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Transition form factors between arbitrary excited states of the H atom have been evaluated in closed
highly symmetric form within the framework of the noncompact dynamical group O(4,2).

~HE purpose of this paper is to present the exact
form of the charge form factors in the H atom

for transitions between any two excited states. The
motivations for this work are: (1) These arbitrary
transition form factors have, to our knowledge, not
been given in the literature; (2) to show the power of
the new simple algebraic methods using the representa-
tions of noncornpact groups; and (3) for possible
adaptation of the results to the dynamics of strongly
interacting particles.

The form factors in question, denoted by F
&& (q'), are the vertex amplitudes shown in Fig. 1 as a
function of the momentum transfer its = t=0'+k"
—2kk' cose. They govern the inelastic scattering of the
H atom by other charged particles or atoms if single
photon exchange is dominant, and are measured by
such scattering experiments. The transition form factors
from the ground state ~100) to an arbitrary state ~ntm)
were first calculated by Massey and Mohr' by Schro-
dinger theory. To our knowledge, these are the only form
factors known explicitly. We present here an evaluation
of arbitrary form factors solely within the conformal
group O(4,2). The method does not make any reference
to spatial wave functions.

It has been shown recently that the dipole transitions
in the H atom can be described in a simple manner by
using the dynamical group 0 (4,2), the conformal group. '
Nambu has investigated relativistic infinite-component
wave equations for H-like systems and has indicated
the calculation of form factors. Later, further properties
of the H atom within the group 0 (4,2) were investigated
by Fronsdal4 and the present authors. ' Fronsdal gave
also the form of the Galilei booster transformations on
the group O(4,2), and evaluated the form factor of the
ground state.

where
~
rttm, t't) is the Galilei-boosted state of momentum

FIG. 1. The transition form
factor F is measured in an in-
elastic collision with another
system of momentum k when
one-photon exchange is domi-
nant.
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k, i.e., e' 'lt t (x). The generators M; of the Galilei
transformations exp(ik M) are given by'

M =(Ls L4)— (2)

provided we introduce the new states'

1
~
ntm) =—e

—"'4'
~
rttm), e„=lnrt,

m
(3)

We summarize briefly the O(4, 2) description of the
H atom. Let l-,~= —L~~,' u, b=1, 2, . 6, be the 16
generators of O(4,2). The subgroup O(4) generated. by
I.,b, a, b=1, 2, 3, 4, describes the degeneracy of the
states of a given energy; the subgroup O(4, 1)—dynami-
cal group in the rest frame —describes al/ bound states
~rttm), and, finally, the remaining generators L;s are
associated with dipole transitions, and I.56 with the
quantum number e.

The vector form factors are given by

V„,„.,„, =(rt't'm'~rttm, tt),
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Using Eqs. (2) and (3) and the commutation relations
of O(4, 2) we can bring Eq. (4) to the form

S„,.'"= (n'tm( r',
~

n"tm)-

1149
&&(n"tmle "-'-'se *"'&'4 '»-&~rttm), -(5)-

and a current operator 1'„=(Lss —L4s, L s). Then the
charge form factors can be written as (for a booster
in the 3 direction)

(4)
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FIG. 2. The triangular diagram which
gives the anomalous threshold obtained in
Eq. (17).

It is therefore easy to evaluate the matrix elements of
Eq. (6) in parabolic coordinates:

(n,"n,"m!e-* "'e-' K e-'~K
!B,nsm)

—e
—i(n222 n2~—2) fpe i(n—r n2)—IP/n 2/n 22m!gn] n2 m

X e
—i(2(/2) (Ni++N2 )e—i(2(/2) (N2++N2 )!n n m)/7

where
n —n'

tanh-', e„,„=;e„,„=in(n/n').
n+n'

where the last matrix element is the product of two
finite 0(2,1) transformations:

m —Tg (m+1) /2 (wGni" ns" nin2 = & r"n+ ( +m1)/2, 2+n( +m1)/2 (X)

X Vn2"~(m)1) /2, n2+(m+ 1) /2 (X) (12)

In the evaluation of Eq. (5) we notice that L24 ——Es,
Lss ———K2, L42 Et g——enerate an 0 (2,1) subalgebra
(transition group' E). The second inatrix element in
Eq. (5) is that of a finite transformation of 0(2,1) that
we express in terins of the Euler angles q, 2//, X:

e
—i@n~nK(e—ikn (K2+K2) —e ipKa/2e iXK2/—2e igKa/—2 (6—))

and obtain

1
sinh-,'X= [(n—B')'+ tnsn")' ',

(4n'n) '/'

(n"—n')+ )!n/2B2

sing=
([(n'—n)'P ~n"n')[(n'+n)'+ tn"n')}'/'

sin))t is exactly like sin(/2 with n and n interchanged.
Next we express the operators E in terms of the genera-
tors corresponding to parabolic coordinates'

[N;+,N;—)= —2N,', [N,',N,+)= &NP, i=1, 2 (8)

where

N Bin 2m) = [n,+ (m+1)/2)! Binsm);
Ni+ ninsm)

= —[(nt+-'2a-2, ) (ni+m+ —2a-2'))'/2! Bia1, nsm) (9)

as follows:

1
Its N1 N2 2 L™1 (Ni +N2 N1 N2 )2

The V function for n&') n& is given by

V n'+2( +m1) 2/, n2+( m1+) 2/(~)(m,+1)/2 I'

—8 (coshix) (nr +n1+m+I) ( 2 sinhiX)nr' —n2

XF(—ni, —ni —m, 1+Bi'—ni, —sinh'('2x)), (13)

1 -ni'! (n, '+m)!- '/'

(ni' —ni)! ni!(Bi+m)!

