pointed out by Pais (see Ref. 4), the charge-conjugation
invariance implies that the m+ and ~ c.m. angular distributions,
with respect to the direction of the nucleon of equal charge, are
the same if both p and p are unpolarized.

4 A. Pais, Phys. Rev. Letters 3, 242 (1959).' Z. Koba and G. Takeda, Progr. Theoret. Phys. (Kyoto) 19,
269 (1958).' A. Stajano, Nuovo Cimento 28, 197 (1963);24, 7/4 (1962).

' H. Miyazawa, Phys. Rev. 101, 1564 (1956); S. Fubini and
W. E. Thirring, ibtd. 105, 1382 (1957).

in the global center-of-mass system as the antiproton
cloud does, in which negative charge dominates.

For a quantitative treatment, one might assume that
cloud mesons are emitted isotropically in the rest frame
of their mother nucleon. But Pilkuhn' observed that
the statistical core-annihilation probability then be-
comes a complicated function of the c.m. angles and
momenta of the cloud mesons which is difFicult to
calculate numerically.

Therefore Pilkuhn tried' to obtain the asymmetries
by working with a "pole model, " one pole being asso-
ciated with a peripheral emission of one meson. (See
Fig. 1, where the case with ore "peripheral" meson is
illustrated. ) His conclusions were contrary to the
assumption of exactly one pole for all m multiplicities,
and they were doubtful about the case of postulating
exactly two poles for all multiplicities.

Recently Minami' proposed that the pp annihilation
is dominated by a graph with two internal nucleon lines
(as in Fig. 2). Thus, here we consider a model in which
a virtual annihilation with statisticalts tnttltipiort pro-

FIG. 1. Graphs of the pole model, as considered by
H. Pilkuhn. (See Ref. 8.)

s H. Pilkuhn, Arkiv Fysik 23, 259 (1963).
9 S. Minami (unpublished). Previously the model was sug-

gested to us by V. Pelosi.
"By the word "statistical" we mean that the oG-mass-shell

amplitude for the "core" annihilation is assumed to depend in
the simplest possible way og ag thy va, rjaglt:g on which it a prQ ri
must depend.
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tributions to the transition matrix elements (T=5—1)—
for this process, arising from graphs with the same
structure as the one of Fig. 2.

In Fig. 2 the four-vectors pt, Ps, Eg, Es, Es, E4, and
Es are the four-momenta of the corresponding (enter-
ing or outgoing) particles, while the indices n;(i=1,

, 5), which can assume the values +1, 0, determine
the charge state of the outgoing pions. Obviously

(2)

FIG. 2. Our model for pp —+ Sm.

duction is preceded by a peripheral symmetric emission
of one pion by both nucleon and antinucleon. Roughly,
one expects a priori that this "peripheroidal" model will

explain qualitatively the main physical characteristics
of the pionic c.m. angular distributions in pp annihila-

tion, expecially if one bears in mind the experimental
observation that the F/8 asymmetry increases as the
total energy increases and as the pion multiplicity de-
creases. Moreover, for every multiplicity, both the
anisotropy and the asymmetry in the angular distribu-
tion of the charged pions are experimentally due mainly
to the pions emitted with greater impulse. In par-
ticular, " for pp —& Sx, the model assumes the diagram
of Fig. 2.

We were led to analyze carefully the consequences of
the model, taking into account all kinematic coefh-
cients and spin and isospin factors. Obviously our model,
in this version, does not consider resonance production.

II. GENERAL FORMULATIOÃ OF THE MODEL

We consider in this work the particular process

pp ~ ~+~+~-~-~s,

for which good experimental information (i.e., with good
statistics) is available. ' ""We want to study the con-

"Actually, for momenta up to a few GeV/c, the mean vr multi-
plicity is about 3, and the four-prong annihilations in (Ss)
constitute a large number of the annihilation processes."K. Bockmann, B. Nellen, E. Paul, B. Wagini, I. Borecka,
J. Diaz, V. Wolff, J. Kidd, L. Mandelli, L. Mosca, V. Pelosi, S.
Ratti, and L. Tallone, Nuovo Cimento 42, 954 (1966), and
references therein; V. Russo (private communication); A. M.
Rusconi, thesis, Universita di Milano, 1965 (unpublished)."T.Ferbel, A. Firestone, J. Sandweiss, H. D. Taft, M.Galloud,
T. W. Morris, W. J. Willis, A. H. Bachman, P. Baumel, and R. M.
Lea, Phys. Rev. 143, 1096 (1966).

