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Continuing a previous work, various models of relativistic wave equations are considered which have an
infinite number of components. By combining a unitary representation of SO(4,2) and the ordinary finite
(Dirac) representation of the Lorentz group, sit is possible to construct equations which produce hydrogenlike
mass spectra. However, they are also accompanied by redundant, or unphysical, solutions. In the non-
relativistic limit, on the other hand, the equations obtained can be shown to be mathematically equivalent
to the Schrodinger equation for the hydrogen atom. This suggests that the method of infinite-component
wave equations may be a useful tool in exploring the physics of strong interactions. A general discussion is
made about the principles and problems that will be relevant in pursuing such a program.

I. INTRODUCTIOÃ
' 'N the exploration of the nature of strongly interacting
& - particles we are always plagued by our ignorance of
the basic dynamical laws and an adequate mathe-
matical tool to handle them. These two difhculties
reinforce each other and make it hard to achieve a
quantitative description of hadron properties after we
have come to a fairly satisfactory qualitative under-
standing in terms of models, such as the quark model,
and simple group-theoretical arguments.

For this reason, setting up elaborate dynamical
equations, for example a Bethe-Salpeter equation using
the quark model, may not be very useful. First of all,
we do not know the precise interquark dynamics, and
secondly, it is diflicult to solve the equation. Inasmuch
as we are mainly interested in the properties of the
solution, namely the mass spectrum, the internal
structure revealed by form factors and scattering cross
sections, etc., this is a roundabout approach.

In a recent paper' we tried to strike an intermediate
path by considering simple relativistic wave equations
having an in6nite number of components, which are
easily soluble and yield information about the mass
spectrum and the matrix elements of observables, and
therefore serve as dynamical equations for describing
the properties of complex systems. Two model equations
were examined. One is based on a set of multispinor
fields f„(sc), each regarded as an irreducible-spinor
representation of the homogeneous Lorentz group,
while the other uses the set as a basis for a unitary
infinite-dimensional representation of the Lorentz
group, of such a nature that it actually constitutes an
irreducible unitary representation of the larger group
SO(4,2). In the former, the mass-spectrum and de-
generacy structure simulate the real hydrogenlike atom;
but otherwise the equation is essentially unphysical
because it does not admit a positive-definite probability
density. In the latter, we do not seem to run into
obvious conflict with quantum-mechanical interpreta-
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' Y. Nambu, Progr. Theoret. Phys. (Kyoto), Suppls. 37 tk 38,
368 (1966), referred to as A hereafter.
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tion, but there are still some odd features; for example,
the discrete hydrogenlike mass spectrum is inverted in
order, and allows only one sign of frequency, contrary
to ordinary relativistic wave equations, which always
admit both signs.

The concept of infinite-component wave equations is
not new. Even in 1932 Majorana' was led to this type
of equation, which was later rediscovered by Gelfand
and Yaglom. ' Our second example is a slight generaliza-
tion of this Majorana-Gelfand-Yaglom equation. As
representations of the Lorentz and Poincare groups, the
general structure of in6nite-component wave equations
was studied in detail by Gelfand, Naimark, and others. 4

An alternative approach to this problem, dating back
to Dirac, ' ' is to use continuous variables rather than
discrete ones. This looks more directly related to the
description of composite particles, whether the con-
tinuous variables are regarded as relative internal
coordinates of a bound system, or taken in a more
abstract sense, as in the bilocal theory of Yukawa7 and
subsequent works of many others. In particular, in a
series of papers Takabayashi' has made a transition
from the continuous to the discrete basis of repre-
sentation, and considered simple wave equations and
their mass spectra. His equations are based on a
harmonic-oscillator-type model, which is viewed as a
geometrical interpretation of SU(3) symmetry.

'
With the apparent success of the quark model and

SU(6) symmetry, people have been led to appreciate
the use of noncompact groups such as SL(6) and U(6,6)

' E. Majorana, Nuovo Cimento 9, 335 (1932).' I. M. Gelfand and A. M. Yaglom, Zh. Experim. i Teor. Fiz.
18, 703 (1948).

4 See M. A. Naimark, Lirtear Represeutatious of the Ioreute
Group, (translated by A. Swinsen and A. J. Marstand, transl.
edited by H. K. Faratat Pergamon Press, Inc. , London, 1964).

5 P. A. M. Dirac, Proc. Roy. Soc. (London) A182, 284 (1944);
E. P. Wigner, Z. Physik 124, 665 (1947).' See also E. M. Corson, Introduction to Tensors, Spinors end
Relatinistic Wane Equatiorts (Blackie and Son Ltd. , London, 1953).' H. Yukawa, Phys. Rev. 77, 219 (1953);91, 415 (1953).

8 T. Takabayashi, Progr. Theoret. Phys. (Kyoto) Suppl. ,
extra number, 339 (1965) (earlier papers are quoted therein);
B6, 185 (1966). Kase and Takabayashi, Progr. Theoret. Phys.
(Kyoto) 36, 187 (1966).

~ As a somewhat related attempt, one may quote also H. C.
Corben, Phys. Rev. Letters 15, 268 (1965).
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and their representations as a means of characterizing
and systematizing the properties of hadrons without
reference to their dynamical origin. This program has
been vigorously pursued from a formal mathematical
point of view by a number of people. For the justi6ca-
tion of the substitution of dynamics with group theory
one usually quotes two conspicuous examples, the
isotropic-harmonic oscillator and the hydrogen atom.
However, the demonstration has been less than corn-
plete in the case of the hydrogen atom.

Our example equations, although written down
merely on the basis of simplicity, seem to possess many
features of the hydrogen atom, at least on the surface.
This accident encourages us to embark on a systematic
study of infinite-component wave equations. Our main
purposes in the present paper are to search for wave
equations which simulate more closely the real hy-
drogenlike atom, and to determine how deep the simi-
larities are. Our attempt is only partially successful as
far as translating the hydrogen atom into a relativistic
form is concerned, since the class of equations we And
still suffers from various diseases if we want to regard
them as a bona fide field theory. These diseases include
unphysical, redundant solutions, especially those with
spacelike four-momenta; a tendency to lack anti-
particle (negative-frequency) solutions (thereby spoil-
ing the CPT theorem); and indefinite sign of energy,
either in c number or quantized theory. The loosening
of spin-statistics connection has been pointed out by
Fronsdal, 'o and by Feldman and Matthews" recently.
But a systematic examination of these problems is not
our concern here.

In the case of the nonrelativistic Schrodinger hy-
drogen atom, on the other hand, the mathematical
equivalence of our formalism to the conventional one is
actually almost complete, as has recently been shown

by Barut and Kleinert, "and by Fronsdal". In fact, we
can carry out the transition from one to the other by
inding a mapping of SO(4,2) algebra onto functions of
continuous variables. These same mapping formulas
also serve us for such purposes as computing analy-
tically the form factors in relativistic models, and cast-
ing the Bethe-Salpeter equation into our discrete form.

