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The expectation value (B2) is then
exp[19 (M o3 cosh@— M 43 sinh6) ] exp[#%, J1—0,2—0
— exp[In(sinp sing) — (p+¢) sinhf]

a 9
Xexp l:-%i:? <—-— —)]
dp dq

X exp[—In(sinp sing)+ (p+¢)sinhf]
=exp[In(sinp sing) —In(sin(p+349) sin(g—31i))]
at p=g=a,
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160
sinhf—1
a=—1In(%/¢)=% In——,
2 sinhf-+}1

which is equal to

1
cosh? sinh?(3/2)+1  1—t/d(mP—x?)

(B7)

Similarly, the vector form factor (¥ (p),I',¥(0)) may be
calculated, and yields the results (10) of Sec. IT.
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A classical theory of magnetic charge is formulated on the basis of an action principle. It is an extension
of Schwinger’s quantum theory of magnetic charge to the classical level. The action integral is defined by
limiting procedure to ensure the equivalence of all singularity lines. The action principle gives correct
equations of motion for the particles, Maxwell’s equations, and the conservation laws of the Lorentz group.
The consistency of the theory demands a charge-quantization condition, and the existence of a constant

with the dimensions of action.

N a recent paper, Rohrlich! has considered the

problem of constructing a classical theory of mag-
netic charge. One of his conclusions is that no action
integral exists from which both the particle equations
and the field equations can be derived. This result thus
casts severe doubt on the consistency of the theory of
magnetic charge with the Lorentz group. However,
Rohrlich’s conclusion is based on the use of two inde-
pendent vector potentials (4, and B,), which enlarges
the number of degrees of freedom of the electromagnetic
field and makes all the six components of the field
strength F,, fundamental dynamical variables. In
quantum field theory such a system violates physical
positiveness requirements,? and it may well be that a
similar situation holds at the classical level.? In the
following we present a classical theory of magnetic
charge in which no additional degree of freedom is
introduced for the electromagnetic field; the vector
potential B, is considered a given function of the field
strength. All the equations of motion for the particles
and the Maxwell field equations are derived from a
nonlocal action integral. The ten conservation laws of
the Lorentz group follow from the relativistic covariance
of the theory which is satisfied by a limiting definition

* Supported in part by the U. S. Air Force Office of Scientific
Research.

T John Parker Fellow.

1T, Rohrlich, Phys. Rev. 150, 1104 (1966).

2 J. Schwinger, Phys. Rev. 130, 800 (1963).

3 IFootnote 16 of Ref. 1 seems to indicate that this is the case.

of the action integral. As we shall see, consistency of
the theory requires a charge quantization condition
and the existence of a constant with the dimension of
action.

The idea involved is essentially an extension of
Schwinger’s quantum theory of magnetic charge.* We
start with the tentative action integral®

*

N N
W= [ (d2)Lom(2)+ Wt W, (1)

a=1 b=1

Lom=—3F*(8,4,—93,4,)+1F*F,,, (2a)
dx 1
W= / dsa[pu—~——<p—eA>2] , (2b)
ds 2m e
dx* 1 :
Wb=/d3b[ u———({’—gB)Z] , (2c)
.ds 2m b

where a and b are the labels of an electrically charged
particle and a magnetically charged particle, respec-
tively. The vector potential B, is a function of the

4 J. Schwinger, Phys. Rev. 144, 1087 (1966). A nonrelativistic
quantum-particle theory has also been constructed by J. Schwinger
(unpublished).

5 We use units with ¢=1. Also, —goo=gr=gea=gsz=1.
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field strength F,,, and is given explicitly by®
@)= [ @) P =), ©

where *F, is the dual tensor of F,:
*Fﬂv= %EWMFM(GOI23= 1) ) (4)

and %,”(x) is a three-dimensional distribution localized
on the semi-infinite singularity line x*=n#|a2|12
where ## is an arbitrary constant vector. For definite-
ness, we may take it to be spacelike. The function
h»*(x) satisfies the differential equation

— 0, (x— ") =08(x—2'). (5)

Independent variations of the variables 4,, Fu, p.*,
%a*, pv*, and x3* yield the following equations

9,Fw=g*r, (6)
Fu(x)=0,4,(x)— 0,4 ,(x)

+ / (@) s * 5 (@) ha*(@—2"),  (7)
(dx#/ds)a= (1/ma)[Pa“_eaA" (xa)] ) (8)

d 2
_[Pa"_ eaAd*(%a) ] = "[Pa_ eo4 (%a) :]v
ds, Mg

X (0*4>— 7 A¥) (xa),  (9)

