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that it possesses many qualities useful for high-energy
experiments. Because it can be triggered and because
it shows isotropy similar to a bubble chamber, one hopes
that this new tool will be widely and successfully used
in the future. It enabled us to study triplet photo-
production in a very satisfactory way in a material
heavier than hydrogen.

The measured triplet cross section was found to be
consistent with calculations for the electron recoil
momentum qe near 1 MeV/c but might indicate a slight
divergence when qo increases, as is most clearly visible
in the momentum distribution. The discrepancy ob-
served is of the proper sign to be attributed to exchange
effects which arise mostly at high momentum transfer.

Further investigations of the high-momentum region
seem necessary to provide a better understanding of the
recoil momentum and angular distributions in pair
production in the Geld of the electron.
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The analytic structure of helicity amplitudes is derived from basic analyticity properties. Previous
derivations relied on crossing properties and extra assumptions.

I. INTRODUCTION

I
'HE problem of expressing scattering amplitudes

in terms of functions of scalar invariants without
introducing extra singularities has been solved by
Hepp' and Williams. ' Their solution has a form that
is not convenient, however, for many practical purposes.
This is in part because it involves a reduction of the
amplitude to its irreducible components. Though such
a reduction is in principle straightforward, it is in
practice cumbersome. Moreover, the irreducible com-
ponents, though the natural mathematical quantities,
are not nice physically. For example, the irreducible
components mix different parity eigenstates. This
means that the condition of invariance under space
reAection does not lead to any simple reduction in the
number of irreducible components. It leads rather to
complicated relations between different irreducible
components. For this reason, among others, the elegant
results of Hepp and Williams have had little or no
practical application.

For many purposes the most convenient form of the
scattering amplitude is in terms of helicity amplitudes.
The helicity amplitudes, like any others, become func-
tions of scalar invariants when evaluated in the center-
of-mass frame. This is because the components of the

*This work was done under the auspices of the U. S. Atomic
Energy Commission.' Klaus Hepp, Helv. Phys. Acta 37, 55 (1964).

David N. Williams, Lawrence Radiation Laboratory Report
No. UCRL-11113, 1963 (unpublished).

momentum vectors become functions of scalar invari-
ants. However, the functions that express these com-
ponents in terms of the invariants have numerous
kinematic singularities, which the amplitude itself is
expected to inherit. Also, the various rotations and
boosts needed to define the helicity amplitudes have
kinematic singularities. Thus the analytic structure of
the helicity amplitudes, considered as functions of the
scalar invariants, wouM be expected to be very compli-
cated. It turns out, however, that most of the singu-
larities cancel, leaving the helicity amplitudes with
reasonably simple analyticity properties. The purpose
of the present paper is to show this.

The result is not new, having been obtained already
by Hara' and Wang. 4 Their method is, however,
circuitous. Rather than starting directly from the basic
momentum-space analyticity properties, or equivalently
from the analyticity properties deduced by Hepp and
Williams, they base their conclusions on consistency
with well-known crossing relations for helicity ampli-
tudes. Since the crossing relations are themselves
derived from the basic momentum-space analyticity
properties, their procedure is evidently permissible.
But it is roundabout. One would expect it to be simpler
to work directly with the basic properties, and this is
indeed the case.

There is a second reason for reconsidering the

3 Yasuo Hara, Phys. Rev. 136, B507 (1964).' Ling-Lie Chau Wang, Phys. Rev. 142, 1187 (1966).
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question. The method of Wang makes essential use of
an extra assumption. This assumption is that if certain
singular kinematic functions with zeros are divided out
of the helicity amplitude, then the resulting function
has no kinematic singularities in certain variables. Any
such singularities necessarily arise from a failure of a
generalized Legendre expansion to converge, and it is
asserted that this is a dynamical question. While this
seems reasonable, it is not absolutely convincing, since
we do not yet fully understand the dynamics of
elementary-particle systems. Thus it is not absolutely
inconceivable that a kinematic singularity could cause
the series to diverge. In any case the question arises
whether this assumption is a dynamical assumption
that goes beyond the basic analyticity properties used
by Hepp and Williams. We find that this extra assump-
tion is not really needed.