II. GENERALIZED MAJGRANA EQUATION
WITH 80(4) SYMMETRY

In this section we recapitulate and discuss the results
of A. Since we shall be dealing with a number of model
equations, it is convenient to label each of them by a
serial number. Thus the two examples in A will be
called No. 1 and No. 2.

» C. Fronsdal, Phys. Rev. 156, 1653 (1967).
» G. Feldman and P. T. Matthews, Phys. Rev. 154, 1241

(196'I).
O. Sarut and H. Kleinert, Phys. Rev. 156, 1541

(1967).
» C. Fronsdal Phys. Rev. 156, 1665 (1967) .

We take a set of spinors g„},I, m= 1, 2, , with
and m lower and upper spin indices, each being

symmetric under interchange of indices among them-
selves. Thus each P is an irreducible representation
D(e/2, m/2) of the group SU (2) X SU (2) or SO(4) . This
choice corresponds to the fact that we shall be dealing
with a system which exhibits an SO (4) degeneracy
structure.

The spin part of the rotation group SO (3) in real space
is identified with a subgroup of the above SO(4). We
then extend this to SO(4, 1) )which contains the Lorentz
group SO(3,1)j in such a way that it can be realized
within {tp„}. One way to do this is by regarding
each P„as the usual spinor representation of SO(3,1)

Si (2,C). Another way is to take a unitary repre-
sentation. In either case, the set is large enough to
accommodate not only the generators of SO(3,1) but
also Lorentz scalar S and vector (current) I'„operators,
as well as space reQection. In terms of these one can
write down a vfave equation

(r„p + (S—).$e(*)=0,

where 0'(x) = g „(x)}, and n and x are e-number
parameters.

The first example (model No. 1), based on an infinite
sum of representations, need not be discussed here for
the reason already mentioned. In the case of unitary
representations, we have considered a special case
realized on a subset

S+~={f„"},I—m=const=+k.

It turns out that this set constitutes not only an
irreducible unitary representation of SO(4,1) but that
of SO (4,2), or more precisely, its covering group
SU(2,2). Here we will arrange the six dimensions 0,
1, 2, ~, 5 with the metric + +, and identify
the Minkowski subspace with 123 (space) and 0 (time) .

The 15 generators M p of SO(4,2) are defined in such
a way that 1+ie PM p is the infinitesimal transforma-
tion, and

3E p
———3fp

MP=M~g», g P=g p=b p

X (1, —1, —1, —1, —1, 1), (2)
M P= —Mp, n, Pe(1, , 4) or n, Pe(0,5),
M„P=Mp, n(P)e(1, , 4), P(n)e(0, 5) .

They satisfy the commutation relations

&LM wMvih—=gpvM-t+g-tMpv g~Mp~ gp—iM-v (—3)

Under the restriction to SO(3,1), these 15 generators
breakup into a 6 vector (M, i, Mo;, i= 1, 2, 3), a 4-vector
(M5' M50) a 4-vector (M4;,M40), and a scalar (M~~).



160 I NF I NI TE —COMPONENT WA VE EQUATIONS 1173

in terms of the two-component Bose operators at, a and
g', b, which change P„ into f„~~ and P„"', respec-
tively. If we combine a and 6 into a 4-component Dirac
spinor $= (a,b), and use two sets of Pauli matrices p;
and p;, Eq. (4) can be seen to consist of 7 bilinear forms

hippo;$ and 8 quadratic (and. necessarily
symmetric) forms ()C(t, )tppp, C/t', and H.c. (C=p&p&),
whose algebra is equivalent to that of the noncompact
group SU(2,2) of 4X4 matrices (the algebra of 15
Dirac matrices) that leaves $tpp$= $fyp$ invariant. The
parity, or reflection in the subspace (123), may be
de6ned within the pair S~I, by the operation S~&~RS+~ Spl, such that

u~RuR '= —ib, b~RbR '= —iu,
at ~ibt', bf ~ iaaf,
R= expt-', i~(afb+bta)),

g2 ( i)n+m

(5)

The case 0=0 is unique in that it does not require
doubling of the representation.

An important property of this degenerate unitary
representation SA, is that, with respect to the compact
subgroup SO(4) XSO(2), it reduces to a sum

Dso &4& (e/2, m/2) XDso &2& (e/2+m/2+ 1) .
n,—m=0

Thus, to a given eigenvalue of 3550 X, there cor-
responds a unique irreducible representation in the
complementary space (1, , 4).

Our Inodel equation No. 2 was obtained by equating
in Eq. (1)

I'„=2M5„, p, =1, 2, 3, 0,
S=2&54.

(In general, one could take for I'„a linear combination
of 3f~„and M4„. But, as will be clear from what follows,
it can be reduced to pure M5„, pure M4„, or M5„~3f4„
by a rotation. The last two do not give a discrete
spectrum. ) Introducing the 6-dimensional notation
q =(pp, p, a,0) and I' =2Mp, we have then

(I' q
—«)%'=0. (7)

Since the spaces S+k are decoupled, we Erst note that
all solutions come in pairs of opposite parities except

In our representation space S~, the generators have
the following expressions:

2M@= p;, p (a$o pa+ btogb). ,

2M4; ——(ato;a bf—o,b),
2Mp, ——(ufo, Cbt bCa—~a)

2M p, —— i (a—to,Cb+ bC0;u)

2Mp4= (at'Cbt bCa—),
2M4p= i (a—t'Cbf+bCa),

2Mpp ——(ata+bfb+2)=N, C=
I

( 0 1

when k=0. Now, if q is timelike, i.e.,

p
2 p2 &2 m2 &2y0

we can go to a "rest frame" in which

q
= ((sgnm) (m' —~')'IP, 0, 0),

and obtain the eigenvalues

or
I'p (m' —a') "'Xsgn(m) =N (m' —~')'I'= «

m=
I
&1(1+n'/NP)'IP sgn(«) .

When q q (0 we can take a frame in which only one of
the spacelike components, e.g., F4, survives, so that

&P (~'—~')'IP=« (9)

~4 &he existence of spacelike solutions in the Majorana equation
was pointed out by E. Majorana (R.ef. 2), and by V. Bargmann,
Math. Rev. 10, 583 (1949).

Since I'4 is a noncompact generator, its engenvalues are
continuous, running between —ae and +~, which
means i~."&m'& —~. The corresponding eigenfunctions
are non-normalizable. Formally, Eq. (9) is obtained
from Eq. (8) by analytic continuation of N' to negative
values. t The special case q q =0 belongs to the end of
the spectrum (8), and likewise has only one sign,
although the eigenfunction is non-normalizable. )

Thus, Eq. (7) possesses a discrete inverted hydrogen-
like spectrum m) a (if «)0), followed by a continuous
part of both signs

I
m

I (~, which extends into imaginary
m, or spacelike 4-momentum. " The continuous part
must be regarded as physically relevant, because, under
an external field, transition between discrete and con-
tinuous parts will take place in general.

Ke see from the foregoing that this model equation
still possesses many unphysical features, which it shares
with the original Majorana equation. The only im-
provement is that the discrete mass spectrum does not
come down to zero. The difhculties are: (1) The mass
spectrum is inverted; (2) it is not symmetric between
positive and negative values; (3) it contains possibly
dangerous spacelike solutions. On the other hand, it has
also some interesting features, namely, the hydrogen-
like degeneracy, i.e., SO(4) type for the discrete states,
and SO(3,1) type for the continuum. This can be seen
by noting that in its 6-dimensional rest frame, Eq. (7)
contains only the generator of a 2-dimensional subspace
(05) or (45), and therefore commutes with the gene-
rators of the complementary space. The symmetry is
"dynamical, " in the sense that the symmetry subspace
is cut out from the 6 space in a different way for each
mass level. For the same reason, it also follows that the
orthogonality of eigenfunctions does not hold with,
respect to the norm 4)% which forms the basis of the
unitary representation, but it holds only with respect
to the charge (density) 4'tl'p% which is the physically
conserved quantity. These two things are not equi-
valent; a mass eigenstate is not an eigenstate of Fo.
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Nevertheless, I"
0 has no o8-diagonal elements, since the

eigenfunctions are not orthogonal in the usual sense.
In A, we computed the magnetic moment under the

minimal electromagnetic interaction, and found the g
factor to be negative, unlike the hydrogen atom. On the
other hand, the form factors show reasonable behavior.
For the scalar and vector vertices, we find in fact that

e+(p')e(p) =Z(t) =4(~'—")/[4(ms —.') —tI,
~= (p p)', — (1o)

+(p')I'8'(p) = [(p.+p')/2~3~(~)',

for the ground state Ã= 2. This can be derived by using
the techniques of Sec. IV, but its general property may
be inferred by observing that F(t) must be a function of

q 'q =p„'p" K'= —t/2+—m' /t'= —(m' —/t') cosh',

where 8 is the hyperbolic angle between q and q'. F(t) is
then the elementary spherical function 1/cosh'(8/2)
associated with our representation.

III. RELATIVISTIC MODELS WITH
HYDROGENLIKE SPECTRA

We try now to improve our model No. 2 so as to
obtain a correct hydrogenlike behavior with respect to
level ordering, form factors, etc. Our previous examples
were erst-order wave equations. This is not only due to
our search for readily solvable equations. The algebra
of SO(4,2) happens to contain 4-vector generators so
that it is indeed possible to write a first-order equation.
We shall therefore restrict ourselves at first to first-
order equations. By means of elimination, first-order
equations can be converted into second-order equations,
if necessary. The search for general first-order equations
will be made by taking a product of infinite-dimensional
and finite-dimensional representations, i.e., regarding
4' to have components P, , where s is a spinor index
of finite order. An underlying argument is that the
conventional field theory for finite spin is known to
work. Especially for spin-0, -2, and -1 cases the degree of
singularity (or growth) of form factors associated with
the finite spin is not serious, and we may expect enough
compensation from the unitary part. Furthermore, the
unitary representation can be interpreted as describing
the internal-orbital motion of particles (see later
sections). It will then be quite proper to introduce
intrinsic spins of the constitutents as separate variables.
We can adopt the Dirac and DufFin-Kemmer formalism
to handle the finite-spin part. ""We discuss here a few
diferent models as typical examples. Other examples
will be found in Appendix A.

"The Dirac and Du%.n-Kemmer algebras are 6nite-dimen-
sional realizations of SU(2,2), but probably this fact is accidental
to the hydrogen-atom problem.

"The Dugan-Kemmer —type equations are not treated in this
paper. In general, they lead to additional spurious solutions which
are not present (or whose masses are pushed to ~ ) in the ordinary
DufBn-Kemmer equation.

Model No. 3

L% = [I'„p&+S(x~„p&+~y,N, ) /ro/)%—=0. (11)

I'„and S are the same as in Eq. (6). The pseudoscalar
N;= ts —m= k(NO) is a constant to within a sign in the
representation space S~~. The Dirac y's are standard
ones, with yo being Hermitian, and y;, y5=yg ~y2y3
anti-Hermitian. This equation follows from a Lagran-
gian +I+, where the adjoint function to 4 must be
defined by N=%+&0. The parameters of the equation
are ~, e, and x, which we will take to be positive.

In order to diagonalize Eq. (11) in the rest frame
p/'= (m, o), we first make a nonunitary rotation in the
Dirac space:

+=expl Qt/2)gpss]@t —Utkt, 4=+tUt ',
(12)

tanhpt ——«k/xm,
which leads to

[ram+Spa(x'm' —s'k')'/' sgn(m) —~aj%'i=0. (13)

We have assumed that g gP) g k'. The next. transfor-
mation is a unitary one in the (04) plane:

+1 exp[st 2'y0/lf 04)+2 Us+2 +1 q 2Us
(14)

tanhys = (X'te' —K'k')'" Sgll(Xm)/n$

assuming
I mI ) (x'nP —/t'k')'/s, and we find

(1,[~'k' —(x'—1)m'j'/' sgn(m) —an) +,=0. (15)

Sl= K(p Q2/N2)t/2/(xs 1)1/2

=ma(1 n'/lt'N'—)'" ms=—Kk/(x' —1)'" (16)

This equation is correctly hydrogenlike and consistent
with the rotations (12) and (14), if we require the
values of x, 0., and k to be such that

x' —1)0, 1—x'n'/k'(I k I+2)')0

[No« t at N=
I

& I+2 I
& I+4 " ]

The continuum part of the spectrum above mo can be
obtained in a similar way by rotating Eq. (13) in the
S direction instead of Fo. As was already discussed in
Sec. II, however, the continuum part consists of both
signs, since S takes all real eigenvalues. Unlike model
No. 2, on the other hand, there are no spacelike solu-

tions, as we can check easily by diagonalizing the
equation under the assumption that p/' is spacelike.

The difhculties with this equation are that the
discrete spectrum has only positive eigenvalues, as in
model No. 2, and that each eigenvalue is fourfold
degenerate, not counting the O(4) degeneracy of spins.
The latter situation is due to the two signs yo and k can
take in Eq. (15); this means that half of the solutions
have opposite parity to the other.

The current operator that follows from Eq. (11) is

Z„=e(r„+xs&„)e.