(dx#/ds)s= (1/ms)[ps*—gsB* (%) ], (10)
d b
Lpv— B )= L pv— B )],
dsy My
X (9*B*— 8"B*) (), (11)

where

PO e dsaa(x—xa@a»(%)a, 12)

a=1

*jr(x) = g:l gb/dSbts(x—xb(Sb))<%)b. (13)

These equations can be recast in the more symmetrical
version

dFw=gk  §, Fw="%*gu (14)
A2+ dx,
ma(*) = ea(_‘> (a“A — 3’4 ﬂ') (xa) )
ds?/, ds/,
e=1,2,---, N, (15)
(d“’x“) (dx,)( o
myl — ) =go| — ) (0*B*— 8*B*) (xs) ,
i)y Nas/, ’
b=1,2, -+, *N. (16)

¢ The relations between vector potential and field strength are
given by J. Schwinger, Phys. Rev. 151, 1055 (1966). If &.*(x) is
chosen to be a purely spatial vector, Eq. (3) then reduces to that
given by Schwinger, within a gauge term.
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The Maxwell field equations can also be presented in
the alternative form

an *Fv)\+ Jy *F)\u+a)\ *an= - euv)\xj‘,
aqu)x"l'ayF)\u_l_a)\Fuv: +€pv)sx *jx'

Thus, from the definition of B,, Eq. (3), one finds the
relation

an
(18)

*F o (x)=0,B,(x)— avBu(x)
+/(dx’)e,,yx,‘j"(x’)hn"(x'—x) . (19)

Equations (7) and (19) show that the action integral
(1) produces correct Maxwell field equations as well
as correct equations of motion of the particles if we
impose the restriction that the singularity line never
connect an electrically charged particle and a magneti-
cally charged particle, since in such a case

Fuv':' anAv_ avAll )
*Fy=209,B,— 9,B,,

and Egs. (15) and (16) become the correct equations
describing the motion of the charged particles. In
principle, the paths of the classical motion of the
charged particles can be followed exactly. It is there-
fore always possible to choose a singularity line which
satisfies this requirement. Difficulty arises only when
collision occurs between an electrically charged par-
ticle and a magnetically charged particle. Nevertheless,
the anomalous position of the singularity line should
be removed if the equivalence of all space-time points
is to be maintained everywhere, without exception.
We now exhibit a limiting definition of the action inte-
gral which accomplishes this purpose. The clue to the
solution of the problem is provided by the experience
with the quantum theory of magnetic charge.* The
situation here is even simpler, since we deal with
numbers, not operators.

A gauge transformation in classical electrodynamics
without magnetic charge is described by

Ay— Ayt 0uN,  Pap— Pauteadud. (20)

When magnetically charged particles are present, a
gauge transformation on the magnetic quantities is
described by

(21)

Let us examine the effect on the vector potentials by
the change from one singularity line to another. Con-
sider B,(x). If B# and B,’ are the vector potentials
associated with the singularity line #» and #’, respec-
tively, since *F,, is a physical quantity unaffected by

B,— By+0uA, pou— poutgulul.
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this change, we have

9y(B’—B),(x)— 9,(B'—B),(x)= euv)\X/ (dx)
X[ (&' = 2)— koM (2’ — 2) ]74(x') ,

which is zero almost everywhere. Consequently,

(B'—B), is almost expressible in terms of the gradient
of a scalar function A (x) given by

(22)

&)= / g (B— B (@). (23)

Therefore, the change from one singularity line to
another is a gauge transformation almost everywhere, as
described by

n—n,
Bu(x) = Bu(%)+ (B — B,) (%), (242)
xb
pv — pr+gi0 f dx\(B'—B)* (&),
” b=1,2, ---,*N. (24b)

The expression (p—gB)?/2m which appears in the
action integral is not exactly gauge invariant under
(24). A truly gauge-invariant structure is obtained by

the following considerations. We observe that
(p—gB)*/2m can be defined by the limiting construction?
1 4R
—-pr— gbB (xz,):]2= lim— —
My my €

x{l—exp[—z [ ”%edxlﬂ(rgzs)“(xol} e

—Le

where the path of the line integral is a straight line
connecting the two end points, and an average over all
directions is performed before letting ¢ — 0 with the
aid of the relation

((1/52) e,,é,,> = %gw .

The constant % is introduced for dimensional reasons.
It has the dimension of action. Under the transforma-
tion (24), the object

7 z+ie
exp[—; f 5= 5B () |

—%e b

is changed by the factor
igs igs .
exp| = [ (BB (w) | =] - [ @)
¢

1
X"Z" /da'lw‘euv)\x(hn’x_hn)‘) (x”_xl)])

7This is the relativistic generalization of a corresponding
structure in Schwinger’s nonrelativistic theory.
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where the contour C begins at infinity, moves succes-
sively to #s—3%e, ¥s-+%¢, and then returns to infinity.
The line integral has been converted into an integral
over the two-dimensional surface defined by the
boundary. Consider the expression

igb
Xp= exp[I/ (@x'")j* (")

1
XE/da;""e,‘,x,‘h,.)‘(x"—xl)]. (26)

We first evaluate the integral
1
p / o' ¥ egnihin (&7 — 27)

for a fixed point #”, and any surface o,,/. We distin-
guish two possibilities, whether the boundary encircles
the singularity line or not. In either case, in virtue of
the singular nature of the function %,”(x), it is always
possible to close the surface without altering the value
of the integral. In the former case, the point x” is
inside the closed surface, while in the latter, the point
%" is outside. Thus,

1 1
E/da”‘"euyxxhn*(x"—x')=—fdo"“’e“,x,‘h,.)‘(x”—x’)
2

=~/(da;"é),(’—da,('ax')h,}(x"—~x’).

We have converted the two-dimensional surface integral
into an integral over the three-dimensional hypersur-
face which spans it, and the relation

1
E fda‘””é,.,,“f)‘ (x) = / (dO')\ax—"dd,‘a)‘)f)‘ (x)

for an arbitrary f has been used. Should the boundary
of o,/ not encircle the singularity line, but be tangen-
tial to it, the value of the integral must be multiplied
by 3.4® A plus or minus sign must also be included
depending on the sense of the original contour. With
these remarks, Eq. (26) becomes

7,
Xop= eXPl:é—b > 3a7la:l ) (27)

where 7,==0, =%, or &1 is to be used in the manner
described above. In arriving at Eq. (27), use has been

8 Generally, such surfaces form a set of measure zero in the
average over all directions of €. However, the limiting construction
(25) can also be defined alternatively in terms of a discrete averag-
ing process performed symmetrically over four orthogonal direc-
tions. In this procedure, such surfaces make finite contributions.
The inclusion of the extra factor § makes the result independent of
the particular averaging process adopted.



160

made of the relation
dx*
/‘dax/dsji—a(x—x(s))=1 or0,
s

which holds for any hypersurface o) The condition that
all (p—gB)*/2m be invariant under the change of
singularity line is

Xp=1, b=12,---*N (28)
for all possible situations, i.e.,
eage/Amk=n, n=0,+1, +2, ---;
e=1,2,--- N; b=1,2,--- %N  (29)
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which is the classical charge quantization condition.
It involves a constant with the dimension of action.
Equation (29) is identical to the charge-quantization
condition in quantum theory if the constant % is
identified with the Planck constant %#. An analogous
discussion can be applied to the expression (p—ed)?/2m,
leading to the same charge-quantization condition (29).

When the action integral (1) is understood in terms
of the limiting definition just described, it is unam-
biguously gauge invariant.’ Independent variations
of A,, Fu, po#, and pp* will still produce the same
Egs. (6)-(8), and (10). Variations of x,* and x;#* will
lead to equations different from Egs. (9) and (11),
however. Consider the variation of x3*:

1 4 B i potie
a,»['—(p—gB)z] =lim— _[exp[" / dxn”(p—gB)“(x")]
2m b 62 k

™y z—}e

' ztietdz
(e~ [ ano—gpr)-
k z—}etdz

z+ie

dxn'<p—gB>u<x'>]}~1)]b. (30)

z—3e

We now close the contour appearing in the curly brackets by adding and subtracting two line segments, one of
which connects the two points x3+3e+4-6x and x,+3¢, the other connects the two points xs— 3e+0x and xpy—3e.
Furthermore, we convert the closed contour integral into a surface integral:

epr_%)[ fj: - f j ]dxu'@—gB)“(x')] =exp[% / do! (3%Br— 3 BY) (x’):l
G T I T

The charge-quantization condition allows us to replace
d#B*— 9*B* by *F,, in the surface integral. Therefore,

ig 1
exp[—k— p /d«r’,,,,(a"B"—- 9”B*) (x’)]

ig 1 ig
=exp[;5 / dcr’w*F"”(x’):I=1+;6xn€v “Fw, (3)

to the order of accuracy required. Evaluation of the
line integrals finally yields

dpr 1
6Wb=fdsb|:——+—(p—gB),(g *F‘"’+g6"B“):| 0,
ds m b

=O’
or

d
L i B (@) =L ps—gaB ()] *Fw (),
dsy my

ie.,

my(d2x+/ds?) = go(dxs/ds)y *F* (xp) , (33)

which is the correct equation of motion for a mag-

netically charged particle. Similar consideration about
the variation of x,# leads to the equation
ma (Bx*/ds?) o= 4 (dx,/ds) o F* (x5) . (34)

We conclude that the action principle does give the
correct equations of motion for the particles as well as
the Maxwell equations if the action integral is properly
interpreted.

