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The hypothesis of complete time symmetry in oscillating cosmologies in which there exist locally ir-
reversible processes is examined. A time-symmetric formalism for purely statistical processes is developed,
and all aspects of quantum and statistical mechanics are shown to be time-symmetric within this framework.
We conclude from analysis of a simple example that in a completely time-symmetric oscillating cosmology,
statistical processes which produce entropy in the expanding phase will reverse themselves in the contracting
phase, although microscopic reversal of motion need not occur. The analysis provides a self-consistent
formalism for general problems involving the coexistence of diGerent entropic directions of time in the
observable universe. Boltzmann's IJ theorem is discussed in this framework.

I. IÃTRODUCTIOÃ

A TIME—HONORED problem of statistical me-
chanics and thermodynamics has been to explain

the general validity of the second law of thermody-
namics: If all microscopic equations of motion are in-
variant under time-inversion, ' ' why do the vast ma-

jority of natural processes operate only in one time
sense). Why does entropy always increase with time in
these processes?

It is understood, of course, that if entropy changes in
the same time sense everywhere, it is purely a matter of
definition whether one says that entropy always in-
creases or always decreases. ' On the other hand, it is not
trivial to inquire why the entropic or statistical direc-
tions of time can be chosen consistently to be the same
over the observable universe. One can specify cosmo-
logically a time axis, in the sense of setting up an ordi-
nary cosmological coordinate system, and then compare
the local statistical directions of time with this cosrno-

logical direction. Observationally, the result is well

known: Either each local direction coincides with the
cosmological direction, or each local direction is oppo-
site to the cosmological direction.

A clear explanation of this coincidence has been given

by Gold. ' Gold advances the argument that the ex-

pansion of the universe with the cosmological red-shift
allows space to swallow up electromagnetic radiation ud

libitum. Hence, whenever radiation is formed during a
physical process, the chances that it will escape without
a compensating return from space are very good. Empty
space is thus electively a low-temperature thermal
reservoir, and one might say that entropy increases
result from temperature equalization with this cold
body.

*5AS-NRC Research Associate at the Goddard Institute for
Space Studies.

' T. Gold, Am. J. Phys. 30, 403 (1962).' However, there is some feeling that weak interactions may not
be time-symmetric. See, for example, T. D. Lee and C. S. Wu,
Ann. Rev. Nucl. Sci. L6, 471 (1966).It is doubtful that any asym-
metry of this sort would influence the macroscopic irreversibilities
discussed here.' D. L. Schumacher, Proc. Cambridge Phil. Soc. 60, 575 (1964).

160

But there are other, more dificult questions, which
are connected with the idea of opposing directions of
time in different parts of space-time. For example, it is
apparent that there is no difference between expanding
and contracting open cosmological world models', all
statistical processes unwinding in the former wind back
up again in the latter. But consider a closed, oscillutieg
universe. If one postulates complete time sylnlnetry,
then the statistical direction of time in the contracting
phase would have to be opposite to that in the expanding
phase. Now suppose an observer were to survive the
transition between the two directions of time through
the moment of maximum expansion, perhaps by
shutting himself in a vault, so that his own time sense
remained unchanged. On emerging from the vault in the
contracting phase, would he then be able to interfere
with local "irreversible" processes and spoil their con-
vergence down to states of lower entropy? Since such
convergence is notoriously sensitive to very small
perturbations, he might disrupt things to such an extent
that the direction of time over large regions of the uni-
verse would be eventually changed~

Of more immediate interest is the discussion of time-
symmetric oscillating cosmologies that have periods
comparable with the normal relaxation times of certain
otherwise irreversible processes: e.g., galactic evolution.
If complete time symmetry is postulated (we emphasize
that it is only a postulate), we would ask how to
describe evolutionary processes close to the moment of
maximum expansion. How are the rates of these sta-
tistical processes affected by the fore-knowledge that the
direction of time must soon reverse itself P Since it is not
known whether our own universe is oscillating or
temporally open, these questions may be of more than
academic interest.

We shall be led to formulate these problems in terms
of "two-time statistical boundary conditions, "and shall
discuss closed statistical systems which begin in im-
probable, low entropy states and are somehow fated to
end up in improbable states again after the passage of a
specified period of time. Of course, in specifying the final
states of closed or quasiclosed statistical systems by
ii65
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means of arbitrary boundary conditions, one sets up
unphysical situations which are not met with in ordinary
physics. When performing an experiment, one can
consider systems which might have been prepared in a
special way in the past (e.g. , initially prepared in a low-
entropy state), but never systems which are "certain"
to finish up in an improbable, low-entropy state at a
specified later time.