INFINITE —COMPONENT WAVE EQUATIONS

After carrying out transformations (12) and. (14), we
find that jp changes sign with pp. Hence, the energy
operator also changes sign with yp (for a fixed m) 0).
Certainly this is a serious di6iculty in setting up a
physically consistent Lagrangian formalism. We find,
keeping only the diagonal part,

jo=%'otpo&o(costs —x sinh/o coshPt)4&

= [(1 x')—mN'/err]+sfy p%'o

Hence the "charge" jp changes sign with pp, and so does
the energy Tpp=mjp in spite of m being )0.

Equation (11) was meaningful only for k/0. When
k=0, or 4'= g "}, we simply double the space:
4'~ (4&'& N&'&), and write

L%= [ro(I'„pp xn)+S—(xq„po+~r, )]%=0, (19)

each m being fourfold degenerate. Beyond this there is
also the spacelike solution corresponding to imaginary m.

In spite of the unphysical lower and imaginary
continua, this model possesses one good feature. If we
evaluate the current

~„=4[r„+x(S n—)~„]e,
we find that it has a definite sign for the discrete and
upper continuum part of the spectrum. This suggests
the possibility of quantizing the field according to
Fermi statistics, and thus satisfying positive definite-
ness of energy (for the physical part) irrespective of
integer or half-integer spin.

We next consider a second-order equation.

Model No. 5

where the 7 matrices operate in the space (4&'&,4'"&).
Again this can be diagonalized by means of two
rotations, exp(gtypr 1/2) and exp(goToppMp4), and
leads to the solution (16) (with k replaced by 1). The
fourfold degeneracy corresponds to 7-3, pp= &1.

The models considered above are closely related to
the quadratic equations found by Fronsdal. " For
example, Eq. (13) can be squared to give

Take the space Sp and put"

(I' p"+(1/ )Sp p"—y p")4=0

The massive solution has the spectrum

m= ~K(1—pro/ufo)1/2 (~o=+1)

I ml )~, (Smqp) 0)

(23)

(24)

or
{[S—& (I' pm —Iro) ]~—x~ms y /pko }@= Q

L@={[S—t(P„po „rr)]o xop pp+xoko}@=Q (20)

for the discrete and continuum states, which is sym-
metric in sign, but otherwise similar to model No. 3. In
addition, however, there exists the obvious massless
solution p„=0. In a typical case, this means that

We may then drop the Dirac spin indices, and obtain
Fronsdal's equation. The Lagrangian has to be defined

by 4 SL% for reasons of Hermiticity.
Although the Dirac indices may be eliminated in this

way, the fourfold degeneracy and associated difficulties
of the solution remain unchanged.

Model No. 4

LO= (r„p~+ (S ~) (xq„p~+~qoiV—,)]4=0. (21)

The discrete solution is

Pp[gok —(xo—1)m ] + sgn(m) —Q/o(xomo —I„o)t~o

Xsgn(m) =0,
oi

rr ) (m=~. lkl I
1+—

I I
x'—1+

E') k 1V') (22)

go=+ I x') 1.

This is also hydrogenlike, and besides has the symmetric
degeneracy pattern m, m, —m, —m.

The continuum part, on the other hand, is found to
consist of upper and lower regions:

)xlkl/(x 1)'" (x'm' —x'k')m')

0( lml (alki/x, (a'ko —x'm')0)

[(r,—r,)— (v,—v,)]+=0

h.—v )+= (&.—& )+=0, (25)

as can be seen by squaring the first equation. The
eigenvalues of Fp —I'& are continuous and &0,"so Eq.
(25) corresponds to the end point of a continuum.

Except for the massless solution, the spectrum is
right for a hydrogenlike system: The degeneracy is

m, —m and m, m, —m, —m for the discrete and con-
tinuous part, respectively. It may be allowed to inter-
pret this as corresponding to the discrete and con-
tinuous parts of the system p+e+ and p+e+ combined
(where p is a scalar particle in this case).

As for the current

j„=e(r„—n~„+ (2/. )Sp„)e,

it turns out that the charge has a definite sign for the
discrete and continuous parts. "It would seem possible,

"A somewhat related equation was considered by A. O. Barut
and H. Kleinert (unpublished). They discuss only physically
relevant parts of the spectrum.

"This can be seen from Eq. (40) I'o 1'o 3foo ~—oo Itfop
—M64 r as far as the spectrum is concerned.

1 We need some care in the continuum case. Instead of a pure
eigenstate of S (after rotation), a wave packet of Gnite norm
should be considered. Though both S and VII have diagonal
elements, we may eliminate S in j0 by means of the wave equation.
The coefRcient of I'o then determines the sign, as (r o) can be made
arbitrarily large.
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therefore, to quantize the 6eld correctly according to
Fermi statistics and make the energy positive-definite.

Summarizing this section, we have considered linear
as well as quadratic equations in the product space of
SI, and Dirac spinor. All of them have hydrogenlike
discrete and continuous spectra, but su6er from some
unwanted features such as the lack of symmetry in
positive and negative frequencies, the presence of
redundant solutions (including spacelike solutions" ),
and the inde6niteness of energy sign. Relatively
speaking, model 5 may be the most satisfactory, but
the signi6cance of massless solutions remains to be
clari6ed.

IV. ALTERNATIVE REPRESENTATIONS OF
80(4,2) ALGEBRA

We develop here representations of the SO(4,2)
algebra in terms of continuous variables. First we note
that the set 5+k can be generated from the ground-state
fqo or fo" by repeated applications of X„t, where

X„t=ato„Cbt, X('= aCo('b= (X„t)t,
(27)

&g= (&o=1,(ri, (ro, (ro) ) o"= (&o, —&x) —oo, (ro),

the assignment

;IV —~x„D"+n=Px„B/Bx„+n,
X„—& x„D—),D"+2x),D"D„+2nD„,
It' ~ x Do—xoD'= x B/Bxo+xoB/Bx,
I;~—'Loggx~D =io;(7.„(x~B/Bxo xyB—/Bx;) .

(32)

Here n is an arbitrary constant. If, however, we impose
the condition (29) or that f(x„) is a function of a null
vector:

X X"=X 2—X 2=0)p 'b
p

such a condition must be compatible with Kq. (32). In
other words, for any operator O in (32), we must have
fx„x",O]f=0 if x„x&=0.This is true only if

(33)

which will be assumed from now on. With Eqs. (4),
(28), (30), (33), we can complete the mapping of the
space Sp onto F. For computing the norm of a vector in
F we essentially follow the prescription: We write 6rst

(+4)= (f(Xt)+o,f(Xt)+o)= (+o,f*(X)f(Xt)+o) (34)

then translate X, Xt, and %o using Kqs. (30) and (31).
An analytic de6nition is then

which satisfy

X„tXt~=X„X~=0.
1 JSp' ' 'IS3

(2g)
(4' 4') ~ f*(X)f(Xt), (35)

(2s.i)' gp 0 ~ ~

In view of Eq. (4), this means also

4

Q (Mo;Mo' MoPfo') —=0,

Z (~o'~o'+a% ~o') =0.
i=1

For simplicity we restrict ourselves to the case k=0
below.

Let us set up a correspondence between Sp and a
space Ii = f f(x„)}of functions of four variables such that

moo=go' 1, X„t~x„. (30)

Ii is then a set of polynomials in x„.
For the time being, we assume x„ to be independent.

X~t and X„generate the algebra

$X&,X„t]= I(I=ata+btb+2 (no sununation),

PX„X,t]=2K,= t, bt ~b, —
$X;,X;t]= —2iog(,I (, = i o,;g (ato I,a+bt—a(,b), .

LX„t,Ã] = —X„t, LX„,I(I]=X„.

(31)
(iAi)

These relations can be translated into the space Ii by

' In general this is inevitable. It derives from the fact that the
Hamiltonian defined (from a linear equation) by i8+/Bt=HN is
not Hermitian, as F0 ' does not commute with I y. Thus there
may be complex energy for some p.

(36)

It is realized by retaining the correspondence (32) but
redehning the generators as

—,
' (Xot+Xo)=M4o or
—', (Xot—Xo)=Moo or
-', (X,t+X,) =3E4; or
-', (X,t—X;)=No; or

—iE;= Jtlp; or
I.;= ega&;p,

—~iX=3f54 or

3f45,

Msp,

M4;,
—3fp.

355;,

—3fp4.

(37)

(The two choices are mathematically equivalent as they
correspond to the interchange 0+-+ 5, but can make a
difference in physical interpretation. ) It can be readily
veri6ed that these operators are self-adjoint in the sense

(g,Of) = (Og,f) when the scalar product is taken
according to Eq. (36).

where the s's are complex extensions of the x's, and the
contours taken around zero. This formula is often
convenient in practical calculations.

We next show that there exists another mapping,

~o ~ G= {f(x.)},
in which the norm can be de6ned as an integral over the
real axis with a simple weight function
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g„x~D,D"=g (M,.M"+M,.M")+2,

x„x"=Q (Mo +M4,) (Mo +M4 ) ) (38)

g„* (D,Di)'=Q (M,. M,.)—(M; M;)—.

or

Next we proceed to impose the condition

x„x"=0)

*,=~ (x,x,)ilo =Wr. (39)

Since this is consistent with the colnlnutator algebra,
we can make the substitutions f(x„)~ f(x, ,gp(x;))
=g(x;). Accordingly we can also drop Do and replace
xp by &r in Eq. (32) without affecting the commutation
relation. The result is

We have actually not made the restriction (29) on the
generators. Therefore we are dealing with a diferent
representation from Eq. (4). From Eqs. (32) and (37)
we derive the formula

problem, identified the relevant representation, and
written down observables in terms of the generators.
The next section deals with a re-examination of this
problem.

V. NONRELATIVISTIC HYDROGEN ATOM

Equation (40) contains all the necessary operators
for writing down a Schrodinger equation for the hydro-
gen atom if we identify the variables x; with the actual
spatial coordinates. To exhibit the significance of our
procedure clearly, it is better to treat the case as a
two-body problem. We will thus write down the
Hamiltonian

Ly0) eiA(r(i))7&+ -Ly(&) eQ(r(~)) jo
2ml 2m2

8]82
+ +eiq (r('))+cog (r(')) (42)

—iK;= ~irD, =Mp; or 355;,

,'iX=———i(xD'+1)=Mo4 or

(6=D,D;= D;D'). —
Mp4,

The metric that replaces Eq. (36) for g(x;) is

Xpt= &r=M4o+Moo or M4o+Mop,

Jp ——~rh=3E4p —3fsp or &45—Msp,

X,t=g;=M4~+Mo; or M4;—Mp;,
X;=g;A+2xoD'D;+2D, =M4; —Mo;

or Mp;+M4;,
(40)

for a generalized hydrogenlike system in an external
electromagnetic field. Introducing the new coordinates
and momenta

Cir(')+Cor") =X, Ci+Co= 1,
r&') —r('& = r )

y(i)+y(&) =P
C,~o) C,~&» ~

we transform Eq. (42) into

dSyl$2d$3
(a,a) = " a*(g')a(g')

1
(41) H = LCiP+y —eiA(X+ Cor)]'

2m]

as may be understood from the fact

8(ago) b(x„x~)d4x-dox/2r.

Finally, we observe that

(g,Msog) =~-', g*(1—6)gd'x

(g g+V~g V;f)d x.

Remembering that 2Moo ——X defined by Eq. (4) has
positive eigenvalues, we conclude that the + sign has
to be taken for Eqs. (40) and (41) to be equivalent to
the original representation (4).

The representation (40) is essentially the same as that
found by Fronsdal. "He arrived at this result by starting
from the Fock (stereographic) representation of the
hydrogenic Schrodinger equation. Barut and Kleinert'
had also discovered the use of SO(4,2) in the hydrogen

+ $C,P—y—eoA(X—Cir) j'
2m2

+eiq (X+Cor)+eoq (X—Cir)+ . (44)

B= LP+ y —eiA(X)]'+
2m] r

(45)

LNote that the usual center-of-mass transformation
would correspond to Ci——0, Co=1.$ Multiplying (45)

The relative coordinates r may now be identified with
the representation variables of Eq. (40), and the
operators r, r, y, p' that appear in Eq. (44) replaced by
the generators of 50 (4,2). An awkward point, however,
is that r appears in the external 6elds A and q. This
cannot be avoided in general, but in the limiting case
m2&)m, and q =0 we can choose C~= 1, C2=0 to obtain
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by r/rp from the left,

rp

1 r—
t P—e,A(x)]'+

2151 ~0
rp LP—eiA(x)]

mlPP

1
+ - —p'+, (46)

2821 Vp

last term) but with the wrong sign. In the small binding
nonrelativistic limit, the system looks as if made up of
two particles with total mass= ~ and reduced mass= —~.

In a similar way, other models may be treated. In the
nonrelativistic limit of model No. 3 we may start from
Eq. (13). (However, the formulas in this section apply
only to the space Sp.) We write

where rp is an arbitrary scale factor. Identifying r,/rp
with the dimensionless variables in Eq. (40), this leads
to the eigenvalue equation

I
(MM+M, p) P. LP——eiA(X)]'

2ml

[P P +Sfx2(P 2 P2) &2}&t& &n P P]@ 0

(51)
and expand it

Pr p (m p+ p)+S(m p+x'p x'P'—/2m p)

&& (x'—1)'"mon —1 P]+=0, (52)
K= (x' —1)'"mp, Pp mp+——p, p((mp.

(M pp
—M4p)

2' lf 0

M p;LP,—eiA;(X)]—
eleg

@=0, (47)

This becomes, in the Schrodinger representation,

xP 1 ( 2mprp—p+ -i P— p

fV 1'rP Pp

adopting the second assignment of generators.
We have thus succeeded in transforming the Schrod-

inger equation into the form of an inGnite-component
equation in which only the generators &50, &40, Mp;
appear. Clearly, it also preserves the norm in view of
Eq. (41) and H= (1/r)(rH).

Equation (47) was first obtained by Fronsdal. In
case A= 0, it can be easily diagonalized by the previous
techniques and yields the well-known energy spectrum

P' 4(eie,)'mi
E=

2ml g'
g=24 6

(rp drops out of the result). The first term is the kinetic
energy of the whole system in motion, and the second
term is the binding energy. Of course the continuum
E—P'/2 m)i0 also follows from the equation. Besides,
Eq. (47) satisfies the gauge principle when a transverse
Geld is switched on. Thus the system behaves as if it
were a single particle and its internal dynamics had
been replaced by the abstract algebra of SO(4,2).

It is instructive to re-examine the previous relativistic
models in the light of the present results. For example,
model 2, Eqs. (6) and (7), can be translated into the
Schrodinger representation

2820K p Pl'pf p

+ p' — — tp(r) =0. (53)
x' (x'—1)'" r

1 1 n

~

+-(P—p)'+-p' ——P(r) =0,
r

(56)

In the presence of an external field, we replace P and
e by P—eA(X) and e—epp(X). Comparing Eq. (53)
with Eq. (44) we find then that they are equivalent if
we choose

Ci——0, Cp ——2m pr p/x'= 1,
mi ——mp/x', mp ——mp(x' —1)/x', mi+mp ——mp

ep ——e, e,=0, n=2eiez(m, /mp)'"
= 2eiep/(x' —1)'".

We can keep n finite if we regard this as a limit el —+ 0
and mp ~ 0, keeping ei'/mp finite.

In the case of model No. 5, the equation correspond-
ing to (49) is

[2M p pP'+2M p P'+2M p4(P p' P')/~—
n(ypPP+y;P"')$—4=0. (55)

Replacing the last term by —n(Pp' —P')'", we find in
the lowest approximation

(2MppP +2Mp, P'+2Mp4r. rcn)4 —+ L(Pp ~)r—/rp-
+ (Pp+~)rprp' 2rP p —~n]%'(r),—

or

so that
mi ——m2 ——~/2, ei ——0, e&= e,

o,=eleg/0,
P(Pp K)/r p+ (Pp+K)r pp' 2—P p an/r]%'(r—) . (49—)

Setting rp=1/(Pp+~) and p P~ p', this becomes—
pP ' I" g'+ (p"—~n/r)—]p(r)—=0. (50)

It is a Klein-Gordon —type equation, where the internal
energy is given by the hydrogenic Hamiltonian (the

which is not exactly a hydrogenlike situation.
We close this section with a reference to Bethe-

Salpeter (BS) equations. It is a natural idea that the
Bethe-Salpeter equation might also be amenable to
transformation into a discrete representation. In fact,
Eqs. (32) and (38) provide the necessary formulas for
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this purpose. Consider, for example, two scalar particles
interacting via a scalar photon. The B$ equation reads,
in the differential form,

2

((k&+P)'—&')(k~—P)' —I') — 4(xy) = o, (5g)
4x2X2

or in the rest frame,

x2 (p2)2+ 2x2p2 (1~2 ~2)+x2 (i~2 ~2) 2

g2—m'x p, 2— y(x„)=0, (39)
4m'

(x'= x„x~, p'= p„p~= D„D~)—.
For the first three terms we have the ready-made
formulas (38). Equating the necessary scale parameter
ro' with 1/(-', m' —p'), the sum of them simply becoines

—(m' —4p') (M5 M' +1), (m' —4p'(0, bound states)

ol

—(m' —4p,') (M4 M4~+1), (m' —4p2) 0, continuum) .
(60)

The fourth term, on the other hand, cannot be trans-
lated so simply. We have to express Do from Xo of
Eq. (32):

2 (AD"+1)Do xoD),D"=Xp,— (61)

and. make the substitution (37). Although the equa-
tion cannot be solved easily except when nz2=0, this
method provides another way of looking at the BS
equation.

VI. FORMULATION OF THE GENERAL
PROBLEM

The main lessons we have learned, from the results of
the previous sections may be sunnnarized as follows.
(1) It is possible to set up infinite-component, simple
model equations which simulate a composite, hydrogen-
like system in many respects. But so far they do not
satisfy all the requirements for being a physically
meaningful Lagrangian field, theory, except possibly
model No. 5. (2) In the nonrelativistic sense, however,
there are no basic difhculties. In fact, the Schrodinger
equation can be transformed into our type of equation
and vice versa. One limitation to this is that as a
genuine two-body problem the correspondence is only
approximate when external fields are introduced.

As a possible field theory, the in6nite-component
fields need. not be regarded as approximate and phe-
nomenological substitutes for dynamical equations for
composite systems. They may be fundamental in their
own right. But there are many novel properties we have
yet to understand in this type of theory. For example,

we may ask: (a) What becomes of the spin-statistics
connection in general (which seems to have been
loosened)? (b) What are the implications of the
positive-negative asynunetry of mass spectrum vis-a-vis
I', C, and T invariance (or noninvariance)? (c) Are the
spacelike solutions really dangerous? (d) Do (b) and
(c) imply breakdown of local commutativity and
causality between fields? If so, is it possible that the
currents (bilinear forms of fields) still satisfy causality?
Although some of these problems have been examined
by Feldman and, Matthews" and. by Fronsd. al,"much
remains to be done.

Assuming that these difhculties can be overcome or
ignored, at least in suitable model equations, we may
set down the working principles to be followed in
applying our method to other complex systems, in
particular to hadron physics and nuclear physics. "
First we take a definite model (like the quark model or
the harmonic-oscillator model) with a certain compact
symmetry group Go (considered as rest symmetry, i.e.,

the little group) and degeneracy structure represented
by a particular set S of representations. Go must contain
the SU(2) or 0(3) group corresponding to internal
rotations of a system. We enlarge the group Go to G in
such a way that (a) 5 is its unitary representation (or
a product of unitary and simple finite representations),
(b) G contains the (internal) Lorentz group, and (c)
there exist among the generators of G also Lorentz
4-vectors F„, symmetric tensors I'„„, etc. We can then
couple I'„, I'„„etc., with the external momentum to
write down a first-order, second-order, etc. , wave
equation. In any case, we may assume (at least as a
simplest possibility) that the wave equation is linear or
quadratic in all these generators and momenta.

