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In this work we deal with a “nucleon-exchange” model for p# annihilation in flight into pions. The aim of

the model is to explain the observed fact that, in the c.m

. system, charged mesons seem to prefer the direction

of the nucleon of equal charge. As suggested by Minami, it is assumed that a virtual annihilation with
multipion production (treated in the spirit of the statistical model) is preceded by a peripheral emission of
one pion by both nucleon and antinucleon. We have taken into proper account the conditions that Lorentz
and isospin invariances impose on the structure both of the contributions of the peripheral-emission verti-
ces, and of the virtual-annihilation amplitude. A final formula for the =+ (or #~) angular distribution is
given. With the help of some physical simplifying considerations, this formula is reduced to a numerically

evaluable one (by using some phase-space techniques),

and the results are compared with the available ex-

perimental data at the entering laboratory momenta of 1.6 GeV/c, 3.3 GeV/c, and 5.7 GeV/c. Despite the
fact that our model neglects resonance production, a satisfactory enough accord has been found.

I. INTRODUCTION

ECENTLY it has been observed that the charged
mesons emitted from annihilation in flight of
antiprotons with a laboratory momentum of a few
GeV/c have a rather definite orientation with respect
to the incoming particles’?: Negatively charged mesons
prefer small c.m. angles with the antiproton momentum
direction ; positively charged mesons prefer large ones.?*
That is, charged mesons from pj annihilation in flight
seem to prefer the direction of the nucleon of equal
charge, in contrast with a purely statistical model.

A mechanism for producing angular asymmetries of
annihilation mesons is easily established in the Koba-
Takeda model.5® In this model, the pp annihilation is
considered to proceed via a ““core” annihilation (treated
for instance according to the statistical theory),
coupled to the dispersion of the pion clouds without
further interactions.

Thus, in pp annihilation, the proton cloud, in which
positive charge dominates,” continues its forward flight

* Work partially supported by the Consiglio Nazionale delle
Richerche, by the Ministero della Pubblica Istruzione, and by the
Fondazione Italiana A. della Riccia.

1 For the first experimental evidence of this fact, see B. Maglic,
G. Kalbfleisch, and M. Stevenson, Phys. Rev. Letters 7, 137
(1961).

2 For subsequent experimental work related to four-pronged
annihilations, see e.g. Refs. 12-15.

3 As pointed out by Pais (see Ref. 4), the charge-conjugation
invariance implies that the 7 and 7~ c.m. angular distributions,
with respect to the direction of the nucleon of equal charge, are
the same if both p and p are unpolarized.

4 A. Pais, Phys. Rev. Letters 3, 242 (1959).

§7. Koba and G. Takeda, Progr. Theoret. Phys. (Kyoto) 19,
269 (1958).

¢ A, Stajano, Nuovo Cimento 28, 197 (1963) ; 24, 774 (1962).

7H. Miyazawa, Phys. Rev. 101, 1564 (1956); S. Fubini and
W. E. Thirring, bid. 105, 1382 (19357).
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in the global center-of-mass system as the antiproton
cloud does, in which negative charge dominates.

For a quantitative treatment, one might assume that
cloud mesons are emitted isotropically in the rest frame
of their mother nucleon. But Pilkuhn® observed that
the statistical core-annihilation probability then be-
comes a complicated function of the c.m. angles and
momenta of the cloud mesons which is difficult to
calculate numerically.

Therefore Pilkuhn tried® to obtain the asymmetries
by working with a “pole model,” one pole being asso-
ciated with a peripheral emission of one meson. (See
Fig. 1, where the case with one “peripheral” meson is
illustrated.) His conclusions were contrary to the
assumption of exactly one pole for all = multiplicities,
and they were doubtful about the case of postulating
exactly two poles for all multiplicities.

Recently Minami® proposed that the pj annihilation
is dominated by a graph with two internal nucleon lines
(as in Fig. 2). Thus, here we consider a model in which
a virtual annihilation with statistical'® multipion pro-
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Fic. 1. Graphs of the pole model, as considered by
H. Pilkuhn. (See Ref. 8.)