'4V. Alles-Borelli, B. French, A.. Frisk, L. Michejda, and E.
Paul, Nuovo Cimento (to be published).

"See also, e.g., T. Ferbel, J. Sandweiss, H. D. Taft, M.
Gailloud, T. W. Morris, R. M. Lea, and T. E. Kalogeropulos,
in ProceeChngs of the 196Z International Conference on EIigh-Energy
Euclear Physics at CERE, 196Z, edited by J. Prentke (CERN,
Geneva, 1962); C. Baltay, T. Ferbel, J. Sandweiss, H. D. Taft,
B. B. Culwick, W. B. Fowler, M. Gailloud, J. K. Kopp, R. I.
Louttit, T. W. Morris, J.R. Sanford, R. P. Shutt, D. L. Stonehill,
R. Stump, A. M. Thorndiite, M. S. Webster, W. J. Willis, A. H.

The two internal lines of the graphs refer to virtual
nucleons with four-momenta qt =pt —Et and

qs ——Es—ps, and with the third component of isospin
equal to p and 0.. The p and 0. may assume the values

~2, and they are univocally determined when we fix
n~ and e5, owing to charge conservation. With this nota-
tion, the contribution to the T-matrix element from
the graph of Fig. 2 can be written

(f(
7~i) =o&4'(I' f I'~) X3EI;,

where, applying the standard rules, one obtains"

G,G,
„,~(ps)Vs

(2x-)""L32P&,Ps,kt, kspkspk4pksp]

(3)

ps+ 1%

X
q2' —m'

gt+m
&'"(stadt) Vs~(pt). (4)

pe SZ2

~& TT

(&s) ~—~~-Tl
N f)g

8 TI

FIG. 3. The statistical "core" annihilation here considered. Note
that with our conventions 0-'= —cr, q2' = —q2.

Bachman, P. Baumel, and R. M. Lea, in nucleon Structure,
edited by R. Hofstadter and L. I. SchiG (Stanford University
Press, Stanford, California, 1964), p. 267; T. Ferbel (un-
published).

I With the metric (+———), and in natural units.
~' The experimental value of G is G'/4s = 14.6.

In Eq. (4):

(a) G~t ——V2G; Gs ——G, G being the (ppx') coupling
constant. "

(b) rm is the nucleon mass.

(c) m(pt) is a positive-energy spinor with momentum

yt, e(ys) is a negative-energy spinor with momen-

tum —ys, satisfying the equations (& pt —rN)w(pt)
= (7 ps+en)e(ps) =0. The adopted norma1ization is

ttr(yt)w(pt) = 1 and 8(ps) e(ps) = —1; the helicity indices
are understood.

(d) u—:(rrs, us, cr4) and E= (Ks,Ks,E4). —
(e) Ol ~p'(qtqsE) is a 4X4 matrix in the Dirac-
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spinor space, and has the proper Lorentz and isospace
transformation properties.

Searing in mind that the intrinsic parity of a m is —1,
the Lorentz structure of 8 is assumed to be the
following:

Q I n (q,q,K) —ysA In (q,q,K) (5)

where A ~I"(qlqsK) is a Lorentz scalar.
Taking into account its transformation properties for

isorotation, we can write (see Fig. 3)

A "(qtq~)= Z (~IT,o)A'"(qtqsK)(TIp) o) ~ (6)
v, T

The (p,olT) and

(nlrb,

o) are the coefficients of the
decomposition into eigenstates of total isospin T and
its third component (which is not explicitly written),
respectively, for a state formed by two particles with
isospin 2 and third components p, —0, and for a state
formed by three particles with isospin 1 and third com-
ponents n2, n3, n4. It is well known that in the second
case the total isotopic spin and its 3rd component are
not enough to single out the decomposition terms, and
it is necessary to introduce a third quantum number v,
which appears in formula (6).