An assumption essentially equivalent to the extra
assumption of Wang is made also by Hara, who relies
heavily on perturbation theory.

As in the work of Hara and Wang, only four-particle
reactions are considered. It is further assumed that the
two initial particles have unequal masses, and that the
two final particles have unequal masses. The passage
to equal-mass limits has been discussed by Wang.

»= D"'L(v~"o)"']
=(v; o)'t'

= (vt'+1 —v; ~)/(2v/+2)"'

1
=—L(v'+1)'"—(v' —1)'"v"~] (2.5)

particle j is expressed in terms of its covariant velocity
v, = p;/44s; by

8 =D iL(v'r)"'] (2.4)

which acts on M by multiplication from the left. For
a particle associated with a lower dotted index the
boost is given by the same function of its velocity acting
on M by multiplication from the right. For any unitary
2-by-2 matrix A the matrix D~$A] is just the (2J+1)-
by-(2J+1) matrix that represents the rotation specified

by A in the (27+1)-dimensional irreducible representa-
tion of the rotation group. ' The matrix elements of the
D~itA] are homogeneous polynomials in the matrix
elements of A, and D~fA] for general A is delned by
analytic continuation.

Consider first a system consisting of one spin-2
particle and one spin-zero particle. Then the boosts 8;
take the form

II. SINGULARITIES AT s=o

The helicity amplitude is given by
The rotation matrix Ry has elements

Rq„&(cos-,'8) ~"——+"~(sin-', 0) ~" ~~, (2 6)
H=RS, (2.1)

where S is the S matrix and R is a product of rotation
operators R;, one for each final particle. The center-of-
mass frame is used and the s axis is taken to lie along
the direction of one of the incoming particles. The
helicity ) ~ of this particle is just the s component of its
spin. The other incoming particle has helicity ) 2, which
is minus the s component of its spin. The two final
particles move in the x-s plane, the first moving in the
direction 0, the second in the opposite direction.

The two rotations R; act on the spin spaces of the
two final particles, and each gives a rotation through
angle 0. Specifically, for either final particle j, one has

where the sign is minus for )—p, =—1 and plus other-
wise.

The basic analyticity assumption is that the M
functions are analytic functions of the components of
the momentum vectors, except at dynamical singu-
larities. It follows from this, and Lorentz invariance,
that M can be written in the form~ 8

M=avf o+bv; o.+cw o+dvy o.w ov; o, (2.7)

where the coefficients a, b, c, and d are meromorphic
functions of the scalar invariants with, at most, simple
poles at /=0. Here P is given byr 4

g = (stl sa' tbs sec'—+2a—bc), — (2.8)
R,=exp(i';„), (2.2)

where s, t, and I are the Mandelstam variables and
where J;„is the y component of the spin vector J; that
acts in the spin space of the final particle j.

The S matrix is related to the M function by'

a= -', (rr4t'+rr4s' —ms' —m4'),

b = —,'(mt'+ms' —tr4s' —rr44'),

S=BM, (2.3) c= —',(4r4ts+4r44s —nss' —mss) .

where 8 is a product of boosts, one for each particle.
We work in the representation where all indices are
either lower dotted or lower undotted. For a particle
associated with a lower undotted index the boosts for

4 Henry P. Stapp, Phys. Rev. 125, 2139 (1962); also in Proceed
ings of the Seminar on High-Energy Physics and Elementary
Particles, Trieste, 1065 (International Atomic Energy Agency,
Vienna, 1965), pp. 3 to 40.

The surface /=0, which is the set of points where the
rank of the gram determinant is less than three, includes
the boundaries of the physical regions. The possibility of

' E. Wigner, Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra (Academic Press Inc., New York,
1959).

A. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev. 130,
442 (1963).

g Reference 5, p. 2156.
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poles at &=0 is the problem considered by Hepp and
Williams: The M function itself has no such poles, but
the linear dependence of the various terms of Eq. (2.7)
at &=0 allows the individual terms to have them.

The vector 11/ in Eq. (2.7) is the total-energy vector
and v; and vy are the covariant velocities of the initial
and final fermions. The expansion Eq. (2.7) is obtained
by first writing M in the form~'

Thus for QWO the singularities of the components occur
only at s—=8"=0,where their behavior is as follows:

p10 1/W,
p;=—Ip I-1/W,

cos0~1 )

and
sine 8'.

3f=Q C'P" 0'+C4[P1P0P3] (2.9)

p.'= (S+m.'—m 0')/2s'/0,

P'= [S—(m.+m0)'j[S—(nz. —m0)')/4S,

cos8= [2st+s' sg m;0—

(2.1Oa)

(2.1ob)

and
+(I,'—m0') (m. '—m~') j(4sPP')-', (2.10c)

sin8= 2[s Q(s, t)g"'/4spp'. (2.10cl)

where the vector [P1P0P0) is the box product defined
using the alternating symbol e„„),. Evaluation of the
constants c; by means of trace formulas7 ' shows that
they are holomorphic except for dynamical singularities
and for possible poles at &=0. A rearrangement of
terms then gives the meromorphy of the coef6cients
in Eq. (2.7).

The nondynamical singularities of H fall into three
categories. First, there are the possible singularities at
Q =0. Second, there are singularities where some
v, =&1. And anally, there are possible singularities
where the components of the vectors v;, vf, and w, when
expressed as functions of the scalar invariants, have
singularities. Evaluating the energy-momentum vectors
in the center-of-mass frame one has'4

Accordingly, 3f itself has terms in S" ' and lV = 1.Each
boost has terms like 1/gW and QW, and R1,„goes
like 8"I" &~. Thus H appears to have a nasty behavior
at 8'=0.

Using the relations'

and
(~i ~)"'~/ ~=(0r ~)'"

1; 0 (0; O.)1/'= (V; 0)1/',

one obtains, in the center-of-mass frame,

(2.11a)

(2.11b)

(0; 0)'/'= —[(1//+1)'/ +h;(0; —1)'/ ] (2.13b)

where R;= 2X;= &1. Noting that RfBf RfB(1/r)
=B(1/y')Ry, with vr'=

I vt I
e„one obtains

where
+Xy);= ~XIX;~Xf) s y (2.14)

S=BM=/J(1/ ~)"'(V O)' '+"b(1/g u)' '(1/ 0.)' '"
+cW(1/ o) (v" o) +dW(v 0) (w" rr) (2 12)

I et the fermion be the initial particle that moves along
the s axis. Then Eq. (2.5) gives

1
(0"o)'/'= —[(v'+1)'/' —R (v' —1)'/'j (2.13a)

and

2' 1, .——G[(vr +1)' + kr($/ —1)' 'j[($; y1)' '—$;(8$ —1)'/'q

+b[(P 0+1)1/2 g (1/
0 ])1/0j[(&.0+1)1/0+$,(&,0 1)1/0j

+cW[(eP+1)' '—$ f(vf0 —1)' 'g[(1/@+1)'/' —R;(1/ —1)"'j
+dW[(mr'+1)'/'+R/(1/r0 —1)' 'g[(e,'+1)' '+R, (1I,'—1)' 'j. (2.15)

E),p,. j. for X;=XJ,
5' for X;&Xg. (2.17)

Combining Eqs. (2.14) through (2.17) we see that H is
analytic in s= W' at W= 0, PAO, except at dynamical
singularities.