8 H. Pilkuhn, Arkiv Fysik 23, 259 (1963).

9S. Minami (unpublished). Previously the model was sug-
gested to us by V. Pelosi.

10 By the word “statistical” we mean that the off-mass-shell
amplitude for the “core’’ annihilation is assumed to depend in
the simplest possible way on all the variables on which it e priori
must depend.
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F16. 2. Our model for pp — 5.

duction is preceded by a peripheral symmetric emission
of one pion by both nucleon and antinucleon. Roughly,
one expects @ priori that this “peripheroidal” model will
explain qualitatively the main physical characteristics
of the pionic c.m. angular distributions in pj annihila-
tion, expecially if one bears in mind the experimental
observation that the F/B asymmetry increases as the
total energy increases and as the pion multiplicity de-
creases. Moreover, for every multiplicity, both the
anisotropy and the asymmetry in the angular distribu-
tion of the charged pions are experimentally due mainly
to the pions emitted with greater impulse. In par-
ticular,”* for pp — 5w, the model assumes the diagram
of Fig. 2

We were led to analyze carefully the consequences of
the model, taking into account all kinematic coeffi-
cients and spin and isospin factors. Obviously our model,
in this version, does not consider resonance production.

II. GENERAL FORMULATION OF THE MODEL
We consider in this work the particular process
M

for which good experimental information (i.e., with good
statistics) is available.l2-18 We want to study the con-

pp— wtntr a0,

1t Actually, for momenta up to a few GeV/c, the mean 7 multi-
plicity is about 5, and the four-prong annihilations in (57)°
constitute a large number of the annihilation processes.

2 K. Bockmann, B. Nellen, E. Paul, B. Wagini, I. Borecka,
J. Diaz, V. Wolff, J. Kidd, L. Mandelli, L. Mosca, V. Pelosi, S.
Ratti, and L. Tallone Nuovo Cimento 42, 054 (1966), and
references therein; V. Russo (private commumcatlon) . M.
Rusconi, thesis, Universitd di Milano, 1965 (unpubhshed)

BT, Ferbel, A. Firestone, J. Sandweiss, H. D. Taft, M.Galloud,
T. W. Morris, W. J. Willis, A. H. Bachman, P. Baumel, and R. M.
Lea, Phys. Rev. 143, 1096 (1966).

u'y, Alles-Borelli, B, French, A. Frisk, L. Michejda, and E.
Paul, Nuovo Cimento (to be pubhshed)

1 See also, e.g., T. Ferbel, J. Sandweiss, H. D. Taft, M.
Gailloud, T. W. Morris, R. M. Lea, and T. E. Kalogeropulos,
in Proceedings of the 1962 International Conference on High-Energy
Nuclear Physics at CERN, 1962, edited by J. Prentke (CERN,
Geneva, 1962); C. Baltay, T. Ferbel, J. Sandweiss, H. D. Taft,
B. B. Culwick, W. B. Fowler, M. Gailloud, J. K. Kopp, R. I.
Louttit, T. W. Morris, J. R. Sanford, R. P. Shutt, D. L. Stonehill,
R. Stump, A. M. Thorndike, M. S. Webster, W. J. Willis, A. H.
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tributions to the transition matrix elements (7'=S5—1)
for this process, arising from graphs with the same
structure as the one of Fig. 2.

In Fig. 2 the four-vectors pi, pe, K1, Ks, K3, K4, and
Kj; are the four-momenta of the corresponding (enter-
ing or outgoing) particles, while the indices a:(i=1,

-, 5), which can assume the values 41, 0, determine
the charge state of the outgoing pions. Obviously

5
> a;=0. (2)

i=1

The two internal lines of the graphs refer to virtual
nucleons with four-momenta ¢i1=p1—K; and
g2=K3s—ps, and with the third component of isospin
equal to p and o. The p and ¢ may assume the values
+%, and they are univocally determined when we fix
a; and as, owing to charge conservation. With this nota-
tion, the contribution to the 7-matrix element from
the graph of Fig. 2 can be written

IT|i)y=8®Pr—P)X My, ©)
where, applying the standard rules, one obtains!®
m GaxGas
My=— 7(p2)vs
(2m)nr [32? 10P20k10k20k30k40k50:|1/2
¥+ gatm qtm
X———@"‘[”“(4192K)——'75w(l?1) (4)
gt—m? 9=

In Eq. (4):

(a) G11=V2G; Go=G, G being the (ppn®) coupling
constant.’