For example, one might take a box divided in half by
a partition, fill one half of the box with a gas, and then
jerk out the partition, performing no work on the gas in
the process. The gas will then expand to fill the rest of
the box. The occurrence of the reverse thermodynamic
process would be extremely improbable, though dy-
narnically possible. It is just such reverse processes that
we wish to consider, and, more generally, such processes
in which both initial and Anal states are "extremely

improbable.
"

There are, however, experiments in which one con-
siders ensembles of a great many statistical systems and
then selects for study only those which have by chance
ended up in highly improbable Anal states. This is a
somewhat different concept, although the mathematical
formalism is similar.

Aharonov, Bergmann, and Lebowitz4 and Penfield'
have considered ensembles of quantum systems which
satisfy "selection" conditions in the past and future and
show that quantum mechanics may be cast in both
predictive and retrodictive formalisms. Aharonov,
Bergmann, and Lebowitz show, in particular, that the
quantum process of measurement is time-symmetric,
provided that the eigenfunctions corresponding to the
measured observables are themselves stationary states;
i.e., that the observables measured are constants of the
motion. We generalize their results to include measure-
ment of observables that are not constants of the
motion.

In Sec. II we introduce the idea of two-time statistical
boundary conditions by considering the Ehrenfest urn
model as an elementary application. We show in what
sense the urn-model histories are altered by the re-
quirement that the model both begin and end in very
improbable states.

In Sec. III we develop the mathematical machinery
for applying two-time statistical boundary conditions to
systems undergoing transitions between states which
can be described via Markov matrices. The scheme is
truly time-symmetric only for a certain class of Markov
chains. Necessary and sufhcient conditions for time
symmetry are exhibited which have an intuitively
pleasing interpretation. The application of these ideas to
thermodynamic systems, quantum dynamics, and the
quantum measurement process is carried. out. Complete
quantum-mechanical time symmetry under very weak
assumptions is demonstrated.

4Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys.
Rev. 154, 81.410 (1964).

& R. H. Pe@Geld, Am. J. Phys. 34, 422 (1966).

Conclusions about the behavior of statistical pro-
cesses in a time-symmetric oscillating cosmology are
then discussed in Sec. IV. We indicate that the two-
time boundary-condition formalism provides a self-
consistent way of treating the coexistence of different
statistical directions of time. It also alleviates the
"irretrodictability" of the usual probability concepts in
physics, and thus casts further light on the paradox
presented by Boltzmann's B theorem.

II. TWO-TIME BOUNDARY CONDITIONS AND
THE EHRENFEST URN MODEL

We now study a particular statistical system which
will give us some insight into the thermodynamic time
development of physical systems, namely, the famous
Ehrenfest urn model for temperature equalization. '

The Ehrenfest urn model consists of two urns, 3 and
8, together with a collection of 2R balls, numbered from
1 to 2R. Distribute all the balls in some arbitrary
fashion in the two urns, and then choose at random an
integer from 1 to 2R and move the corresponding ball
from the urn in which it is found to the other one.
Repeat this clrawing process some desired number of
times. We can expect that if there is initially a large
excess in one of the urns, repeated drawings will result in
the number of balls in the two urns becoming more or
less equal.

We define the "states" of our system as follows: Let
e, be the excess number of balls in urn A over the
equilibrium value R, i.e., I,—= (number of balls in
A) —R. Of course, e, might be negative. Then if P„„+~
is the conditional probability that e,=n+1 after the
(m+1) th draw, given that rl,,=e after the mth draw,
we obviously have

P„,„~g———',(1+n/R) .
We call these conditional probabilities the transition

probabilities for the transition e —+ v&1. Of course, the
probabilities for other single-step transitions are zero.

An interesting physical application of the Ehrenfest
model is given by the one-dimensional Brownian motion
of an elastically bound particle. ~ Our excess e, is then
interpreted as the displacernent x of the particle away
from the center of force.

Let us call a particular sequence of transitions
a~b —+ ~ f a "history" of the urn model. The
usual probability of such a history is then given by the
expression P(a)P, sPb, P.f, where P(a) is the a
priori probability that the initial state was e.= a. We
might call such a compound probability a probability
with a "single-time" boundary condition.