This proof is only for the simplest case of a spin-~
particle scattering on a spin-zero particle. Yet it allows
us to immediately conclude that the result holds also in

Here R;=2K;=&1.Observe that

(PO+1)1/2~(00 1)1/2 W+1/2f+(W2)

= W+'/'f+(s) (2.16)
and that

general: If the two initial masses are different and the
two 6nal masses are different, then the four-particle
helicity amplitude is analytic in s and t at s=0, except
perhaps on &=0 and at dynamical singularities. To get
the general result, one merely observes that at @No the
higher-spin particles are kinematically equivalent to
sets of spin-~ particles combined by Clebsch-Gordan
coeKcients. That is, as long as the physical vectors
provide a nonsingular set of basic vectors, one may pass
freely between the two forms by using Clebsch-Gordan
coeQicients. The fact that the spin-~ particle parts are
analytic at s= 0 then implies that the entire function is

' Reference 5, pp. 2147 and 30.
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analytic at s=0. The technicalities are given in the
Appendix.

III. SINGULARITIES AT v,'= &1

there is, in each term of F, one factor (2)/'+1)'/' or one
factor (2)p—1)' '. Let N;+ be the number of factors
(2)/2+1) in a given term, and let N, be the number of
factors (2))s—1). Then one has

Let the reaction be a+f) —b c+d. Then in the center-
of-mass frame one has Define also

N++N; =N;. (3.4)

(3.5a)N, ++Nb+ N;+——

N, ++Ng+= Nr+.(2) '—1)= (W—m, —mb)(W —m.+mb)/2Wm. , (3.1a )

(2)b'+ 1)= (W+ m,+m b) (W+ mb —m, )/2Wmb, (3.1b+)

(2) b' —1)= (W m, —mb)—(W mb+—m, )/2Wmb, (3.1b )

(3.5b)

Invariance under space inversion is assumed. This
implies" that

FATA; 'gF—Ay, —A; ) (3.6)

(2),'+1)= (W+m, +mb)(W+m, m—b)/2Wm„(3. 1a+)
and

and four similar equations involving c and d. Thus the
zeros of the functions 2)/2&1 lie at W= +(m;&mb).

As in the preceding section, the physical particles of
spins J, J~, J„and J~ are considered to be combina-
tions of E,E~, Ã„and E~ spin-~ particles, respectively.
The S;particles that combine to give particle j all have
velocity v,-.

Applying to each spin-~ particle the manipulation
that led to Eq. (2.14) one obtains

Bgyp ~ —Rgyp Fpgg ~

=R(e)/, /„FD2)a'+1)'/' X„(2) —1)'l' S tg. (3.2)

Here R(g)q/q, . is the matrix element of the rotation
operator R(9) between the spin states specified by Ar
and A;. If the spins of the initial and final particles are
different, then some Clebsch-Gordan coefFicients will

occur. The exact expression is given in the Appendix.
The function F is a combination of the F parts of

Eq. (2.14). It contains one factor of either (2) '+1)' '
or X (2)

'—1)' ' for each initial spin-2 particle, where

is the helicity and e is the velocity of this particle.
There is a similar factor for each 6nal spin- —, particle.

The helicities X satisfy

(3.3)

where ), is the helicity of particle j, and the j on the
left represents the set of indices referring to the spin ~

particles that form particle j. The vital property of F
is that each factor (v '—1)'/' appears multiplied by the
corresponding helicity X, and conversely, whereas the
factors (2) '+1)'l' have no such factors.

For each of the X; particles that mak. e up particle j

where 2/ is either +1 or —1. For simplicity we assume
it is +1, since the argument in the other case is essen-
tially the same. Equation (3.6) is obtained from
Eqs. (43), (31), and (A1) of Jacob and Wick, " by
noticing that the identity

R),),((/) = (—1) '"' "*'R ), —)„(t))

for the individual spin-~ particles implies

R/ / (&)=+( 1)""R-/, /i(&), (3 8)

since the sum of magnetic quantum numbers is pre-
served under Clebsch-Gordan composition. The + sign
in Eq. (3.8) is shown in the Appendix to be
(—1)&a+Jb &c JS'——

