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Quarks and Magnetic Poles*
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A theory is developed which accounts for the free nonrelativistic motion of fractionally charged quarks
within hadrons, and at the same time does not permit quarks to appear as individuals. This is accomplished
by modifying Dirac s idea that the quantization of electric charge derives from the existence of a point
magnetic pole, to include the situation in which the pole is extended in space and of hadronic size. The
needed formalism makes use of Mandelstam's gauge-independent, path-dependent quantum electro-
dynamics, as extended by Cabibbo and Ferrari to include the existence of point magnetic poles. It is shown
that the further extension to a pole of 6nite size and the use of parallel straight paths are the only new
features that are required. In particular, no assumptions need be made with regard to the masses of quarks,
the interactions between them, or the existence of a constraining potential.

I. INTRODUCTION

HE existence of a massive triplet of elementary
particles, called quarks, from which hadrons

(baryons and mesons) are constructed, was postulated.
three years ago by Gell-Mann and Zweig' on the basis
of symmetry considerations. Quarks are assumed to
have baryon number 3 and electric charge 3e or —3e,
where e is the proton charge; antiquarks have opposite
charges and baryon number. A baryon is supposed to
consist of three quarks moving nonrelativistically, and.
a meson is supposed to consist of a quark. and an anti-
quark. More complicated schemes that make use of
integer-charged subparticles are also possible2 but will
not be considered in this paper.

Apart from symmetry considerations, ' ' there is rather
good evidence for the existence of quarks as quasifree
particles within hadrons. 4 This evidence is based on the
additive quark model, according to which the impulse
approximation can be applied to the constituent quarks
and antiquarks involved in high-energy hadron-hadron
collisions, in much the same way as it can be applied.
to the nucleons involved in high-energy nuclear colli-
sions. There is, however, the striking difference be-
tween the two situations that nucleons are quite easily
knocked out of nuclei and observed by themselves,
whereas individual quarks have not been found. ' At-
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tempts have been made to account for this difference
in behavior between quarks in hadrons and nucleons in
nuclei, in terms of strong interactions between quarks, ' '
but difhculties have been encountered in maintaining
nonrelativistic motion and in stabilizing only those
quark-antiquark systems that have integer baryon
number. ~

It was recently ponted out' that the observations can
be understood in terms of a selection principle that has
a range built into it. The selection principle would
require that the baryon number for any cluster of
quarks and antiquarks that lie within this range of
each other be an integer. At the same time, the quarks
should be able to move rather freely within each cluster,
without being greatly inhibited by the selection prin-
ciple. The range that is to be incorporated into the
selection principle, which we denote by E, cannot be
smaller than hadronic size, but it can be very much
larger. Since single quarks have not been found, the
upper limit would be set by the ability of laboratory
apparatus to resolve individual quarks. Thus we expect
that 10 " em&A. &10 ' cm, although it seems likely
that E is much nearer the smaller end of this interval
than the larger.

A model for this selection principle was recently pro-
posed that makes no assumptions about quark masses
or interactions. It generalized Dirac's idea' that the
quantization of electric charge derives from the exis-
tence of a point magnetic pole of strength g. He showed
that the quantum theory of a particle of electric charge
g is consistent only if

t7g/i'tc = —,'tt,

where e is an integer, so that all charges are integer
multiples of the proton charge e provided that g= (137/2)e. Our generalization consisted in assuming
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that the magnetic pole has a finite size, which we also
denote by E, that is of the order of the range associated
with the selection principle. It was then argued that
Dirac's approach could be modi6ed so that the total
charge of all particles within a distance E of each other
is quantized, whereas the individual charges need not
be. Thus if quarks have third-integral charge, only
those combinations that have integer baryon number
are allowed to form isolated clusters of size not greater
than E. This provides the desired selection principle,
although it does not explain why quarks have third-
integral rather than some other fractional charge.

The assumption that the magnetic pole has a finite
size is not unreasonable when it is realized that its
coupling constant with the electromagnetic fmld, g'/hc
=137/4, is so large compared to unity that quantum
electrodynamics is not likely to be valid. For the present
purpose, a classical nonrelativistic treatment of a pole
is adequate, and it is then expected to be extended in
space because of its very large magnetostatic self-
energy. For example, with R= 10 "cm, g'/8=6. 7 BeV.
That such an extended pole must behave classically can
be seen from a calculation of the angular momentum
associated with the electromagnetic 6eld of the pole
and a point charge q that lies outside it. This angular
momentum, which has the magnitude qg/c for a point
pole and is directed" from q to g, is equal to (qg/c)
)& $1—(R'/3r') $ for an extended pole, ' where R is now
the rms radius of the pole and r is the charge-pole
separation distance. Thus as a charge moves radially
in toward a Gxed pole, the field angular momentum
decreases, and a corresponding torque is exerted on
the pole by the changing electric field of the charge,
so that the angular momentum of the pole changes
continuously.

Since our selection principle is expressed in terms of
the spatial coordinates of the quarks, and we are con-
cerned with their nonrelativistic motion, we shall make
use of the many-particle nonrelativistic Schrodinger
equation. As usually formulated, this equation contains
the vector and scalar potentials of the electromagnetic
6eld in which the charged particles move, and we are
particularly interested in potentials that arise from a
magnetic pole. It is clearly impossible to represent the
magnetic Geld of a pole everywhere in this way, since
the field is the curl of the vector potential, and hence
has vanishing divergence. Dirac solved this problem
for a point pole by allowing the vector potential to be
singular along a line extending from the pole to in-
6nity; he called this line a "string. " He also found it
necessary to require that "a string must never pass
through a charged particle"; this is what Wentzel"
called the Dirac "veto." In this way Dirac arrived at
the relation (1) between the magnitudes of electric
charges and magnetic poles.

"H. A. Wilson) Phys. Rev. 75, 309 (1949).
"Q. Wentzel, Progr. Theoret. Phys. (Kyoto) Suppl. Nos. 37

gt 38, 163 (1966).

The question now arises as to what happens if the
pole is of finite size. We note 6rst that the generalization
of the usual Schrodinger equation to the situation in
which a point pole is present can be carried through in
an infinite number of ways. The Dirac string can be
curved in any way, and there may be more than one
string, as proposed by Schwinger. " These generaliza-
tions may give different results; for example, Schwinger
concluded in contrast with (1) that qg/hc is an integer,
or possibly an even integer, on the basis of two oppo-
sitely directed straight strings. There is a similar
ambiguity when the pole is of Gnite size, since the
string can be spread out into a "bundle" of any di-
ameter and shape, diverging or converging, or into
several bundles, in an infinite number of ways. In our
earlier paper' it was argued that the particular assump-
tion of a cylindrical bundle, with diameter R equal to
that of the pole, would lead to the desired selection
principle. This argument was rejected by Peres, "who
stated without proof that even an extended pole neces-
sarily leads to a singular string rather than a bundle.
Peres's statement is incorrect; an explicit demonstration
which refutes it has been given by Wentzel. "

Several other authors have dealt in various ways with
quantum effects produced by magnetic poles. '4 We shall
make use in the present paper of a modification of the
formalism of Cabibbo and Ferrari, ' which is a general-
ization of Mandelstam's quantum electrodynamics with-
out potentials" to the case in which a point magnetic
pole is present. In this formalism only the electro-
magnetic fields appear, so that there are no strings. On
the other hand, the wave function is nonlocal since it
depends on a set of paths that extend from each charged
particle to infinity. In the absence of magnetic poles the
choice of paths is unimportant, but when a pole is
present different results may be obtained for different
sets of paths. There is a close parallelism between the
Dirac and the Mandelstam-Cabibbo-Ferrari formula-
tions of the theory. There is an arbitrariness in the
choice of the strings in the one case and of the paths in
the other, and different choices may lead to different
theoreti, cal predictions. Also, as we shall see, the Dirac
veto has its counterpart in the requirement that a path
must never pass through a pole.

It is more convenient to work with paths than with
strings. We shall show that it is possible to choose the
paths in such a way that the desired selection principle
is obtained. As remarked above, this choice is not

"J.Schwinger, Phys. Rev. 144, 1087 (1966)."A. Peres, Phys. Rev. Letters 18, 50 (1967)."I.Tamm, Z. Physik 71, 141 (1931);M. Fierz, Helv. Phys.
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Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147 (1962); R. A.
Ferrell and J. J. Hopheld, Physics 1, 1 (1964); D. Zwanziger,
Phys. Rev. 137, 8647 (1965);S. Weinberg, ibid. 138, 3988 (1965);
C. R. Hagen, ibid. 140, 3804 (1965); A. S. Goldhaber, ibid. 140,
81407 (1965); R. Tevikyan, Zh. Eksperim. i Teor. Fiz. 50, 911
(1966) LEnglish transl. : Soviet Phys. —JETP 23, 606 (1966)g;
T.-M. Yan, Phys. Rev. 150, 1349 (1966)."S.Mandelstatn, Ann. Phys. (N.Y.) 19, 1 (1962).
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unique, and there are infinitely many other ways of
choosing the paths which do not lead to the selection
principle. Nevertheless, our choice is a rather simple
one, and it seems likely that it can be carried over from
the many-particle nonrelativistic Schrodinger equation
to field theory. Our theory does not account for the
fact that magnetic poles have not been found, "although
this might be explained by their large mass.

Section II presents Mandelstam's gauge-independent,
path-dependent formalism, within the framework of the
nonrelativistic Schrodinger equation rather than field
theory. The extension of Cabibbo and Ferrari, which
takes account of the possible existence of point mag-
netic poles, is also given in the same framework. In
Sec. III, the modification of the Mandelstam-Cabibbo-
Ferrari theory that results for an extended pole when
the paths are chosen to be parallel straight lines is
developed. It is then shown in Sec. IV that this leads to
the selection principle proposed' and discussed' in
earlier papers.

II. MANDELSTAM'S PATH-DEPENDENT
WAVE FUNCTIONS

where the jth integral runs from r; to ~ along a path
P; that is yet to be specified. Application of a gauge
transformation to this Pp gives

Pp —+ Pi'=P' exp —P q, A'(r, t) dr
Ac z

Substitution from Eqs. (4) shows that f~' P~ ——pro-
vided that the gauge function X vanishes at infinity.
Thus the path-dependent wave function (5) is gauge-
independent.

The paths P; remain to be specified. Mandelstam
chose them in such a way that derivatires of Pz are
defined by dividing Pz. fz by—the coordinate differ-
ence, where fr. is the value of Pi at the displaced point
calculated with a path P,' that goes from the displaced
point to the original point and then follows the original
path P; to infinity:

4~ (~i+»i, Xi,si) k~—(*i,Si,si)-= lim
b, x)'—4 Ax,

Equation (5) gives for the derivatives of f~
The many-particle nonrelativistic Schrodinger equa-

tion that describes the motion of a set of particles with
masses m; and. charges q; in the potentials A (r, t), @(r, t) is

api i-
-=exp —P q,

Bxj, Ac z'

8 2qp
A(r, t) dr ——A, (r„,i) lb,

Bxj, Ac

1 8
H=VXA, E= ———vy.

c Bt

As is well known, the gauge transformation

(3)

8$ h' iq;
ih =Q—— V, A(r;, t) —+—q;y(r;, t) Ib, (2)

Bt ~ 2m, Ac

where the electromagnetic fields are defined by

Blp~ s
-=exp —P q;

Bt Ac J
A(r, t) dr

r&

8 z
X —+—Pqs

Bt Ac I

"aA
dr —f..

Bt

The wave equation for Ib& may then be obtained from
Eq. (2) with the help of the second. of Eqs. (3), provided.
that g vanishes at infinity:

1 8+
A~ A'=A+ vx,

c R
(4)

BQI
ih

Bt

A2

V',s+q, E(r,i) dr pi.
2mj r'

(6)

z

4 ~4'=4 exp —P q;X(r;,1),
Ac g

Equation (6), which is evidently gauge-independent,
must be supplemented, by a gauge-independent version
of Eq. (5), in order that the path dependence of fbi can
be determined in terms of the fields alone. Mandelstam
accomplished this by imagining that the path P; is
displaced by an infinitesimal amount at some point,
and then calculating the corresponding change in Pi.
More generally, we may follow Cabibbo and Ferrari"
and use Eq. (5) to write the relation between the fz's
calculated with paths P; and P,' that differ by finite
amounts as

leaves the fields and the form of the wave equation
unchanged.

We now follow the nonrelativistic version of Mandel-
stam's" approach. For any particular choice of the
gauge, say that corresponding to the above potentials
A, p, we define the path-dependent wave function

Pr =P exp —g q; A(r, t) dr, (5)
Ac & r,. iq;

fr. =fr exp — A(r, t) dr
Ac

where the cricuit C; is the closed path P —P;. Stokes's
theorem may now be used to express the circuit integral
as Js,.(VXA) de, where the integral is over the surface

"W.V. R. Malkus, Phys. Rev. 83, 899 (1951);H. Bradner and
W. M. Isbell, ibid. 114, 603 (1959);E. M. Purcell, G. S. Collins,
T. Fujii, J. Hornbostel, and F. Turkot, ibid. 129, 2326 (1963);
E. Amaldi, G. Saroni, A. Manfredini, H. Bxadner, L. HoBmann,
and G. Uanderhaeghe, Nuovo Cimento 28, 773 (1963);E. Goto,
H. H. Kolm, and K. W. Ford, Phys. Rev. 132, 387 (1963);W. C.
Carithers, R. Stefanski, and R. K. Adair, ibid 149, 1070 (1966). .
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Since there was no limitation on this procedure other
than that the circuit be closed, it can be applied to a
change in ~ provided that the initial and final paths do
not extend to infinity and are joined at their far ends

by some path segment. Then Eq. (7) is still valid if the
surface 5; is the conical sheet swept out by the 6nite
straight path attached to the fixed point r, as the unit
vector is changed in some way from a to a,'.

There is, however, an essential difference between the
present situation and that of Sec. II. In the Mandelstam
formalism each path I'; can be varied independently,
whereas in our formalism there is a single e for all
particles so that all paths remain parallel to each other
as s changes. This means that Eq. (7) is replaced by

1—g q; (V H)dr=2m. e,
Ac ~ y,.

(12)

where e is an integer. The volumes V, are now any set
of semi-infinite cones that are congruent to each other
in shape and orientation, and di8er only in the position
of their vertices, the vertex of V, being at r;. There is
also the restriction implied by the Dirac veto: that
none of the conical surfaces must pass through a region
where the magnetic-pole density or current is diferent
from zero.

Equation (12) contains the selection principle de-

scribed in Sec. I.Consider for simplicity a 6xed spherical
magnetic pole of strength g and diameter E., and a
number of particles with electric charges q; which lie
in any cylindrical tube of diameter R whose axis
passes through the center of the pole. Then it is im-

possible for one of the conical volumes V; to contain
the pole without all of them containing it. Thus in
accordance with Eq. (12), the Dirac quantization con-
dition (1) is generalized to

z
Pp, Ppexp———Qg; H de .

hc & s,.

As in the transition from (7) to (8), the relation be-
tween fr and tPz. must be independent of the way in
which a is changed into ~'. The difference in the value
of each integral in the exponent of Eq. (11)for two such
changes is equal to the integral of V.H over the conical
volume V; enclosed by the two surfaces S; and a cap
at the far end. As the cap recedes to in6nity, we obtain
for the uniqueness condition the requirement that

particles to exist, provided that their maximum pro-
jected separation distance in the plane perpendicular
to the direction of the magnetic pole is less than E, and
their total charge is an integer multiple" of e=hc/2g.
The same argument shows that if one of the particles
is separated from all of the others (in a perpendicular
direction) by more than the distance R, it must have
integer charge. It is of course not necessary for the pole
to be spherical in the foregoing demonstration; it is
however necessary that the pole density vanish beyond
some finite distance froIn its center.

Nearby poles, or a suKciently high density of remote
poles, would on this theory produce peculiar eGects on
charged particles. The absence of these effects is, how-
ever, consistent with present experiments on poles. '

V. CON'CLUDING REMARKS

We have shown that it is possible to modify the
Mandelstam-Cabibbo-Ferrari formalism so that it leads
to a limitation on the separation distances of frac-
tionally charged quarks, provided that the Dirac mag-
netic pole is of 6nite size. The modification consists
only in requiring the paths associated with quarks to
be parallel straight lines. (It should be noted that
charged particles other than quarks might well have
other kinds of paths. ) Each extended Dirac pole defines
an infinite set of cylindrical tubes which circumscribe
it and point in all possible directions. Our theory then
requires that the quarks contained in any one of these
tubes possess integer total charge and hence integer
total baryon number. A single such pole only restrains
individual quarks at right angles to the pole direction;
but two such poles in diferent directions would require
the quarks contained in any intersection of their tubes
to have integer total baryon number. In this case, the
production cross section for individual quarks is ex-
pected to be zero, in agreement with observation. '

It should be emphasized that no assumptions have
been made with regard to the masses of quarks, the
interactions between them, or the existence of a con-
straining potential. It is reasonable, then, to suppose
that the mass of a quark is a few hundred MeV (roughly
a third of a baryon mass or half of a meson mass), and
that the forces between them are of the order of the
strong interactions. The present theory manifests itself
simply as a boundary condition that requires the many-
particle wave function to vanish whenever the spatial
coordinates r; of all quarks and antiquarks fail to satisfy
the uniqueness condition (12).

where e is an integer. This permits fractionally charged

~8 It shoud also be noted that, under these circumstances, an
allowed closed circuit of any of the r, does not destroy the unique-
ness of P~.