With the limiting definition for the action integral,
the theory is independent of the choice of singularity
line, and all space-time points are equivalent, since no
particular direction is preferred. In other words, the
theory is relativistically covariant. Consequently, the
usual derivation of the conservation laws follows.
Indeed, under the transformation

XH—> THh=gkr4-0xH,
F (%) — F o (F) = F 1 () — 3,02 F,— 3,00 F
Au(®) = A, (F) =A,(x)— 9,087, etc.,
9 The combination (8,4,—8,4,) which appears in £em can
also be given a formally gauge-invariant limiting definition, but

since difficulty does not arise from this term, this has not been
done explicitly.
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one finds

oW = e[ P#(01) — PH(02) JH+3wu[J# (01) — T * (03) ]
=0,

when the coordinate variation is specialized to a
Lorentz transformation

dxt=ettwh'x,, wh'=—w"k,
Thus
Jw (g)=const,

P,(s)=const, (35)

where

Pulo)= / do, T (),

J# (o) = / do\[x*T™ (x)— 2T (x) ],

TUNG-MOW YAN
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and
Tw= _Fu)\F)\v_ %gqu)\xF)\K
N dxa* dxy”
+> | dsamg (x—%4(5a))
a=1 Sa Sa
*N dxy* dxy’
+3 | dssmy— —(x—2x5(s3)).
b=1 dsy dsy

These are recognized to be the conservation laws of
total energy momentum and generalized angular
momentum. The ten conservation laws (35) also follow

from the equation
9,T#(x)=0,

which can be verified directly by using Egs. (33), (34),
and (14).
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Longitudinal Distribution of Cerenkov Light from
Extensive Air Showers

Carro Castacnori, MAuro DaArpo, aAND PIERO PENENGO
Gruppo Italiano di Fisica Cosmica G.I.F.C.O. del C.N.R., Istituto di Fisica Generale,
Unaiversita di Torino, Torino, Italia
(Received 12 April 1967)

The longitudinal development of extensive air showers of ~10% eV is studied both experimentally and
theoretically. The risetime and duration of Cerenkov pulses in uv light at 3500 m above sea level are studied
experimentally with high-speed techniques. The results are in quite good agreement with an accurate
Monte Carlo estimate in the “B” approximation of electromagnetic shower theory.

INTRODUCTION

HE development of extensive air showers (EAS)

has been extensively studied from a statistical

point of view. The information on the different stages

of growth of an individual EAS"is instead scanty and
not very precise.

The methods to obtain such information are based on
(a) measurements of the distribution of EAS particles,
and (b) detection of the Cerenkov light emitted by the
electronic component of the EAS in the atmosphere.

In case (a), the information is obtained through the
longitudinal distribution of the particles in the shower
by measuring the relative delays between the particles
with the method used by Bassi et al.! This method is
today extensively used in an experiment at Haverah

1 P. Bassi, G. Clark, and B. Rossi, Phys. Rev. 92, 441 (1953).

Park.? A second method is based on the observation of
the directions of motion of the muons, these data being
related to the distribution of particle production along
the shower axis.?

In case (b), it is possible to use two methods: the
first one based on the comparison between the amount
of Cerenkov light and the number of particles reaching
the ground?; the second one based on the temporal
analysis of the Cerenkov light pulse’ produced by the

2 Bi-annual Newsletter of British Universities HPNL-1, 1966
(unpublished).

3K. Greisen, Ann. Rev. Nucl. Sci. 10, 92 (1960).

4 A. E. Chudakov, N. M. Nesterova, V. I. Zatsepin, and E. 1.
Tukish, in Proceedings of the Moscow Cosmic Ray Conference,
1959 (International Union of Pure and Applied Physics, Moscow,
1960).

5T. I. Boley, J. H. Baum, J. A. Palsedge, and J. H. Pereue,
Phys. Rev. 124, 1205 (1961) ; F. 1. Boley, J. A. Palsedge, and J. H.
Baum 4bid. 734, 126 (1962).