Parity-conserving amplitudes are defined by

FAyAs =Fhyks~F —AyAs

2 [~/iy/i;+ F Ay, Ag~ F A/,—A;~—FA/, —/i—;]
=29+(—1) '+"' ~(—1)"' ~(—1)"*1F~ ~

=2L1~(—) 'lL ~(—) 'Ã~, ~;, ( )

where the numbers Nr and N; de6ned in Eq. (3.5) are
regarded as operators in Eq. (3.9). The next to last line
in Eq. (3.9) follows from the fact that a term of F having
N; factors (2)p—1)'l' has also N; factors X, as
mentioned earlier. The sign of A; is reversed by reversing
the sign of all of these, as shown in the Appendix. From
Eq. (3.9) we see that Nr and N; are both even for
terms contributing to F+, and both odd for terms
contributing to F .

Consider first the singularities at sums and differences
of the initial particle mass. These are contained in the
factor

(2) '+1)Na+ 2(2) '—1)Na 2(2)b'+1)N'+/2(sb' —1)N' 2(2wm )N' '(2wmb)N' '
—(W+m +m )Ni+/2(W m m )Ni /2(W+m m )(Na++Nb ) 2(/Wm +m ) (Na +Nb+)/2

—(W+m +m ) (Na+A b Ni )/2(W m m )Ni 2(w/+ mm ) (Na+Nk=2Na )/2(W m +m ) (Nb+Nq=2Nb )/2

(3.10)

The cases BB, FF, and FB, for which the two initial

particles are bosons, fermions, and one of each, are

considered separately. Bearing in mind that X, is even

for F+ but odd for F-, one immediately sees that the
square-root singularities for the various cases are as

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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follows:

F+(BB)-1,
F (BB) PS (m—, m—b)'j' 'I S (m, +nub)']' '

F+(FF) PS (m—.—mb)')'~'

F-(FF) )S (—m.+mb)']"'
F+(FB)-$(W+m.+nb)(W+m. m—b)j'"
F—(FB)-[(W—m.—mb) (W—m.+mb) )"',

(3»)

where in the PB case the fermion is particle u. If the
factor indicated in Eq. (3.11) is divided out, along with
the analogous factor coming from the 6nal particles,
then the resulting functions are analytic at e =&1.
For cases BB and PP the factors divided out are
analytic in s at s=0 and hence the helicity amplitude
remains analytic in s. In the PB case one retains only
analyticity in 8' at 8"=0.

"Technical questions concerning this expansion are discussed
in the Appendix.

'~ Reference 5, p. 19.

IV. SINGULARITIES AT /=0
The singularities at /=0 were the only ones that

occurred in the expansions considered by Hepp and
Williams; these were the cause of all the diKculty. In
the present approach singularities are introduced in t/V

at zero, and at sums and differences of masses. The
compensation is simplicity at &=0.

The behavior of M at points of @=0 not lying on
dynamical singularities is given by

M p (sin8)I

Here means equal to within a factor holomorphic in
s and I,, except at s=0, at v; =&1, and at dynamical
singularities. One way to verify Eq. (4.1) is to consider
the power-series expansion"

M=K. .'( p.
- I.)'( p. +' p)-

+Z «=(pb —Pb)'(p. —ip.)", (4 2)

where the c~ +'s are matrices in spin space. The Lorentz-
invariance property of 3f,

h,M(A 'K) =M(K. ), (4.3)

specialized to rotations about the s axis and expressed
in differential form, gives"

(Jr, J;,)M(K)+(Lf, —L;,)M(K)=0, (—44)

where J and L are the spin- and orbital-angular-
momentum operators, respectively. Application of (4.4)
to (4.2) gives

(Cb +) p=Cb+b~„, p (4.5)

That is, every term in the power-series expansion of
M p about p,=p„=0 contains the components p„and
P„ in the precise form (P,+iP„)I~ PI, where the & is
the sign of P—cx. Equation (4.1) then follows from

Eq. (2.10).The boost has the same singularity structure
at sin8=0 that M has. One observes that a product of
two matrices having this structure also has this struc-
ture. Here one uses the fact that sin'0 is regular in s
and t, which follows from (2.10d) and (2.8). Thus the
product BM=S has the same structure at @=0 that
M has:

S p (sin8)I

The singularities of R(8) at /=0 are given by'

R(8)b„(sin-,'8) I" &I (cos~28) Ib+&I .