[for ni'(ni, use Vnr+(kg+1)/2, nrem. (~1)/2 " '(~)), and
occurs universally in all form-factor calculations (scalar
or vector) and in the approximate evaluation of scatter-
ing amplitudes. ' ~

Similarly, the first matrix element in Eq. (5) is easily
calculated in parabolic coordinates, because

L42= 2(N1++N] +-N2++N2 ) 2 Lss N. (14)——

It remains then to change the basis !Btnsm) into
!Blm). Because this change of basis is connected with
the reduction of 0(4) into 0(3)XO(3), we have im-

mediately in terms of the 3j symbols

(nlm! Btnsm) = (—1) (2l+1)"'
(15)

(n —1)/2 lq
!x!( (m —ni+n 2)/2 (m+ni —B2)/2 mf—

2z
Consequently, collecting all the terms the final re-

I2.2= ,'(N, + N,++N—,—N,—). (10) —s—ult is—

(B 1)/2—(2l+1)
&a~' =

X fn/e —i[(n2'-n2')2)-( r m) /n)Gn2, )—, m+[(B /+. 1)(n +m+1))1/2k+, , n', nG, , m

+[B1(B1 +m)) /2 n2' ns', n2 —ns ' —Gnr' —1,n2'n2n2 } 2 (16)
where

h+...,n™~cos[(s'&1)(/2++) for (—1)"' "=—1

i sin[(s'&—1)(/2++) for (—1)
' "=+1.

(n' —1)/2 (n' —1)/2 /, ) // (B—1)/2 lzm, ', '. , (m —m/+m ')/2 (m+m/ —m, ')/2 —m/ (, (m m, +m )/2 (m+m, ——m, )/2 —m)
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The form factor F has a singularity where the cosh-', X term in Eq. (11) vanishes. Prom Eq. (7), this oc«»s at

S2e'2
(17)

and coincides exactly with the anomalous threshold singularity obtained from the triangular diagram show»n
Pig. 2 (8=binding energy).

The final result, Eq. (16), reduces in the special case to the Massey s.nd Mohr result' which now has been written
in a highly symmetric form.
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The theory of sequential decays of an unstable system is studied. Examples include the sequential emission
of two or more photons by an excited atom which reaches its ground state via one or more intermediate
levels, and the decay of an unstable particle into other unstable particles. To describe these phenomena, a
factorization of the Green s function is introduced. This leads to a simple, and intuitively obvious, description
of sequential decays. It also makes possible an assessment of the accuracy of this description.

I. INTRODUCTION

E consider the quantum-mechanical description
of a system undergoing a sequence of decays.

An example of this is provided by the de-excitation of an
atom radiating two or more photons in sequence. Other
examples include the study of angular correlations in
successive nuclear decays and the decay of an unstable
daughter in particle physics.

Previous treatments of these phenomena have tended
to be heuristic or have introduced approximations at
the outset which have obscured many of the subtle
features of sequential decays. In this paper we shall
apply the Green's-function method used by Goldberger
and Watson' for single-step decays to a general descrip-
tion of multistep decay processes. Somewhat related
techniques have been used by Reff, ' by Kroll, ' and by
Goldberger and Watson4 for specific cases of two-step
decays. An alternative formulation of the decay problem
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has been given recently by Mower. ' His method treats
as "closely coupled" all the states involved in a decay.
This leads to the algebraic problem of inversion of a
matrix whose dimensionality is the number of states
considered. Our method tak. es account from the outset
of the time ordering of sequential decays.

The value of the Green's-function approach lies in
the fact that it gives a rigorous formulation of multistep
decays in which the usual description by a product of
Breit-Wigner resonance factors is a natural first ap-
proximation. This is not true of ordinary (e.g., Ray-
leigh-Schrodinger) perturbation methods. Correction
terms depending on the ratio of level widths to level
spacing may be estimated in a straightforward way.
Qualitative statements about the time dependence of
the decay may be obtained from the analytic behavior
of the Green's function. '

We begin with a collection of some relevant results of
the Goldberger-Watson' formulation of decay processes.
A physical system is assumed to be described by a
Hamiltonian II. This is written as H=E+ V, where V
is responsible for transitions between eigenstates of E.
These eigenstates are written as g„gb, and satisfy
the respective Schrodinger equations

+ga= &aga p

+gb &bgb

s L. Mower, Phys. Rev. 142, 799 (1966).