At this point, since more detailed dynamic informa-
tion is lacking, we make the "statisticat'"s ts hypotitesis

that Ar "(qtqsK) is independent of all those variables
on which et pnori it should depend, and write

I
A~ "(qtqsK) Is=34 (7)

where A. is a constant with the dimensions of a length,
which —if one takes the model seriously —will turn out
to be, e.g., about 8 F for an entering laboratory
momentum of 5.7 GeV/c. (Actually, as we do not con-
cern ourselves with diferent-multiplicity processes, the
introduction of the A parameter is not strictly neces-
sary. ) With our assumptions, we get

I
A In'(qlqsK) Is=XI, ,+interference terms, (8)

having set

VeT

Let us consider the reaction

p(pl)+ p (ps) ~ m (Ktnl)+sr (Kstrs)+tr (Kstss)

+n-(K4n4)+sr(Ksns). (10)

The contribution of the graph of Fig. 2 to the differen-
tial cross section, averaged on the entering nucleon
helicities, is given, if we neglect the interference terms
in Eq. (8), by

G~,'G~,'
do-=A.4

m'bt41(pl+p, —p E,) I p

(2w) ls

We 6nd easily"

L(p .p )2 m4jl/2 (q
2 ms)2(q 2 ms)2

dKl dKs dKs dK4 dK,
x-,' 2 I ~(1 )74(v q+m)~s(~ qt+mhs~(» ) I' (»)

(helicities) 2Eg, 2/2, 2E30 2E4, 2E5,

(helicities)
Iv(ps)ys(y. qs+m)ys(y. qt+m)ysw(pt)l'= Tr{(y qs —m)(y qt+m)(y ps+m)(y qs+m)

16m'

X(y ql —m)(y Pl+m)}= Il(PtPsKtKs). (12)
16m'

The explicit trace expression is

+(plpsK1Ks) 4{m +m'(pl ps ql qs )+m L2 (ql ' qs) (ql ' qs 2pl' ps pl ql pl' qs+ ps' ql+ps ' qs) —2 (pl ' qt
—pl qs)(ps ql —ps qs)+ql'(pl ps —2ps qs)+qs'(pl. ps+2pl ql —2ps ql —ql')] —2(pl ql)(ql qs)(pl qs+ps qs)

+2qt'(pt q,)(ps. qs)+2qs'(pt ql) (p, ql)+2(pl ps)(ql q,)'—qt'qs'(pt p,)}.
Some aspects of this evaluation are given in Appendix 8, while in Appendix A we give the meaning of the jnvarj-

ants one meets with in this trace calculation.
If we put

Il(plpsE'1Ks)
G(1,5)—=G(ptpsKtKs) =-

(qls ms)2(qss ms)s

where ql
——pl —Kl and qs

——Ks—ps, we get

Q 2G 2 dK1 dKs
do=Ite L(p . p )'—m4] 1"G(1,5)I~, .5"'(Pl+Ps—P K;) (13)

16(2sr)" 2Eg, 2Z5,
'4 M. Kretzschmar, Ann. Rev. Nucl. Sci. 11, 1 (1961); R. Hagedorn, Nuovo Cimento 15, 434 (1960)."P. Srivastava and G. Sudarshan, Phys. Rev. 110, 765 (1958)."See, e.g., S. Schweber, Art Iwtrodetetiol to Retotisistie Qetarttstrl Field Theory (Row, Peterson and Company, Evanston, Illmois, 1961).
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P= 1.6 Gev/c

4x 674 CHARGED PIONS

r150-
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C)

L4J
6)
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th
o 400.
K

200.

Ql
X
Z 200-

Pa 3.3 Gev/c

4x 1596 CHARGED PIONS

700-

500-

M

O
a. 400-
LL.D
lK

300-
X
2'.

200

P= 5.7 GeV/c

4x 872 CHARGED PIONS

(a)

I i 1» I 1 1 4 1 I 1 & 1 2

100-
(b)

2 4 2 I 2 2 ~ ~ I 2 2 i ~ I 2 ~

100-

(c)
0

~ i I ~ ~ ~ ~ I ~ t i ~ I i ~

(a) (b)

cos4' +-1 cos@

(c)

Fro. S. The c.m. distributions of the (charged) c. from the reaction (14), with respect to the direction of the incoming antiproton,
at the three experimentally available laboratory momenta. The continuous lines are the theoretical curves yielded by our model. The
experimental data are respectively taken: (a) from Ref. 1, for 1.6 GeV/c; (b) from Ref. 13, for 3.3 GeV/c; (c) from Ref. 14, for 5.7
GeV/c.