(b) m is the nucleon mass.

(c) w(py) is a positive-energy spinor with momentum
pi; v(p2) is a negative-energy spinor with momen-
tum —p., satisfying the equations (v:p1—m)w(ps)
= (y:pot+m)v(p:)=0. The adopted normalization is
@(p1)w(p:)=1 and 7(ps)v(p2) = —1; the helicity indices
are understood.

(d) a= (012,013,014) and K= (Kz,K3,K4) .

(e) @=lro(qig2K) is a 4X4 matrix in the Dirac-

Fic. 3. The statistical “core” annihilation here considered. Note
that with our conventions ¢/ = —¢; ¢’ = —ga.

Bachman, P. Baumel, and R. M. Lea, in Nucleon Structure,
edited by R. Hofstadter and L. I. Schiff (Stanford Umver51ty
Press, Stanford, California, 1964), p. 267; T. Ferbel (un-
published).

16 With the metric (+— — —), and in natural units.

17 The experimental value of Gis G?/4r=14.6.



160

spinor space, and has the proper Lorentz and isospace
transformation properties.

Bearing in mind that the intrinsic parity of a = is —1,
the Lorentz structure of @ is assumed to be the
following :

@177 (g192K) =54 2177 (192K , (5)

where 4%1#7(¢1¢.K) is a Lorentz scalar.
Taking into account its transformation properties for
isorotation, we can write (see Fig. 3)

A7(qupK) = 3, (2| T AT (g2K)(T | p,=0). (6)

The {po,0|T) and {a|T,») are the coefficients of the
decomposition into eigenstates of total isospin 7" and
its third component (which is not explicitly written),
respectively, for a state formed by two particles with
isospin % and third components p, —a, and for a state
formed by three particles with isospin 1 and third com-
ponents as, a3, as. It is well known that in the second
case the total isotopic spin and its 3rd component are
not enough to single out the decomposition terms, and
it is necessary to introduce a third quantum number »,
which appears in formula (6).

At this point, since more detailed dynamic informa-
tion is lacking, we make the “statistical”*®*® hypothesis

5
mB¥® (pr+pa—2_ K.)
=1

MODEL FOR pp ANNIHILATION

d 4Ga12Ga52 I “—c
=
@m)e [(prpo)*—m* " (qP—m?)* (g’ —m)
Xt X
(helicities)

We find easily®

=

> 3(2)vs(y- gatm)ys(v- qitm)vsw(py) 2=

(helicities) 16m?

The explicit trace expression is

| 9(02)vs (v - gat-m)ys (v - qrt-m)ysw (p1) |2

IN FLIGHT 1265

that 47%(g1g2K) is independent of all those variables
on which a priors it should depend, and write

[ AT (q1g2K) |2= A%, (N

where A is a constant with the dimensions of a length,
which—if one takes the model seriously—will turn out
to be, e.g., about 8 F for an entering laboratory
momentum of 5.7 GeV/c. (Actually, as we do not con-
cern ourselves with different-multiplicity processes, the
introduction of the A parameter is not strictly neces-
sary.) With our assumptions, we get

| A«lps(g1goK) | 2= A4, _,+interference terms, (8)

having set

I“,,,_.,=Z; || T.9) P [T | p,— o) | ©)

Let us consider the reaction
(1) +5(p2) — m(Kra)+m (Koas) -+ (Ksas)
+1r(K4a4)+7r(K5a5) . (10)

The contribution of the graph of Fig. 2 to the differen-
tial cross section, averaged on the entering nucleon
helicities, is given, if we neglect the interference terms
in Eq. (8), by

dK, dK, dK; dK, dK;
2K 1o 2K 5 2K 30 2K 4 2K'5,

11)

Tr{ (y- ga—m) (v qit+m) (v- patm) (v gat+m)

1
X (v qu—=m) (v prtm)} =——F (p1pK:1K5). (12)
16m?

F(p1paK1Ks)=4{mb+m*(p1- po— g2 —q2D)+mH 2(q1- ¢2) (q1-ga—2p1+ pa—p1- 1—P1- o+ pa- g1t p2-q2) —2(p1-qu
—p1-q2) (P2 q1— pa- q2)+ g2 (1 pa—2p2- q2)+¢22 (P1- pat-2p1- g1—2p2- q1—q12) 1—2(p1- ¢1) (g1- ¢2) (P1- ga+ P2+ g2)
+2g:2(p1-¢2) (p2- q2)+292* (P1- q1) (P2 q1)+2 (p1- p2) (q1° 42)2— %2> (p1- p2) } -

Some aspects of this evaluation are given in Appendix B, while in Appendix A we give the meaning of the invari-

ants one meets with in this trace calculation.
If we put

G(1,5)=G(p1pK1Ks)=

where ¢1=p1—K; and ga=K;— p2, wWe get

Ga 2Ga 2
do=A——[ (p1-p2) =T 2 G(1,5)1% 5P (prFpo— T K2}

16(2x)®

F(p1p:K 1K)

(qe—m? (g —m?)2’

5 dK1 sz

. . 13
=l 2Ky,  2Ks (13)

18 M. Kretzschmar, Ann. Rev. Nucl. Sci. 11, 1 (1961); R. Hagedorn, Nuovo Cimento 15, 434 (1960).

19 P, Srivastava and G. Sudarshan, Phys. Rev. 110, 765 (1958).

2 See, e.g., S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, Evanston, Illinois, 1961).
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Fic. 4. The possible final
states for reaction (14). From
each diagram we can get four
graphs by exchanging the
momenta of the identical par-
ticles with one another in all
possible ways.

@ (b )

Let us now restrict ourselves to reaction (1), that is
p(p0)+D(p2) — 7+ (K1) +at (Ko)+7(Ky) +7 (Ko +7(K5), (14)

and consider for that process the contributions of the twelve graphs that one can obtain by exchanging the iden-
tical-particle momenta with one another in the three diagrams of Fig. 4.

With the same procedure used for the diagram of Fig. 2 (and with the same approximations), we will evaluate
the contribution of those graphs to the transition rate and to the cross section.

Then, if we neglect the interference terms between the various graph contributions, we get, for the differential
cross section of reaction (14), the expression

AGH
do= 1602 )19{41—1/2.1/21’0"1[0(1,5)+G(2,5)+G(174)+G(2,4)]+ 2 o2 26 (1,3)42G (2,3) -2 g,y
7y
5 dKl dK5
X[2G(3,5)42G(3,4) BL(p1-p2)*—m T2 6@ (prtpo—3" Ki)—-- YL (15)
=1 0 0
with, in general, ! ’
. F(Plsz]Kh)
G(4,1) =G (p1p2K;Kn)= ) (16)

(gP—m*) (g2 —m?)
where now ¢1=p1—K; and go=K»— p2, and with*

I 10,1280 = XE+2EXE3=17/60; I_yje 1t b 1=119,100 =4, (16"
Therefore, with our assumptions, if we define

then the c.m. angular distribution of 7=+ (or =) from reaction (14), as a function of the scattering-angle cosine,
will be

1 dot AGH dK, 2 dK. r~ dK;
¢ dcosts 8(2m)" [s(4s—m2):|1/2/ 2K, /_m 2K s /_w 2Ky,
5
0(2po—2_ K;
4Ky | K2 2 Ko
X/ H(p1psKy- - - Ks) . (18)
0

2K10 2K30 K3=—K;—Ko—K4—K3

III. NUMERICAL EVALUATION AND COMPARISON WITH EXPERIENCE
If we put, for every function G(4,%) entering in formula (17),

/m dK"’de“ fd G/~ K w(z K)
g" = 5 §— i 6 i), 19
") 2k, / 2Kt 2Ka ) 2K = (19)

2 See F. Cerulus, Nuovo Cimento Suppl. 15, 402 (1960).
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we immediately see that

915=91,4=91,35=91(s5,| Ky, costy),
and

Go5=9s,4=923=93,5=93,4=92(s,| Ky|, cosby).

Therefore, formula (18) may be rewritten as follows:

dot

©d| Ki| [ Ky[?
— Aa(s) / Y (5, | Kal, cosf) (20)
d cosb 0 2x

where
G4

x=K,y, cosf=cosb;, a(s)= [sGs—md) T2, g(s,| Ky, cosf)= (14/3) 91+ (142/15)9.. (21)

8(2m)s

Thus the problem has been reduced to the evaluation of the two integrals 9;(j=1,2). One may write, applying
the generalized mean-value theorem, that

dK, (dK; [dK,_
s= [ [0 [166,9)
2K20 2K30 2K4o
where (m) stands for mean.

Let us consider first the integral g;. In order to be able to evaluate it numerically, we make the assumption,
apparently reasonable on a physical basis, that (for every fixed K)

Ky =—Ky, (23)

which is equivalent, more generally, to the substitution of

dK5 5 5
[SoxmE K Ky, (=1 @)
K5=K5(m) 21{50 =1 i=1

©=0"=a1, ¢%=7%"=—g, (24)
into the function G(1,5) [see also Eq. (A1) of Appendix A]. If we put

G(s,x, cosf)=G(1,5)

b

Ks5=—K;
£=(Vs)—=, (25)
ng dK3 dK4 dK5 5 5
Ry(Q,8)= / / / / 3(X Ka— 0@ (X Ki—Q),
2K20 2K30 2K40 2K50 =2 =2
then we have
91=G(s,x, cosb) Ri(—Ky,%). (26)
The four-body “phase space” (for equal-mass particles) R, can be easily calculated.? 2 Let us set
555\/3 s En= (En+12_2xn+1£n+l+#2)1/27
w=x=K1, Xpn=[ful2—@— )]/ 281 (n=2,34). (27)
As R4 is Lorentz-invariant, we shall have
Ry(—Ky,£)=R4(0,£). (28)
And, using a simple recurrence relation,!® we have (u=pion mass)
dK X4
R4(0,£4) = /Ee(fs_sﬂ)RS(o;gii):zwf dx4(x42_ﬂ2)1/2R3(0}E3) ) (29)
0 »

where the explicit expression of the Lorentz-invariant three-body “phase space” (for equal-mass particles);

22 See, e.g., G. Kalbfleish, University of California Lawrence Radiation Laboratory, Phys. Notes, Memo 150, 1960 (unpublished);
0. Skjeggestad, in CERN Report No. 64-13, Vol. II (unpublished); see also M. Block, Phys. Rev. 101, 796 (1956).

% While considering the kinematics connected with our process with five final bodies, we evaluated also the c.m. volume of the
allowed kinematical region for the three-momentum of a final particle, at fixed momentum of one of the other four final bodies.
Owing to its intrinsic interest, we have reported this evaluation in Appendix C.
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F16. 5. The c.m. distributions of the (charged) =7 from the reaction (14), with respect to the direction of the incoming antiproton,
at the three experimentally available laboratory momenta. The continuous lines are the theoretical curves yielded by our model. The
experimental data are respectively taken: (a) from Ref. 1, for 1.6 GeV/c; (b) from Ref. 13, for 3.3 GeV/c; (c) from Ref. 14, for 5.7

GeV/e.

R3 is well known??:

X3

Ro(0,£)=7° /

®

Therefore, we may rewrite Eq. (26) as follows:

X4
91=2m3G(s,x, cost) f dxy(wld—p)t? /
I3

and we get in conclusion

dx3 (x32——,u2)”2|:~

2_._4, 2-1/2
& M:’ . (30)

&2

X3

E 2—4M2 1/2
2?—] ) (31)
2

dxs(xsz—,uz)m[

B

7 °° 7 X5
I4(s, cos@)=5a(s) / dws(x—u2)'20 (25— )0 (£s—4u) 91 (s x, c050)=3a(s) [ dws(x2—u2)29,(s,x, cosf). (32)
0 B

Considering now the integral 9, of formula (22), we
could proceed as we did for g1, assuming in this case

K5 m) = — Kz y (33)

that is to say, more generally, effecting the substitution
(24), for every fixed ¢, in the function G(2,5). But, as
d, relates to the charged pions emitted in the virtual
‘“core” annihilation, one may reasonably assume that
it depend only weakly on the direction of Kj, thus
supplying a quasi-isotropic contribution to the charged-
pion distribution. We do not make any attempt to
evaluate such a “background,” but we keep it as an
additive fitting parameter, depending only on the total
energy 4/s.

In conclusion, one obtains the following final formula
for the charged-pion distribution from reaction (14):

= A4 +(s, cos)+Z(s). (34)

d cosf

The comparison with experimental data has been
done for 1.6 GeV/c,! 3.3 GeV/c,® and 5.7 GeV/c ¥
laboratory momenta, using an IBM-7040 computer.
It is shown in Fig. 5. The best fit has been obtained with
quite reasonable!®%:2 A values: namely, e.g., A= (13.9
+0.5) F for 3.3 GeV/c, and A= (7.840.3) F for 5.7
GeV/c. The accord between the theoretical lines, nor-

F16. 6. A natural modification of the
model. We believe that the c.m. charged-
pion distributions would not be affected
substantially by this change. Here N
means nucleon.

% B. Desai, University of California Lawrence Radiation Labo-
ratory Report No. UCRL-9024 (unpublished).
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F16. 7. Another proposed “model,” whose contribution at kigh
energies could possibly explain the “backward tail” we can observe
in the charged pion distributions (see in particular Fig. 5).

malized to the charged-pion numbers, and the experi-
mental histograms®%:* is satisfactory enough, except for
the backward ‘““tail,” which appears at the higher
momenta, i.e., at 3.3 and 5.7 GeV/e.

Our model does not take into account the production
of resonances, which seem to appear largely in the more
recent data, for the pion multiplicity here considered
(especially the p, which enters very abundantly). A
natural modification of the model would be the one
represented in Fig. 6. But we believe—as it may be
argued also a priori—that the c.m. distributions of the
charged pions would not be substantially affected by
this change. On the other hand, the aforementioned
“backward tail” could possibly be obtained considering
also graphs of the type one gets from Fig. 1, substituting
a peripheral p-emission vertex to the one-pion vertex
(see Fig. 7). Finally, another model, similar to the one
shown in Fig. 6 but with only one “peripheral” vertex,
has been proposed very recently in Ref. 14.
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APPENDIX A

The kinematics of interest for reaction (14), in the
global c.m. system, is the following:

P1=—P2, Pu=pp=po, pl=pl=p’=n’,
pr1+po=Ki+Ko+Ks+ K+ K.
By definition (see Fig. 2)

a=p1—Ki, ¢=Ks—p2, |p|=|p:|=|p|=P.

MODEL FOR pp ANNIHILATION IN FLIGHT
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Limiting ourselves to the diagram of Fig. 4(a), we can
choose the variables

s= (prt+p2)*=4p,
ElExEKlo, EsEKao,
0= (K1+K5)?
(61,05 scattering angles of pions 1 and 5 relative to
the entering antiproton direction).
Then we get
(s—4m?)2=2P | 2(prm?)i2=4/s,

I Kll = (Elz__#z)l/z, l K5| — (E52—y2)1/2,
prpo=3s—m?,
Kl'ﬁ1=%E1\/S+PI K1] cosfy ’
Kl'Pg-——-%El\/S—PI K1|C0501 y
Ky p1=3En/s+P| Ks| cosfs,
K5+ py=53Esn/s—P|Ks| costs,
prqi=m’—Ky-p1,

P2 qa= Ky po—m?,

P1°@2=Ks: p1—p1- p2,

P2 1= pr1-pr—Ki-ps,

q2=mt+u2— En/s—2P| Ki|cosb;,
g =m2+u2— Esxn/s+2P| Ks| cosbs,
Q1 @e=p*—3Q— p1- pot+Ks- p1-+ K1 pa.