In practice we may try the lad.der-operator technique,
as we have done here, to generate G out of Go, which
will also determines the type of the representation S.
For example, the Majorana equation has Go ——50(3),
G=SO(3,2), and 5=D(0)+D(1)+ or D(-')+D(-')
+ of 50(3) (of course, the reflection group must
also be built into this). Our model No. 2 has GO=SO(4),
G=SO(4,2), S=QD(e, —',k+n, ). In other models, Gp

=50(4)XSU(2), G=SO(4, 2)XSL(2,C), and 5 is the
product of finite (Dirac) and infinite representations.

When Go=SU(3), considered as the symmetry group
of the harmonic oscillator, " the corresponding S con-
sists of D(N, O), ri=O, 1, 2, . of SU(3). Use of the
three-component ladder operators u;, u;$ leads to an
enlarged group Sp(6,R), with 9 compact generators
u;Jul and 12 noncompact generators u,ui„u,$uq$. This
group, however, does not contain the Lorentz group.

"Similar or related views can be found in the literature fre-
quently. P. Budini and C. Fronsdal, Phys. Rev. Letters 14, 968
(1965); A. O. Barut, in ¹n-Compact Groups Az Particle Physics,
edited by Y. Chow (W. A. Benjamin, Inc. , New York, 1966);
Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters 17
148 (1965);T. Takabayashi, Ref. 8.

22 This problem is being investigated in collaboration with
S. P. Rosen.
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The correct scheme seems to be G=SU(3, 1), with
1S generators a,fa& and (N+C)'"a;, a,f(N+C)' '
(N=+a, fa, , C=const). These make up the Lorentz
generators and a symmetric traceless tensor F„„sothat
a second-order wave equation can be written down. "

The existence of vector or tensor operators serves the
purposes of giving a mass spectrum and bringing these
operators into a well-defined algebra. From the fore-
going results it is clear that the infinite representation
is suitable for characterizing in an abstract way the
internal orbital motion of a system. The rest symmetry
group Go rejects how the internal orbital motion is
organized, i.e., how the rotational and radial degrees of
freedom can be excited. The intrinsic spin of the con-
stituents will then be multiplied into this orbital wave
function. Thus the observables consist of generators of
the orbital as well as the intrinsic-spin algebra. Of
course, the strength of our approach lies in that we do
not always have to draw a line between orbital and
intrinsic spin. The latter may also belong to an infinite-
dimensional representation Las in the SL(6) or U(6,6)
modelsj. The orbital representation space, at the same
time, need not always be introduced for each relative
coordinate or constituent particle. The key factor that
determines our space 5 is the energy-level structure and
its degeneracy, exact or approximate, especially for the
low-lying excitations.

The method of infinite-component equations, con-
sidered in the above sense, is a rather phenomenological
and simplified scheme of characterizing a complex
system ie toto, albeit in an approximate fashion but
without missing its essential features. It may also be
regarded as a way of realizing the algebra of currents
(observables) that follows from the conventional field
theory. In fact the group G and space 5 may be chosen
in such a way as to satisfy the algebra. On the other
hand, it is conceivable that the wave equation has more
dynamical contents (since it specifies not only com-
mutators, but also anticommutators, etc., which
depends on a specific representation), and yet at the
same time may satisfy the current algebra only approxi-
rnately (since we imbed observables in an algebra of
6nite dimensions and take only a few irreducible
representations).

One of the deficiencies of the wave-equation method
is the lack of a clear-cut principle for choosing an
equation, except that it is expected to produce at least
a qualitatively correct level scheme. Besides, we do not
know yet whether such an equation can be realized in
general as a field theory, or merely as an 5-matrix
theory. One may perhaps conjecture that it will fall

~To achieve the familiar equidistant spectrum, one needs a
fourth- or third-order equation

D;.P"P"+ P'+P(~')'3~ =o
or

9'v P"P"+~P'+OP'vuP"l+ =o.

They have spacelike (and discrete) solutions too, but no massless
solutions. Other possibilities are under study.

somewhere in between, in the sense that a Lagrangian
formalism can be set up and quasilocal interactions with
external as well as among infinite-component fields
introduced according to a simple prescription, which
can reproduce complicated processes suQiciently well
in Born approximation, but it may not quite qualify for
being a complete and consistent field theory.

APPENDIX A: SOME MORE MODELS

Model Ão. 6

$ pI'„p"+S(xy„p +ri.) rp( (x—' 1)'"y—„p K)m)@—=0.
(A1)

This is a modification of Eq. (19).A new feature is that
the spectrum is linear in m:

1—n'/N'

(x'—1)'"1+a'/N'

+0) ~3 ~~ p (A2)

for the discrete part, with the degeneracy m, m, m, m.
The continuum extends over the ranges

~

m
~
)~/

(x'—1)'"=mp. In addition, there is an infinite de-
generacy of all spins at m=mo. The energy takes both
slglls.

Model Eo. 7

Modify Eq. (11) as

Le= [r„p~+S(xv„p~yy, N p) nay„page=—0 (A3)

for the case ~Np~ = ~k~ =even, where g is the operator
with the properties

a —&b, b —+u,
Ll'„,g]=0, (S,i1)=0, fNp, q) =0,
RgE—'= (—1)~pg, q'=1. (A4)

When ~k~ =odd, replace p with iNpg. Equation (21)
may be diagonalized to give

I'pL»' —(x'—1)nPj' ' sgn(m) —nypm=0
or

m =&~/(x' 1+n'/N—')'",
7o'9 ~ ~

(AS)

Thus we have a fourfold solution m, m, —m, —m
corresponding to q= go ——~1.The continuum part now
extends above ~/(xp —1)'~' only, though there still exist
imaginary solutions. Equation (24) reseinbles very
closely the solution of the relativistic Coulomb problem,
except that we do not have spin-orbit splitting. The
energy again remains inde6nite.
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For the case k=0, an analogous equation takes the
folTIl

APPENDIX 3: COMPUTATION OF FORM
FACTORS

Le= p~, (I'„p~—nq„p&)+S(gq„p&+~~,$0=0, (A6)

with the same spectrum as Eq. (24), but with

7p=+1 ~
Tp=&'1

An interesting point in this model is that it admits a
Pauli-Gursey group which accounts for the degeneracy
structure. The Pauli-Gursey transformation for Eq.
(A6) is defined by

We show here a method, of computing form factors
which is based on Eqs. (4) and (27)—(35). We demon-
strate it to derive Eq. (10) in model No. 2. The scalar
form factor between the same levels is given by

~=(+(p)P'(0))=(+(0), " '~(0))
tanh8= p= p/E,

if the momentum is in the direction 3. Going to the
6-dimensional rest frame, (81) further reduces to

&I=N%'t, 8%'t=gj%',
22= e' Np, (n arbitrary)

Np= y5~2G, G= v 2C~e,
= —I, Cl)N= 1.