We may generalize to two-time boundary condi-
tions as follows: Consider all urn-model histories

M. Kac, Probability and Related Topics in Physical Sciences
(Interscience Publishers, Inc, , New' York, 1959), pp. 72—99.'M. Kac, Am. Math. Monthly 43, 369 (1947). Reprinted in
Selected Papers on 1Voise and Stochastic Processes, edited by
N. Wax (Dover Publications, Inc. , New York, 1954), pp. 295—317.
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js~ ji —+ ~ —+ j, consisting of s transitions (s is con-
sidered fixed throughout the discussion), and construct
an ensemble E(a,f) consisting of all possible histories
such that js——a and j,=f T. he two-time statistical
boundary conditions are then applied by assigning
arbitrary probabilities P(a,f) to each ensemble Z(a, f),
with the restriction that P(u, f)=0 if the ensemble
contains no possible histories; i.e., if (P'), r

——0, where

(P'), ~ is the u, f element of the matrix P'. Thus for our
urn model we must have P(a,f)=0 if ~a f—I &s or if
a f a—nd s have different parity. Of course, we require

p;,; p(i,j)=1.
Having allocated the probabilities P(0;f), we de-

termine the absolute probabilities P(a,b, ,f) of the
elementary histories by setting
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P(riP, ",f)=p(~,f)p.sp . P."f/(P ).f (2)

if (p'), ~&0, or p(u, b, ,f)=0 otherwise. In the usual

theory, P,&p&, P,y/(P'), z would be the conditional
probability that the history ab. f occurred, given that
the initial state was a and the final state was f; i.e.,
given that the history was chosen to begin with from

p(~,f).
In general, the use of two-time boundary conditions

changes the entire probability metric on the transition
histories. In particular, 9„,„+~ is no longer the condi-

tional probability that e,=I+1 after the (m+1)th
draw, given that e,=e after the mth draw. This
probability is easily seen to be

Ep(je, " j- i~ I+1 j--+s " j)/
Z p(jo, ",i- t,~i-+t, "-,j.)

by definition of conditional probability, where the
sumrnands are given by Eq. (2), and the sums are taken
over all the variables except e and n~ I.

Note that if we set P (a,f)=P (a) (P*),y, where P (a)
is an arbitrary initial probability, we recover the usual

theory back again.
The formalism manifested by Eq. (2) appears time-

symmetric in that initial and final states are equally
represented. The question of detailed statistical time

symmetry for general Markov matrices I'». is discussed

in the next section, where we show under what circum-
stances the probabilities P(a,b, ,f) given by Eq. (2)
are invariant under the reflection ab f~ f ba, . .
provided that P(a,f) ~P(f,a) simultaneously. We will

show that the Ehrenfest model is time-syinmetric in
this sense.

To illustrate the way in which the two-time boundary
conditions inhuence the time development of statistical
systems, we now apply the concept to our model. A

simple sort of statistical boundary condition would be
to let the initial excess n, =a be some value fairly close
to R (i.e., the initial state is far removed from equi-

librium) and to require that after s transitions the
system be back in the same state e,=a. Thus, P(i,j)
=8„5;.

FIG. 1. A plot of the urn-model histories A, B, C, D, and E,
labeled with their relative probabilities. The abscissa m is the
number of the draw (the time), and the ordinate r4 is the excess
in one of the urns over the equilibrium occupation number R =50.

We then consider all possible histories for which these
boundary conditions are satisfied, i.e., all integer
sequences jo, j&, ~ ~ ~, j,such that jo——j,=a, jI,——j&+&&1
and

~ j&~ ~&R. One might then proceed to find the
probabilities P(js,ji, ,j,) as defined by Eq. (2) for
the various histories, so that some idea might be formed
of the most probable type of history. However, a
general analysis of the problem of finding normalized
probabilities even for this simple boundary condition is
very complicated, and we cannot go into it here.

Nevertheless, we have computed a few relative proba-
bilities Lomitting the normalizing denominator in Eq.
(2)j for the case R= 50, a= 25, s= 20. With reference to
the histories A, 8, C, D, and E plotted on Fig. 1, we
have obtained P (rf )= 2.00, P (8)= 1.34, P(C) =0.70,
P(D) =0.33, and P(E)=0.13.

Obviously, A is the most probable trajectory. Still,
there are many more paths that look somewhat like
type B. Thus, the most probable general type or
"macropath" (thermodynamic path) is something like

type B. The indication is that instead of proceeding
more or less directly downward toward equilibrium, the
probable behavior of the system during the first s/2
transitions is to remain generally in less probable states
than would ordinarily be the case. One might say that
the system exhibits a statistical "pre-e6ect" because of
the final boundary condition. This observation will
allow us to make plausible inferences about the behavior
of statistical processes in time-symmetric oscillating
cosmologies, which we discuss in Sec. V.