E3 is well known":

Z, (0,b) =gs
Xs -P 2 4 2-1/2

dgs (g22 —/42)'/2—
2

2

(30)

Therefore, we may rewrite Eq. (26) as follows:

It 1
——22rsG (S,g, COSH) dg (g 2 ps)1/2

Xs -g 2 4 2-1/2

dg (g 2 p2)1/2

and we get in conclusion

7 00 7 xg

I,(s, cosa) =-~(s) dg, (g22 —&2)«2e(g, —I )e(~4—4&)S,(s,g, cose) =-a(s) dg, (gs2 —/2)»2~, (s,g, costi). (32)
0 3

Considering now the integral 82 of formula (22), we
could proceed as we did for d~, assuming in this case

Ks I"I———Ks, (33)

that is to say, more generally, effecting the substitution
(24), for every fixed qr, in the function G(2,5). But, as
d~ relates to the charged pions emitted in the virtual
"core" annihilation, one may reasonably assume that
it depend only weakly on the direction of K1, thus
supplying a quasi-isotropic contribution to the charged-
pion distribution. Ke do not make any attempt to
evaluate such a "background, " but we keep it as an
adChtive fitth/2g parar/2eter, depending only on the total
energy 4v/s.

In conclusion, one obtains the following 6nal formula
for the charged-pion distribution from reaction (14):

The comparison with experimental data has been
done for 1.6 GeV/c, ' 33 GeV/c, " and 5.7 GeV/c'4
laboratory momenta, using an IBM-7040 computer.
It is shown in Fig. 5. The best Gt has been obtained with
quite reasonable"'2" A values: namely, e.g., A= (13.9
&0.5) F for 3.3 GeV/c, and h= (7.8+0.3) F for 5.7
GeV/c. The accord between the theoretical lines, nor-

FIG. 6. A natural modi6cation of the
model. We believe that the c.m. charged-
pion distributions would not be affected
substantially by this change. Here E
means nucleon.

=h'Ir (s, cose)+z(s) . .

d costI
(34) ~ B.Desai, University of California Lawrence Radiation Labo-

ratory Report No. UCRL-9024 (unpublished).
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«tt lrf ref 'thill )41' g' Limitir4g o24rsetnes to the dhagrum of Fig. 4(a), we can
choose the variables

s= (pl+ps)'=4pss,
Eg—=x=—Eg„ES—=E5„
Q'= (Et+E5)2

(81,85. scattering angles of pions 1 and 5 relative to
the entering antiproton direction).

Qt'

rt 043

p

tt~' 0«' 4ta-

FIG. 'tt'. Another proposed "model, " whose contribution at higIg
energies could possibly explain the "backward tail" we can observe
in the charged pion distributions (see in particular Fig. 5).

dualized to the charged-pion numbers, and the experi-
mental histograms' "'4 is satisfactory enough, except for
the back.ward "tail," which appears at the higher
momenta, i.e., at 3.3 and 5.7 GeV//c.

Our model does not take into account the production
of resonances, which seem to appear largely in the more
recent data, for the pion multiplicity here considered
(especially the p, which enters very abundantly). A
natural modification of the model would be the one
represented in Fig. 6. But we believe —as it may be
argued also a priori that the c.m.—distributions of the
charged pions would not be substantially aBected by
this change. On the other hand, the aforementioned
"backward tail" could possibly be obtained considering
also graphs of the type one gets from Fig. 1, substituting
a peripheral p-emission vertex to the one-pion vertex
(see Fig. 7). Finally, another model, similar to the one
shown in Fig. 6 but with only one "peripheral" vertex,
has been proposed very recently in Ref. 14.

Then we get

(s—4m')'" =2P 2 (p'pm')'" =1/s
(E 2 p2)1/2

I
K

I (E 2 ~2)1/2

pl'p2= 2$—m,
El pl ——-'2Elgs+P

I
Kl I cos81,

El'p2 —2Etgs P
I K1I cos81 )

E5 pl= 2Esds+P
I K5I cos85,

E5 P2 —2E5+s—PI K5Icos85,
pl'ql=m El pl &—
p2'q2 E5'p2 m

pl'q2 E5'pl pl'p2 p

p2'ql pl'p2 El'p2
p

ql' =m'+/ll' —Ebs—2P
I
Kl

I
cos81,

q22 =ms+/42 Esses+ 2P—
I
K5

I
cos8, ,

ql'q2=/4 2Q pl'p2+Es'pl+Ill'p2 ~

The assumption

6&=q2 ) 9'&o= 02o ~

brings many simplifications. It is equivalent in the
preserlt case [see Eq. (23) of the text) to setting

Ks Kl ) E5 El ) cos85= cos81 ) Q'=4E1 =4x—
APPENDIX 3

We want evaluate the spin factor for the f4rst gr/Jph

[Fig 4(u)1, i.e., .
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APPENDIX A

The kinematics of interest for reaction (14), in the
global c.m. system, is the following:

Pl P2 pl p2 =ps pl p2 =p m

Pl+P2 El+E2+E3+E4+E5 ~

By definition (see Fig. 2)

q2=E5 —P I p I
=

I p I
—=

I pl =—P.

with

-'218"(p)0~'(p)I'= F(p pEE)
r, a 16m'

0= ps(qs+m)ys(ql+m)ys.

T2= pl ' p2 ql q2

T4= 2 (ql' q2) (ql '
q2 2pl ' p2 pl ql pl q2

+p. ql+p2'q2)+2(ql p2)(pl'q2 pl'ql)
+2(qs p2)(pl ql —pl q2)+ql'(pl p2 2p2'q2)

+q2 (pl p2+2pl'ql 2p2'ql ql ) p

The procedure is "standard. " The explicit expression
of the function F of formula (12) will be

F(plp2E1E5) =Tr((qs —m) (ql+m) (ps+m)
X (q2+m) (ql —m) (Pl+ m) }

=4(ms+m4T2+m'T4+Ts),
where
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g(s, Ki) = dK2,
CI

(Gi)

where Ci=Ci(Ki) is the set of values of K2 for which,
at fixed Ki, the following system [K;,= (K;2+tz2)' 2)

and

2 6= 2(ql'q2)[(pl'p2) (ql'q2) (pl'ql) (p2'q2)

(pl'q2) (p2 qi) j+2ql (pi q2) (p2-q2)

+2q2'(pi qi)(p2 ql) qlq2 (pi p2).

From a computational point of view, with the si2mp/ifyizzg

assumption (A1), one gets in the c.m. system [see
Eq. (23) of the text)
—4'F (p,p,EiE,)—= -',F(s,x)

= 8+0 cosHi+6 cos 82+ S cos gi ~

where x=—E~=—E~„and where

8=zzz +—zzz'(t 2d)+—m'(2w' 2a' —2c' —d'+—2cd

+2dt+4ac+4ad 4aw— 4cw—4w—t) +2 a'w

+2czw+2w't d't —4aed-,
S=b[4m4+—zzz2 (8w 8a 4c—4t—2d—)+4—ad+4cd

+4dt 4aw —4cw+—8acj,
6—=4b [22zzz +2w —2a 2c —d t)—,

—
x)—=8b',

in which
8=—m2 ——x~ s1

s V )

b=—[(-'s—zm') (x'—p, ')g'"
c=g s x— s sP~
d=—m' —e

e=—s~' s—p, ,
t=pl'p2 —$ zzz

w= tz2 2x' —t+x—gs —2b cos8i.—

Besides, in the adopted approximation,

(qi2 —zzz2) (q22 —zzz2) = (2b c s0o,+e)'

APPENDIX C

While considering the kinematics of our reaction
with five equal-mass final bodies, we evaluated also
the c.m. 'volume', in the impulse space, of the allowed
kinematical region for the three-momentuin Kz of a
final particle, at fixed three-momentum Ki of one of
the other four 6nal particles.

Owing to its intrinsic interest, we report that evalua-
tion here. We propose to calculate the integral

[A'—v2 —3tz' & 2tz (A' —s') '~'1 . (c8)

cue be satis6ed. That is to say, we have to determine,
for each fixed Kl, the set of the values of K2 in corre-
spondence to which there exist vectors K2, Kz, and K4
that satisfy the system (C2). As before, the dependence
on s is often simply understood.

Let us first notice that, whatever Kz may be, the
second equation (C2) can be satisfied provided that
one chooses K4———(Ki+K2+Kz+Kz). Thus one is
driven to look for the values of Kz, in correspondence
to which there exist some K2 and Kz that satisfy

gs El, —E,, —E,, —
[(K,—+Kz+K2+Kz)2+zz')"'-K, =—0. (C3)

We may try to solve the problem in steps. First, one
asks what conditions one has to impose upon Ki, Kz,
and K2 in order that (C3) may be satisfied by some
values of Kz. Those conditions single out a certain region
C(KiK2K2). Next, one asks what conditions upon Kl
and Kz are necessary to the existence of values of K2
for which C(KlK2K2) is not empty. Thus one obtains
a new region C(KlKz); the set of the values of Kz
for which C(KiKz) is not empty will be the integration
domain Ci(Ki) we are looking for.

To make this program progress, let us put (x=—.Ki,)
&—=gs —Ei,—=gs —x,

A = $ Ez„——
B=A—E2„
v=K,+K„.—= I vl,

k;—= lK;l, (2= 1, ",3).
Equation (C3) may be rewritten, setting s"=E2 u,

8 (kz +t)z'"+ (u'+—k22+2ukzs" +tz2)»2=0 (C5)

The above-defined region C(KlK2K2) is determined by
the condition that Eq. (CS) may be satisfied by some
values of kz and s", with kz&~0, le"

l
~&1. One obtains

c(K,K,K,): a~& (4„2+„2)»2. (c6)
More explicitly, if one sets s'=E2 fr, one has

C(KlK2K2): A —(k22—tz2)'"
—(4tz +v'+02 +2vkzs')'~2~& 0. (C /)

The condition that Eq. (C7) be satisfied by some
values of k2 and s', with k2&~0, l

s'l ~& 1, picks out the
region C(KiK2):

[A&~O and A2—a—3t 2&~0)

5

gs —P E;,=0,

5

p K;=o,

(C2)

This condition (at fixed Ki) depends only on kz and
z=Ei Ez. Let us now identify K2 by means of its
polar coordinates kz, z, 4t, the last being the azimuthal
angle with respect to a reference polar plane passing
through Ki. It is then clear that, for every allowed pair
of values of k2 and s, att the g values are allowed too.
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Consequently, Cl(Kl) is the direct product of the itner-
val (0,22r) and the set Ci(Kl), consisting of all the pairs
k5 and s for which at least one inequality (CS) may
hold.

Thus one reaches the following result: Cl(Kl) is

empty, unless (for g/s) 5p)

x ~& (s—15p2)/2+s. (C9)

If (C9) is satisfied, the results for Cl(Kl) are as fol-
lows (x~)p):

(V'$—p)' —Sp'
(1) If x( , then

2(gs —p)

where
Cl(K1): —1(S(sl(s,x~K52) ~ p&E52& 62(s,x) i (C10)

si(s,x,K5,)=1 when ei(s, x) &Z'5 (52(s,x)

P—ki2 —8p2—2$Ã5,
when p&E5,& 52(s,x) .

(Q 2 p2)l/2

(V'$-p)'- Sp'
(2) If x) , then

2(v'$ —p)
+1(Ki) ~

—1&s&22($)x)E52) j 51(syx) &+52& 52($)x) 1

where

P—ki2 —Sp2 —2$1t 5,
s2(s, x,E5,)=

2kgk{j

~l(s,x) and 52(s,x) are the two solutions of the equation:

4L(g p)2 ki2$52 4(g p)[($ p)2 ki2 3p2)5+(L($—p)2 —kl2 —3p2j+4k 2p2) = 0

That is to say

(
52(s,x) $(P—kl2 —Sp') kl

$($2 k 2 Sp2)2 4p2((2 k 2) jl/2

(s,x) 2(p —kl') 2V—kl')

According to these results, except for the total-energy dependence, g(s, Kl) depends only on kl.

g(s, Kl) = g(s, x),
and finally we have

(C11)

(C12)

(C13)

(C14)

with

($—15p' /'(v'$ —p)' —Sp' ( (4$ p)' Sa'— —
g(, )=2 ~i — ~l —* g (,*)+el*— g (,*),

2+s i 2 (gs—p) k 2 (gs—p)
(C15)

gi(s, x) = d+5 lt5 (g5 2 p2)l/2Esl(s, x K5 )+1j= 22 (522 p2)8/2 2 (522 p2)3/2

1
+ L(P—x'—&p')(5l' —p') —$(~l' —p')3, (L16)

4k'

g2($)x) = (Q 2 p2)1 2L /( 2x2KS5 )+1]=2 (5 p, )2 2 (5 p )2

1
+ L(p x —7p ) (52 El ) $(62 —52 )j. (C16 )

4k'