(A7)
(Q s i8M04S

&P—2r03S NMD4+i—)
= (+i exp[i' (Mpp cosh8 —M42 sinh8) j@i),

tanh8= z/222. (82)

2Mpp ——Xpj'+X' ~ xp+xpDi D" 2',D"Dp—2D2, —
(83)

2M42= 2E2 ~ 2(xpDp+xpD') .
AS

6= exp('22rilv) exp[-', vri (u)o2a bt p..pb)—j,
@2=1 e'= (—1)N~e= e

eve—'= iCa, ebe—'= —iCb,
er„'e-'=r„, eS'e-~=S. The eigenfunction 4'& is a polynomial f(x„). Let us

consider instead the Laplace kernel exp[i&x„j. When
applied to it, we may replace (83) byThe Lagrangian 4'$L+ remains invariant under (A7) if

4' is quantized according to Fermi statistics, because
8Z O'NLV+H. c. is a symmetric quadratic form and
hence has to vanish. The ord, inary gauge transformation
and Eq. (26) form an SU(2) group, as can be seen by
writing X= (4,%+), and the three generators of this
group as

2M pp ~D2+lg/"Dp —2lplgD" —2lp,

2M42 ~ IpD2+I'Dp,
(84)

acting on exp(l&x„). Since Eq. (85) is linear in the
derivatives, the exponential form (82) may be com-
puted explicitly by a suitable change of variables. By
expanding the kernel in powers of /& before and after the
operation, and comparing the coefficients, we And how
a monomial x" is transformed by the operation.

For the ground state, we need keep only the variables
P=—s and l3=—t. Thus

(A9)
t'i ) / Np) ( ilp)

—i) '
4—Np-' &

' hap-' )
Similar transformations can be defined for Eq. (A3)

with general k, if we maintain the conventional relation
between spin and statistics. The symmetry group for
the integral-spin, case, however, is SU(1,1) instead of
SU(2).

2%pa cosho —2M43 sinhe
= ((1+s2+P) cosh8+2s sinh8}D2+2I cosh8

+ (2st cosh8 —2I sinh8}D, ,
= [((1+@)cosh8+2$ sinh8}Dp+t cosh8j

—[{(1+vP) cosh8+22I sinh8}D„+g cosh8j, (85)

Model No. 8

This is a variation of model No. 5, without the Dirac
space:

(A10) where s+I= f, s—I=2I. A further transformation turns
this into

[I'„p&~+(S n)p„p~j+=0. —

Here C is the charge conjugation ( p2o2) in the Dirac According to Eqs. (4), (27), (31),and (32), we canmake

space, and e is its analog for the in6nite representation:

When p„p"WO, this leads to

[I'p~+ (M—n)222' =0,
or

n2) 2/2

m=. (A11)

[D„(cotp+ sinh8) j—[Dp—(—cotq+ sinh8) j
= exp[in(sinp sinq) —(p+q) sinh8j(D~ —Dp)

Xexp[—ln(sinp sinq)+ (p+q) sinh8j,

which is similar to the model No. 7 case. In addition,
however, there is a massless family of solutions satis-
fying I'„pi"4=0, as in model No. 5. $2,2= 2I 2, 2= —tanh8&i sech8. (86)
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The expectation value (82) is then

expgj6(cVes cosh0 —M4s sinh0) j exp/i"x„j~=o, *=o

~ expDn(sinp sinq) —(p+q) sinh0$

8 8)
Xexp -,'i6 ——

~

ap aqua

&&expL —ln(sinP sinq)+ (P+q) sinh0j
= exp/ln(sing sinq) —1n(sin(p+-', i6) sin(q —-',i6)))

at P=q=a,

Slllh0 —i
'=-—»(gt/&s) =s»

2i sinh0+i

which is equal to

cosh'0 sinh'(r9/2)+1 1 ~/—4(m' K—)

Similarly, the vector form factor (%(p),F„V(0))may be
calculated, and yields the results (10) of Sec. II.
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Classical Theory of Magnetic Charge*

TUNG-Mow YAN$

Department of Physics, Harvard University, Cambridge, Massachusetts

(Received 9 March 1967)

A classical theory of magnetic charge is formulated on the basis of an action principle. It is an extension
of Schwinger's quantum theory of magnetic charge to the classical level. The action integral is defined by
limiting procedure to ensure the equivalence of all singularity lines. The action principle gives correct
equations of motion for the particles, Maxwell's equations, and the conservation laws of the Lorentz group.
The consistency of the theory demands a charge-quantization condition, and the existence of a constant
with the dimensions of action.

' 'N a recent paper, Rohrlich' has considered the
problem of constructing a classical theory of mag-

netic charge. One of his conclusions is that no action
integral exists from which both the particle equations
and the field equations can be derived. This result thus
casts severe doubt on the consistency of the theory of
magnetic charge with the I.orentz group. However,
Rohrlich's conclusion is based on the use of two inde-
pendent vector potentials (A„and 8„),which enlarges
the number of degrees of freedom of the electromagnetic
field and makes all the six components of the field
strength F„„ fundamental dynamical variables. In
quantum field theory such a system violates physical
positiveness requirements, ' and it may well be that a
similar situation holds at the classical level. ' In the
following we present a classical theory of magnetic
charge in which no additional degree of freedom is
introduced for the electromagnetic field; the vector
potential 8„is considered a given function of the field
strength. All the equations of motion for the particles
and the Maxwell field equations are derived from a
nonlocal action integral. The ten conservation laws of
the Lorentz group follow from the relativistic covariance
of the theory which is satisfied by a limiting definition

* Supported in part by the U. S. Air Force Once of Scientific
Research.

t John Parker Fellow.
' F. Rohrlich, Phys. Rev. 150, 1104 (1966).' J. Schwinger, Phys. Rev. 130, 800 (1963).' Footnote 16 of Ref. 1 seems to indicate that this is the case.

of the action integral. As we shall see, consistency of
the theory requires a charge quantization condition
and the existence of a constant with the dimension of
action.

The idea involved is essentially an extension of
Schwinger's quantum theory of magnetic charge. 4 We
start with the tentative action integral5

N N
w= (dx)z. (*)+p w.+p w„

a=1

Z. = —-',F""(0„A„—0„A„)+', F&"F„„, -

dx" 1
IF,= ds, P„— (P eA)s-

d$2m
(2b)

dx" 1
Ws= dss p„— (p—gB)'

ds 2' —b

(2c)

4 J. Schwinger, Phys. Rev. 144, 1087 (1966). A nonrelativistic
quantum-particle theoryhas also beenconstructedby J. Schwinger
(unpublished).' We use units with c=1. Also, —gpp=g11=g22 —g33 —1.

where a and b are the labels of an electrically charged
particle and a magnetically charged particle, respec-
tively. The vector potential 8„ is a function of the


