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The expectation value (82) is then

expgj6(cVes cosh0 —M4s sinh0) j exp/i"x„j~=o, *=o

~ expDn(sinp sinq) —(p+q) sinh0$

8 8)
Xexp -,'i6 ——

~

ap aqua

&&expL —ln(sinP sinq)+ (P+q) sinh0j
= exp/ln(sing sinq) —1n(sin(p+-', i6) sin(q —-',i6)))

at P=q=a,

Slllh0 —i
'=-—»(gt/&s) =s»

2i sinh0+i

which is equal to

cosh'0 sinh'(r9/2)+1 1 ~/—4(m' K—)

Similarly, the vector form factor (%(p),F„V(0))may be
calculated, and yields the results (10) of Sec. II.
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A classical theory of magnetic charge is formulated on the basis of an action principle. It is an extension
of Schwinger's quantum theory of magnetic charge to the classical level. The action integral is defined by
limiting procedure to ensure the equivalence of all singularity lines. The action principle gives correct
equations of motion for the particles, Maxwell's equations, and the conservation laws of the Lorentz group.
The consistency of the theory demands a charge-quantization condition, and the existence of a constant
with the dimensions of action.

' 'N a recent paper, Rohrlich' has considered the
problem of constructing a classical theory of mag-

netic charge. One of his conclusions is that no action
integral exists from which both the particle equations
and the field equations can be derived. This result thus
casts severe doubt on the consistency of the theory of
magnetic charge with the I.orentz group. However,
Rohrlich's conclusion is based on the use of two inde-
pendent vector potentials (A„and 8„),which enlarges
the number of degrees of freedom of the electromagnetic
field and makes all the six components of the field
strength F„„ fundamental dynamical variables. In
quantum field theory such a system violates physical
positiveness requirements, ' and it may well be that a
similar situation holds at the classical level. ' In the
following we present a classical theory of magnetic
charge in which no additional degree of freedom is
introduced for the electromagnetic field; the vector
potential 8„is considered a given function of the field
strength. All the equations of motion for the particles
and the Maxwell field equations are derived from a
nonlocal action integral. The ten conservation laws of
the Lorentz group follow from the relativistic covariance
of the theory which is satisfied by a limiting definition

* Supported in part by the U. S. Air Force Once of Scientific
Research.

t John Parker Fellow.
' F. Rohrlich, Phys. Rev. 150, 1104 (1966).' J. Schwinger, Phys. Rev. 130, 800 (1963).' Footnote 16 of Ref. 1 seems to indicate that this is the case.

of the action integral. As we shall see, consistency of
the theory requires a charge quantization condition
and the existence of a constant with the dimension of
action.

The idea involved is essentially an extension of
Schwinger's quantum theory of magnetic charge. 4 We
start with the tentative action integral5

N N
w= (dx)z. (*)+p w.+p w„

a=1

Z. = —-',F""(0„A„—0„A„)+', F&"F„„, -

dx" 1
IF,= ds, P„— (P eA)s-

d$2m
(2b)

dx" 1
Ws= dss p„— (p—gB)'

ds 2' —b

(2c)

4 J. Schwinger, Phys. Rev. 144, 1087 (1966). A nonrelativistic
quantum-particle theoryhas also beenconstructedby J. Schwinger
(unpublished).' We use units with c=1. Also, —gpp=g11=g22 —g33 —1.

where a and b are the labels of an electrically charged
particle and a magnetically charged particle, respec-
tively. The vector potential 8„ is a function of the
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field strength F„„,and is given explicitly by' The Maxwell field equations can also be presented in
the alternative form

B„(x)= — (dx') *F„„(x')h„"(x'—x),

where *F„„is the dual tensor of F,„:

Bgl Fl i+ r)y Fgjl+ l9$ FjlP e+VQK J

r)sFvx+r)vFxp+r)xFpv +elvis

(17)

Q„Pe1=j~

F„„(x)= r)„A„(x) r)„A„(x)-

(6)

+ (dx') e„„p„*j"(x')h„"(x—x'), (7)

(dx&/ds), = (1/m, )(p,~ e,A —&(x,)5,

ea
pp. » e.A~(x—.)j= (p. —e.A (x.—)j„

&& (8~A" r)"A~—) (x ) (9)

( dx& /ds)b (1/mb——)Lpb& —gbB&(xb)), (10)

gs
t.pb"—gbB"(»)7=—Epb —gbB(») j.

dSg mQ

where
X (a~B aB~) (x,), (—11)

(dx~)j (x)= P e. ds.S(x-x.(s.))j
kdsl.

' (12)

*j"(x)=Z gb
(dx")

dsbb(x-xb(sb))i i
. (13)

&ds) b

These equations can be recast in the more symmetrical
version

g PIJ~—jv g +If'I ~=+jI

(d'x" (dx„
m.

~
=e.

~

(a A —a A )(*)
Eds' . &ds . a=1 2, , 7, (15)
d'x") (dx„

mb
~

=gb~ (B~B" 8" ~B)(xb), —
ds / b k ds

b=1, 2, ~, *E. (16)
' The relations between vector potential and field strength are

given by J. Schwinger, Phys. Rev. 151, 1055 (1966). If h, "(x) is
chosen to be a purely spatial vector, Kq. (3) then reduces to that
given by Schwinger, within a gauge term.

eF —1e Fkc(eslss —1)

and 7s„"(x) is a three-dimensional distribution localized
on the semi-in6nite singularity line x&= I&

~

x'
~

'I',
where nI' is an arbitrary constant vector. For definite-
ness, we may take it to be spacelike. The function
Is„"(x) satisles the differential equation

—r)„)s."(x—x') =8(x—x') .

Independent variations of the variables A„, F„„p&,

x,&, Pbs, and xbs yield the following equations

Thus, from the definition of B„,Eq. (3), one finds the
relation

*F„„(x)= r)„B„(x) r)„B-„(x)

+ (dx') e„„i„j"(x')0„"(x'—x) . (19)

Equations (7) and (19) show that the action integral
(1) produces correct Maxwell Geld equations as well
as correct equations of motion of the particles if we
impose the restriction that the singularity line never
connect an electrically charged particle and a magneti-
cally charged particle, since in such a case

Ii„„=B„A„—B„A„,

~pv= p~v ~s~p )

A„~A„+8„X, p,„—& p,„je.B„X (20)

When magnetically charged particles are present, a
gauge transformation on the magnetic quantities is
described by

B.~ B.+~.) pbu~ pb.+g.~.) . (21)

Let us examine the effect on the vector potentials by
the change from one singularity line to another. Con-
sider B„(x). If B& and B„' are the vector potentials
associated with the singularity line e and e', respec-
tively, since Ii„„is a physical quantity unaffected by

and Eqs. (15) and (16) become the correct equations
describing the motion of the charged particles. In
principle, the paths of the classical motion of the
charged particles can be followed exactly. It is there-
fore always possible to choose a singularity line which
satisfies this requirement. DifFiculty arises only when
collision occurs between an electrically charged par-
ticle and a magnetically charged particle. Nevertheless,
the anomalous position of the singularity line should
be removed if the equivalence of all space-time points
is to be maintained everywhere, without exception.
We now exhibit a limiting definition of the action inte-
gral which accomplishes this purpose. The clue to the
solution of the problem is provided by the experience
with the quantum theory of magnetic charge. ' The
situation here is even simpler, since we deal with
numbers, not operators.

A gauge transformation in classical electrodynamics
without magnetic charge is described by
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one finds

t =0

when the coordinate variation is specialized to a
Lorentz transformation

and

TIJv = PphP) v & dgrpvP) «P

dx~" dx~v

+Q ds.m. 8(x—x.(s,))
ds, ds

N' dxbj" dhb"
+Q dssms 3(x—xs(ss)).

b 1 dsb dsb

Thus

where

5x"= e"+&a""x &us" = —u "s

P„(o)=const, Js"(o) = const,

P„(o)= da„T&"(x)

ci„Ts"(x)=0,
which can be verified directly by using Eqs. (33), (34),
and (14).
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These are recognized to be the conservation laws of
total energy momentum and generalized angular
momentum. The ten conservation laws (35) also follow
from the equation

35
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The longitudinal development of extensive air showers of ~10' eV is studied both experimentally and
theoretically. The risetime and duration of Cerenkov pulses in uv light at 3500 m above sea level are studied
experimentally with high-speed techniques. The results are in quite good agreement with an accurate
Monte Carlo estimate in the "8"approximation of electromagnetic shower theory.

INTRODVCTION

~HE development of extensive air showers (EAS)
has been extensively studied from a statistical

point of view. The information on the diferent stages
of growth of an individual EAS":is instead scanty and
not very precise.

The methods to obtain such information are based on

(a) measurements of the distribution of EAS particles,
and (b) detection of the Cerenkov light emitted by the
electronic component of the EAS in the atmosphere.

In case (a), the information is obtained through the
longitudinal distribution of the particles in the shower

by measuring the relative delays between the particles
with the method used by Bassi et a/. ' This method is

today extensively used in an experiment at Haverah

' P. Bassi, G. Clark, and B. Rossi, Phys. Rev. 92, 441 (1953).

Park. ' A second method is based on the observation of
the directions of motion of the muons, these data being
related to the distribution of particle production along
the shower axis. '

In case (b), it is possible to use two methods: the
first one based on the comparison between the amount
of Cerenkov light and the number of particles reaching
the ground4; the second one based on the temporal
analysis of the Cerenkov light pulse' produced by the

' Bi-annual Newsletter of British Universities HPNL-1, 1966
(unpublished).' K. Greisen, Ann. Rev. Nucl. Sci. 10, 92 (1960).

4 A. E. Chudakov, N. M. Nesterova, V. I. Zatsepin, and E. I.
Tukish, in Proceedings of the Moscow Cosmic Ray Conference,
1959 (International Union of Pure and Applied Physics, Moscow,
1960}.' F. I. Soley, J. H. Baum, J. A. Palsedge, and J. H. Pereue,
Phys. Rev. 124, 1205 (1961);F.I.Boley, J.A. Palsedge, and J.H.
Baum ibid. 734, 126 (1962).