The assumption

G=q2, §1,= =3, (A1)
brings many simplifications. It is equivalent in the
present case [see Eq. (23) of the text] to setting

Ki=—K:, Es=E:, cosfs=—cosb;, Q?=4E>=442.

APPENDIX B

We want evaluate the spin factor for the first graph
[Fig. 4(a)], i.e.,

1,2

1
1 2 |97 (p2)Ow*(py) |2=——F (p1p2K 1K),
16m?

with
O="ys(get+m)vs(qtm)ys.
The procedure is ‘“standard.” The explicit expression
of the function F of formula (12) will be
F(p1p2K1K5) = Tr{(qz2—m) (q1+m) (p2-+m)
X (g2+m)(g1—m) (br+m)}
= 4(m5+m4T2—}—m2T4+ Te) )
where
To=p1 pa—qi*— ¢,
T=2(q1°¢2) (q1°q2—2p1" po—p1- 1—p1°¢2
+P2'91+P2'Q2)+2(91'P2) (pr-g2—p1-q1)
+2(g2: p2) (11— p1° q2) 91> (p1- pa—2p2"q2)
+q2(p1- pot-2p1- 12— 2p2- 1—q1?) ,
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and

Te=2(q1-g2)[(p1-$2) (g1°¢2) — (p1-q1) (p2-q2)
— (p1°92) (p2- 1) ]4+-2¢22(p1- ¢2) (P2- q2)
+2¢2* (p1-q1) (p2-q1) — g1 (pa- o) -
From a computational point of view, with the simplifying

assumption (Al), one gets in the c.m. system [see
Eq. (23) of the text]

1F (p1p2K K 5)=1F (s,x)
= @+® cosf1+C cos?01+ D cos®dy,

where x= E;=K,,, and where

c=mS+m*({—2d)+m?(2w?— 2a>— 2¢*— &>+ 2cd
+2di+4ac+4ad— daw— dew— dwl) + 202w
+22w4-2w— d?—4acd ,
®=b[ 4m*+m?(8w— 8a— dc— 4t— 2d)+4ad+4cd
+4dt—4ow—4cw+8ac],
Ce=42m*+w—2a—2c—d—t),
D=88°,
in which
a=mP—3x\/s,
b=[(Gs—m?) (£ —u?) ]2,
c=hy/s(e—v/5)
d=m?—e,
€= x’\//s_'l‘z)
1=p1* pa=3s—m?,
w=p?— 2x%— {+x4/5—2b cosb;.

Besides, in the adopted approximation,
(q2—m?) (22— m?) = (2b cosf+e)?

APPENDIX C

While considering the kinematics of our reaction
with five equal-mass final bodies, we evaluated also
the c.m. ‘volume’, in the impulse space, of the allowed
kinematical region for the three-momentum Kj; of a
final particle, at fixed three-momentum K; of one of
the other four final particles.

Owing to its intrinsic interest, we report that evalua-
tion here. We propose to calculate the integral

g2(s,K)= [ dKs,

C1

(&)

where C;=C1(Ky) is the set of values of Kj for which,
at fixed Kj, the following system [ K ;= (K2+u2)1/2]

\/S—i K1-0=0,
- (c2)
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can be satisfied. That is to say, we have to determine,
for each fixed Kj, the set of the values of Kj; in corre-
spondence to which there exist vectors K, K;, and K,
that satisfy the system (C2). As before, the dependence
on s is often simply understood.

Let us first notice that, whatever K; may be, the
second equation (C2) can be satisfied provided that
one chooses Ki=— (K;+K:+K;+K;). Thus one is
driven to look for the values of Kj, in correspondence
to which there exist some K, and K; that satisfy

\/s'"Klo_K%—K%
—E(K1+K5+K2+K3)2+p,2]1/2—K5o=0. (CS)

We may try to solve the problem in steps. First, one
asks what conditions one has to impose upon K, Kj,
and K, in order that (C3) may be satisfied by some
values of K;. Those conditions single out a certain region
C(KiK;Ky). Next, one asks what conditions upon K;
and K; are necessary to the existence of values of K;
for which C(K;K;K5) is not empty. Thus one obtains
a new region C(K;K;); the set of the values of Kj
for which C(K;Kj) is not empty will be the integration
domain C:(K;) we are looking for.

To make this program progress, let us put (x=Kj,)

f=q/s— Ki;=1/5—x,
A=t—Ks),

BEA_K20,

v=K+K;, 1»=|v|,
u=v+K,, u=|u|,
kiEIKil, (’L=1,,5)

Equation (C3) may be rewritten, setting 2/ =Kj-4,
B— (k2 4-p)' 2+ (2R 2uksz’’+u2)2=0. (C5)

The above-defined region C(K;K;Ky) is determined by
the condition that Eq. (C5) may be satisfied by some
values of k3 and 2", with %320, |2”| < 1. One obtains

(C4)

C(K1K5K2) . BZ (4;1,2-1-/.62)1/2. (C6)
More explicitly, if one sets 2’=K,- 9, one has
C(KlKaKz) : A— (kzz—‘,uz)llz
— (4p2H-22 -k 20k2' )12 2 0. (CT)

The condition that Eq. (C7) be satisfied by some
values of &y and 2/, with k>0, |2'| <1, picks out the
region C(K;Kj):

[430 and A*—#*—3:23 0]
or
[ 42— 02— 323 2u (42— @)12]. (C8)

This condition (at fixed K;) depends only on ks and
3=K;-K;s. Let us now identify K; by means of its
polar coordinates ks, 2, ¢, the last being the azimuthal
angle with respect to a reference polar plane passing
through Kj. It is then clear that, for every allowed pair
of values of k5 and 2z, all the ¢ values are allowed too.
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Consequently, C1(K,) is the direct product of the itner-
val (0,27) and the set C1(K}), consisting of all the pairs
ks and 2 for which at least one inequality (C8) may
hold.

Thus one reaches the following result: Ci(K,) is
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empty, unless (for 4/s> 5u)
xS (s—15u2)/24/s. (C9)

If (C9) is satisfied, the results for C1(K;) are as fol-
lows (x>u):

(V/s—u)*—8u
1) if x<——, then
2(v/s—n)
C'l(Kl) . 1SZS21(S,9C,K50) ) MSKEOS 62(s’x) ) (ClO)
where
21(5,2,K5,)=1 when €(s5,5) <K5 < e2(s,%)
E—k*—8uP—2¢K 5, hen p< Ko< ex(5.0)
= when u<K5<e(s,x).
2y (K 52— )12 So=51
(V/s—u)*—8u?
(2) If x>———, then
2(v/s—u) _
Cl(Kl) L 1SZSZQ(S,OC,K50) 3 61(8,96)SK50S 62(5)90) ) (Cll)
where
£ k2— 82— 24K
20(5,2,K 5,) = i 50.
2k1ks
e1(s,x) and e(s,x) are the two solutions of the equation:
AL R4 Gkt — 3 er ([ (E—n)— ko — 3T+ it} =0. (c12)
That is to say
(el(s’x)> E(?—klz—&ﬂ) k1 F(Ez b2—8 2)2 4 2(52 k 2)]1/2 (C13)
= =+ — ki — 8t — AP (£ — .
a2)  2E—kd) 28—k 1
According to these results, except for the total-energy dependence, g(s,K;) depends only on %;:
g(S,K1)=g(S,IXI) ) (C14)
and finally we have
s—15u2 (V/s—n)—8u? (V/s—n)?—8u?
Z(s,2)=2m 9< — x> {6(——*—— x)él(s,x)—l—e(x———————)gz(s,x) l , (C15)
. 2/s 204/5—1) 2(v/5—1)
with
€2(s,2)
Bo)= [ R T o) 1] = et i
n
1
-I-Zk—[(éz—xz— Tu?) (e2—u?)— E(e—p?)], (C16)
1

€(s,z)
ga(s, %)= / dK 5K 5o(K 52— p) [ 22(5,2,K 5 ) +1]= (e —u?)*2— § (2~ p?)?

€1(s,z)

1
+—L(E—22—Tu) (el — e¥) —E(e’— ) ].  (C16')
4k,