III. STATISTICAL TIME SYMMETRY
FOR THERMODYNAMIC AND

QUANTUM SYSTEMS

The main point of this paper is to develop a formalism
for describing physical statistical processes in a time-
symmetric fashion. Hence, we wish to show under what
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conditions the history probabilities defined by Eq. (2)
for general statistical process are invariant under time
inversion. Of course, Eq. (2) xnay be applied to any
Markov chain, but it will be seen that only certain
types of Markov chains are time-syxrnnetric.

The analogy between a Markov chain and a classical
thermodynamic system is fairly evident. If the system
is quasiclosed, its phase point will perform a random
walk in phase space. The number of states that such a
system can assume, characterized, for example, by the
instantaneous value of its total energy, is uncountably
infinite, and the transitions occur continuously instead
of in discrete jumps. Still, the motion of the phase point
is Markovian since, if we know the position P(ts) of the
phase point at a time to, the probability distribution of
P at times t) fe depends only on P(ts) and not on P at
times previous to $0. The statistical —boundary-condition
formalism could easily be extended to continuous dis-
tribution functions.

It is easy to construct artificially the two-time
ensembles in terms of the enseInbles of statistical me-
chanics. The collections E(a,f) are then defined by
observing a very large number of dynamically identical
thermodynamic systems and picking out certain pro-
portions L~P(a, f)1 of those systems according to
initial state a and final state f, without regard to the
histories in between.

In the usual theory, it can be objected that this is a
rather high-handed way to construct an ensemble. It is
xnore in the spirit of probability theory simply to specify
an initial probability distribution and then work out the
final distribution in the usual way. In our case the
contrary course of action is motivated by the fact that
the equations of motion of physics are all invariant
under time inversion, so that the distinction between
initial and final becomes purely conventional from the
microscopic standpoint. We now prove that also for a
rather broad class of Markov chains, including the
Khrenfest urn model, there is no distinction between
initial and final states (past and future) if the two-time

boundary condition concept is used.
Consider a general statistical system characterized by

denumberable states j, such that the base probability
for the transition j ~ k is P;&. Of course, Qb P;b 1. ——
We treat only the case where I';& does not depend ex-

plicitly on the time. Then having assigned a number s
and boundary condition pair probabihties P(i,j), the
probability for a history ab f is given by Eq. (2).

Time symmetry is investigated by requiring that the
probability of the history ab f be the same as the
reversed history f . bu calculated for ensembles in
which the boundary condition pair probabilities are also
reversed. Let P(f, ,b,a) be this reversed probability
and P(i,j)=P(j,i) be the reverse boundary condition
probabilities. Time syxrunetry then requires

P(a&" f)=P(f" &a)

&a~ah &bubba ~ (5)

That this is necessary for time symmetry is not clear.
Equation (5) has a satisfying interpretation. Suxnming

over a, we obtain p, v,P, b
——vb. This relation means

that if ~ is taken as an initial probability distribution,
the absolute probabilities reInain independent of the
number of transitions made, i.e., e, is "stationary"
under P,b. With this interpretation of v„Eq. (5) means
that the absolute probability of the occurrence of state u
followed by a transition to state b is the same as for the
occurrence of b followed by u. This is the usual definition
of reversibility in Markov chain theory, ' and thus any
reversible chain is also time-syrrunetric in our sense.

The Ehrenfest urn model may easily be shown to be
time-synunetric. In fact, its matrix, given by Eq. (1),
satisfies Eq. (5) with

where

z
ER+a)

(m

hei

is the binominal coeScient.
To show the reversibility of thermodynamic systems

within the scheme of classical and quantum-statistical
Inechanics is now trivial. We have only to point out
that for both the microcanonical and the Gibbs distri-
bution the probabilities of the diferent states u are
independent of any prior measurement at all, so that we

s J. G. Kemeny and J. L. Snell, Fea@e Marhov Chaels (D. Van
Nostrand Company, Inc. , Princeton, New Jersey, 1960), p. 105.

or

P(a, f)P.bPb. "P.~!(P').x
=Pe )Pr. . P. ».S(P')r.

=P(& f)Ps. P bPb.l(P')r.
or

P.bPb. "P.~(P'*)~-=P~. "P.bPb. (P').r (3)

In general, we may require this for all values of s.
Obviously, this will not hold for an arbitrary transition
matrix I'~;, and thus not all Markov chains are time-
symmetric in this sense.

An interesting necessary and sufficient condition for
Eq. (3) to hold for all s is that

IabI bc I deI ea IaeI ed' ' IcbI ba

for all histories ab ea that begin and end in the same
state. This relation xnay be obtained froxn Eq. (3) by
setting f= a; and, conversely, one may take Eq. (4) for
2s factors and then sum over s—i neighboring pairs of
indices to obtain Eq. (3).

A rather general sufficient condition for Eqs. (3) and
(4) to hold is that there exist a set of numbers v„none of
which are zero, such that
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have P, t,=mq. Equation (5) is then satisfied with
86=K~.

In exact classical and quantum mechanics, revers-
ibility also depends on changing the signs of all the
momenta. For thermodynamic states we do not have to
deal with this since the quantities total energy, volume,
etc., are invariant under momentum reAection. How-
ever, in discussing quantum-mechanical time symmetry,
we will have to consider the reverse of the history
ub f tobe f . bu, where u is the time-reversed analog
of the quantum state a. This will be but a slight
complication in our formalism.

It is well known that the quantum-mechanical equa-
tions of motion are time-syxrnnetric. '' However, the
role of the quantum measurement process has long been
a subject of debate, and many authors have maintained
that the discontinuous change of the wave function upon
measurement is a source of time asyrnlnetry in the real
world, . It is not our purpose here to discuss all the rami-
6cations of this question, and the reader is referred to
the articles of Aharonov, Bergmann, and Lebowitz4 and
Penfield' cited before, as well as the recent review
article by Bohm and Bub.

We now demonstrate that all aspects of quantum
mechanics 6t naturally into the two-time boundary-
condition formalism, provided that we perform the
quantum-mechanical analog of momentum reversal
when requiring time symmetry. Aharonov, Bergmann,
and Lebowitz4 have treated this same topic, but their
discussion was limited to measurement of observables
which were constants of the motion, i.e., to stationary
states. We present the generalization of their result to
include transitions between nonstationary states.

We represent time inversion by the usual antiunitary
operator 0' on the quantum-state Hilbert space, so that
Olu)—= Iu) is the time-reversed analog of Iu)." The
antiunitary property Ineans that

(Obl 0')—=Flu)=(blu)'=&ulb) (6)

for any two states Iu) and Ib) We may .complete the
definition by requiring that 0~ anticornmute with the
linear and angular-momentum operators for each par-
ticle in the state:

Op+yO= OJ+ JO=O. (7)

Equations (6) and (7) imply that the expection values
ofyand Jreverseontimeinversion:(u ylu)=(Oulyolu)
= —('OulOplu)= —(ulptlu)= —(ulp u), etc. For an
ordinary nonrelativistic one-component Schrodinger
wave function f(r) one can show that time inversion
amounts to taking the complex conjugate. "

All Hamiltonian operators used in quantum me-
chanics, except for those containing an external mag-

' D. Bohm and J. Bub& Rev. Mod. Phys. 38, 453 i1966l.' F. A. Kaempffer, Conceptsin Quantum Mechanics (Academic
Press Inc. , New York, 1965), Sec. 15.

~' R. C. Tolman, The Erinci ples of Statistical Mechanics (Oxford
University Press, London, 1959), pp. 395-398.

netic field, connnute with O': JIB= O~H. With this
assumption, it is very simple to demonstrate the general
syrrunetry of the quantum-measurement transition
probabilities. "Suppose that a complete measurement is
made on a quantum system and its state determined to
be

I
u). Then at a time At later its quantum state is given

by the unitary time-development operator" T (At)
=exp(iHht/A) to be Iu, ht)=T(dt) Iu). Since H com-
mutes with 0~ and since Eq. (6) implies that i 0~ = —O~i,

we have
T(~~)0= OT(—~~) = HT(~~) t. (8)

The probability for determining the system to be in
the state

I b) after time at is then P t, = I &b I
T(~")

I u) I

'
The time-reversed analog of a~ b is b-+ a, and the
probability for this transition over the same time inter-
val Dt~) 0 is given by Ps = l(ul T(~~)

I
b&12 But Eqs.

(6) and (8) imply that (u T(ht)
I
b)=(oui OT(ht) fib&

=(ul T(S~)&lb&*=(bl T(S~) u)
Therefore, we have the elementary result I',&= I'&;

for the quantum-measurement transition probabilities.
In order to Gt this into the two-time boundary-condition
formalism we have only to make the obvious generaliza-
tion that the inverse of a history ub ~ f is not f bu,
but rather f ba Time sy.mmetry is then investigated
by asking whether or not P(u, b, ,f)=P(f, , b, u),
with the definition of Eq. (2). But our relation P,q= Pt,
obviously guarantees that this sylnrnetry condition is
fu16lled, and hence the quantum Ineasurement process
is completely time symmetric.

IV. STATISTICAL PROCESSES IN OSCILLATING
COSMOLOGIES AND A COMMENT ON

BOLTZMA5'N'S H THEOREM

Now that we have established the time symmetry of
statistical and quantum mechanics, we can discuss in
more detail the behavior of general statistical processes
in time-synunetric oscillating cosmologies.

Let us choose, for example, a closed Friedmann model
with zero cosmological constant, so that the model
starts from a singular state, expands out to a certain
maximum radius of curvature, and then contracts down
to a singular state again. To avoid discussing the be-
havior at the singularities, we choose the following
synunetrical statistical boundary conditions: AT seconds
after the initial singularity all the matter energy of the
universe is to be in the form of uniformly distributed
primordial matter of some appropriate composition.
Similarly, AT sec before the 6nal singularity the sume

state, with the same composition, density, and tempera-
ture, is to occur. We may, of course, take AT as close to
zero as we wish.

Our study of the Ehrenfest model in Sec. II indicates
that ordinary galactic and stellar evolution processes

~ For a version of this proof in S-matrix theory, see Ref. 10, pp.
255-258.

» E.Merzbacher, Quantum Mechanics (John Wiley R Sons, Inc.,
New York, 1962), pp. 330—332.
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will operate during most of the expanding phase. But
we must also conclude that in the contracting phase the
same processes will also operate, but in reverse. Ob-
servers living in the contracting phase would have their
time-senses opposite to those in the expanding phase
and wouM conclude that they live in the expanding
phase themselves. And each would be correct. There
exists no criterion by which one can decide which half
is really the expanding phase. Thus, complete time-
symmetry is attained. Furthermore, if the calculations
for the Ehrenfest model are any indication, we would

expect the galactic histories to be predominantly of type
8, and thus the statistical "pre-e6ect" of the final
boundary condition would slow down the rates of
entropy-producing processes in both phases.

One might also use the two-time formalism to analyze
specific problems involving the appearance of observers
in regions having a time sense opposite from their own,
and the like, as examined, for example, by Wiener. '
Vnfortunately, this would be exceedingly complicated
even for the simplest situations, but we may at least
claim to have found a self-consistent theoretical frame-
work for such problems. The time synonetry demon-
strated in Sec. III for quantum processes shows that the
calculated history probabilities for such problems do
not depend on the choice of the direction of the time
axis.

Watanabe" has discussed the fact that the very no-
tion of probability in statistical and quantum physics
introduces a past-future asymmetry ("irretrodictabil-
ity") into the conceptual framework. This asymmetry is
indeed a characteristic of ordinary probability theory,
but the use of the two-time boundary-condition concept
removes this defect for systems whose base transitions
probabilities satisfy the symmetry condition of Eqs. (3)
and (4).

We can now coDUnent intelligently on the famous
controversy which Boltzmann's H theorem raised when

r4 N. Wiener, Cyberrtetics (M.I.T. Press, New York, 1961), 2nd
ed., pp. 30—36."S.Watanabe, Progr. Theoret. Phys. (Kyoto) Suppl. , Extra
Number, p. 135 (1965).

it appeared long ago: Boltzmann showed that the
collision term in the kinetic equation had the effect
that" "

dH/dt= (d/dt) dv f(v, t) lnf(v, t) &0,

with equality only for a Maxwellian distribution. Thus
the H theorem singles out a time direction and contra-
dicts microscopic reversibility. The reason for this is, of
course, that the collision term is constructed by means
of a scattering cross section, which is a type of transition
probability and no longer a purely dynamical concept.
Thus the H theorem is in line with Watanabe's results.
It is noteworthy that the kinetic equation without the
collision term is time-syrrnnetric.

The two-time boundary condition concept could be
used to construct a time-symmetric replacement for the
kinetic equation including the collision term. This could
also be done for other statistical transport equations,
such as the heat conduction equation and the viscosity
terms in the Navier-Stokes equation.

We here conclude our discussion of statistical bound-

ary conditions. Many points still remain obscure, in-

cluding the interesting question of the rates of statistical
processes in oscillating cosmologies.
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