(4.6)

V. COMBINED RESULT

The function sin~0 behaves like a multiple of lV= s't'
at s=0, QWO, whereas cos28 is regular. Thus, apart from
dynamical singularities, the function

+hgA;
IIAfh.;=

(sin~~8) I~~ ~'I cos~8I~~+~'I

is, when multiplied by W~f ~'~, analytic in t and s at
s= 0 for @NO and

~
nP

~
01. It is also analytic in t and s

at &=0 for s/0 and ~n,
~
/1. Thus by virtue of the

theorem on isolated singularities" it is analytic in s
and t except at

~
nP~ =1, apart from dynamical singu-

larities. Thus if m is the maximum of ~h.f—A;~ and
~h.r+A;I and G+ are the functions given by (3.11),
then the function

~~,b.;+= (IIb, ~,+II b,f,z,)W /G+ . (5.2)

is analytic in t and s (W for the FB case) except at
dynamical singularities.

APPENDIX: REDUCTION TO SPIN~ PARTICLES

What must be shown is that the set of M functions
M(ahb cd) representing the physical process ub-+ cd
can be represented in terms of spin-~ particles in a way
such that the scalar coeKcients of the expansion are
analytic at @NO, except at the dynamical singularities
of M itself.

A system of e spin-~ particles is described by 4"
matrix elements. At a point QWO the set of matrices

"Robert C. Gunning and Hugo Roaai, Analytic pNNbbjols of
Several Complex Variables (Prentice-Hall, Inc. , Englewood Cliffs,
New Jersey), p. 21.

The right side is essentially the same as that of Eq. (4.1).
The apparent differences comes from the fact that ) is
minus the s component of spin at cos-,'0=0.

Using again the fact that any product of matrices
having the singularity structure of Eq. (4.1) also has
this singularity structure, we see that, apart from
dynamical singularities, the function

+&I&,/(sin~~8) I ~&—&'I cos~~ 8I ~f+~'I

is regular in s and t at points of /=0 where W is not
equal to zero or to sums or differences of masses.
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$1= vy ' 0' $2 = v ' ' 0 ba = ' 0 and b4 =vf ' IF' ' 0 v ' ' 0 span
a single-particle spin space. Thus one can express the 4"
matrix elements M lpi 2p p in terms of the 4"
coeKcients C&,&,...),„by

4

ave al pl ~ ~ ~ ani9n ~ ~~14 ' ' '~n X]aipl X2a2P2 XnanPn X /b 'b ' .b ' . ~A1
K g=1

The transformation between the C's and the M, ...p„'s
is nonsingular at QWO, and hence for &40 the coeK-
cients C)„...),„are analytic functions of the scalar
invariants wherever the M, ...p„'s are analytic func-
tions of the momenta. "The problem is therefore
solved if one can construct functions M, ...p„ that,
when contracted with appropriate Clebsch-Gordan
coeKcients, give the physical functions M(ab~ cd),
and moreover are analytic in the momenta wherever
the functions M(ab —+ cd) are. A set of such functions

M, ...~„can be constructed by imposing extra condi-
tions on the M, .. .p„ in such a way that these functions
become unique analytic functions of the functions
M(ab ~ cd).

The extra conditions we impose can be regarded as
the conditions that would arise if the M, ...p„were
made to describe also certain additional 6ctitious re-
actions. Assume for the moment that J,+Jb

——J,+Jq.
Then the physical particles u, b, c, and d are formed by
Clebsch-Gordan composition on the sets of spin--,'
particles F„F&, F„and Fd, respectively, where the
number of particles in F; is X;=2J;. The E, particles
of F, can be combined in only one way to give a particle
of spin J;=X;/2. However, they can be combined in a
variety of ways to give particles of lesser spin. To be
specific, let the particles of F; first be numbered in some
arbitrary way. Then the erst and second particles of F;
can be combined to give systems of spins J+=-,'+2
and J—=2—~. The third particle can be added in

various possible ways to give three possible systems,
having spins J++=J++~, J+ =J'+—~, and J +=~,
respectively. Continuing, one finally obtains a single

system of spin J;, S;—1 systems of spin J;—&,

~~(X;—1)(X,—2)—1 systems of spin J,—2, and so on.
The total number of spin states of all these systems is

(»,+1)+(&;—1)(2J—1)
+P(g,—1)(g,—2)—1](2J;—3) ~ = 2~~. (A2)

t can be shown' that there is an orthogonal trans-
formation relating these 2~&' states to the 2 & basic
states of the E; particles of I';. Thus one can consider

that the functions M, ...~„describe a whole set of
reactions. And because the relevant transformation is

orthogonal, the M, ...p„are analytic functions of the
functions describing these various processes. Therefore
if one takes all the auxiliary processes to vanish, then
the M 1 p

's will be uniquely defined analytic func-

tions of physical scattering amplitudes M(ab —+ cd),
which is what we wanted.

The Clebsch-Gordan composition that takes 2J spin--,'

particles into one spin-J particle is given by forming the
completely symmetrized sum of the states of the proper s
component of angular momentum. Thus reversal of the
elementary helicities simply reverses the total helicity.

The above discussion covered the case J,+Jt,

=J,+J~. If this condition is not satisfied, then for
certain jwe have E,—2J,-=—e;&0.The labels a, b, c, and
d can be chosen so that the e; are even for all j.Then a
physical particle j with e;)0 is formed by contracting
each of the first e;/2 pairs to spin zero. Now the helicity
A; can be reversed by reversing the helicities of merely
the last E;—e; particles of F;. The numbers E;+, E, ,
and S; used in Sec. III refer only to these last S;—e;
=2J. particles. Because S;—2J; is even it can be
ignored in (3.10).

The functions M(ab-+ cd) are constructed from the
M, ...p„by Clebsch-Gordan composition. Let this
relation be represented by

R, ,(e)=e.e, gz„„„,,(g) g,q„.
p=1

(A4)

In cases where J,+J~=J,+Jq, Eq. (A4) shows that
(3.7) implies (3.8). In the other cases, however, each
pair of particles that is contracted to the singlet states,
which is antisymmetric, gives an extra minus sign. The
sign (3.8) is therefore (—1)~o+~' ~~~". This sign must
be included in the g of (3.6), which becomes, therefore,
simply the product p,zz/g, p&.

The dynamical singularities lie on surfaces defined
by invariants. ' The domain of regularity is therefore
I+-saturated, in the terminology of Hepp. ' This means
that any regular point is the image of some point in
momentum space for which the rank of the gram
determinant

~
k; b;~ is equal to the number of linearly

independent vectors. The power-series expansion (4.2)
can be considered an expansion about such a point.
The (p„p„,p,) are the relative momenta in a frame
where the total energy-momentum vector I'I' is a pure
timelike vector. The existence of such a frame is assured
by Lemma 2 of Hall and Wightman. ' The componentI" is Axed by the mass constraints and is an analytic
function of the (p„p„,p,) at p,=p„=0 except when
p,2=m/ for some j. Thus except possibly at these
points, and at dynamical singularities, the M function
is analytic in the (p„p„,p,) at p,=p„=0, and the
power-series expansion (4.2) is valid. Accordingly the
relation (4.1) is valid except possibly when p'= —m,',
or equivalently, as one sees from (2.10a) when s' is
(m, '—mP)' or (m, '—mq')'. But M considered as a
function of invariants is not singular on these surfaces,
as one also sees from (2.10a). Thus (4.1) holds every-
where, except at dynamical singularities.
"D. Hall and A. S. Wightman, Kgl. Danske Videnskab.
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M(ab —+ cd) = 6,8tM, . ..&„|',Q„. (A3)

The rotation operator Rqzq, .(8) is given by the identical
composition:


