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Quantum Theory of Gravity. I. The Canonical Theory*
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Following an historical introduction, the conventional canonical formulation of general relativity theory
is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic curvatures of the
hypersurface x =constant, and its relation to the asymptotic field energy in an infinite world is noted. The
distinction between finite and infinite worlds is emphasized. In the quantum theory the primary and second-
ary constraints become conditions on the state vector, and in the case of finite worlds these conditions alone
govern the dynamics. A resolution of the factor-ordering problem is proposed, and the consistency of the
constraints is demonstrated. A 6-dimensional hyperbolic Riemannian manifold is introduced which takes for
its metric the coeKcient of the momenta in the Hamiltonian constraint. The geodesic incompletability of
this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated. The possibility is
explored of relating this manifold to an infinite-dimensional manifold of 3-geometries, and of relating the
structure of the latter manifold in turn to the dynamical behavior of space-time. The problem is approached
through the WEB approximation and Hamilton-Jacobi theory. Einstein s equations are revealed as geodesic
equations in the manifold of 3-geometries, modified by the presence of a "force term. " The classical phe-
nomenon of gravitational collapse shows that the force term is not powerful enough to prevent the trajectory
of space-time from running into the frontier. The as-yet unresolved problem of determining when the col-
lapse phenomenon represents a real barrier to the quantum-state functional is briefly discussed, and a
boundary condition at the barrier is proposed. The state functional of a finite world can depend only on the
3-geometry of the hypersurface x =constant. The label x' itself is irrelevant, and "time" must be deter-
mined intrinsically. A natural definition for the inner product of two such state functionals is introduced
which, however, encounters difIiculties with negative probabilities owing to the barrier boundary condition.
In order to resolve these difliculties, a simplified model, the quantized Friedmann universe, is studied in
detail. In order to obtain nonstatic wave functions which resemble a universe evolving, it is necessary to
introduce a clock. In order that the combined wave functions of universe-elm-clock be normalizable, it turns
out that the periods of universe and clock must be commensurable. Wave packets exhibiting quasiclassical
behavior are constructed, and attention is called to the phenomenological character of "time."The inner-
product definition is rescued from its negative-probability dif5culties by making use of the fact that prob-
ability flows in a closed finite circuit in configuration space. The article ends with some speculations on the
uniqueness of the state functional of the actual universe. It is suggested that a viewpoint due to Everett
should be adopted in its interpretation.

1. INTRODUCTION

LMOST as soon as quantum field theory was
invented by Heisenberg, Pauli, Pock, Dirac, and

Jordan, attempts were made to apply it to fields other
than the electromagnetic field which had given it-
and indeed quantum mechanics itself—birth. In 1930
Rosenfeld' applied it to the gravitational Geld which, at
the time, was still regarded as the other great entity of
Nature. RosenfeM was the 6rst to note some of the
special technical de.culties involved in quantizing
gravity and made some early attempts to develop
general methods for handling them. As an application
of his methods he computed the gravitational self-energy
of a photon in lowest order of perturbation theory.
He obtained a quadratically divergent result, confirming
that the divergence malady of field theory, which had
already been discovered in connection with the electron's
electromagnetic self-energy, was widespread and deep
seated. It is tempting, and perhaps no longer pre-
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$ Permanent address.' L. Rosenfeld, Ann. Physik 5, 113 (1930); Z. Physik 65, 589
(1930).
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mature, to read into Rosenfeld's result a forecast that
quantum gravidynamics was destined, from the very
beginning, to be inextricably linked with the dificult
issues lying at the theoretical foundations of particle
physics.

During physics's great boom of the thirties the difFicult
issues of field theory were inevitably often bypassed.
Moreover, it was recognized early that as far as the
gravitational field is concerned its quanta (assuming
they exist) can produce no observable effects until
energies of the order of i0"eV are reached, this fantastic
energy corresponding to the so-called "Planck length"

( tt/Gc )'s"=1 0" cm, where G is the gravitation con-
stant. Hence, after RosenfeM's initial studies years
passed before anything essentially new was done in
quantum gravidynamics, and even today interest in
this area of research is confined to a very small group
of workers.

In i950 the author' reperformed Rosenfeld's self-
energy calculation in a manifestly Lorentz-covariant
and gauge-invariant manner. This work was stimulated
by the then new "renormalization" methods, which

' B. S. DeWitt, Ph.D. thesis, Harvard University, 1950
(unpublished}.
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had been developed by Tomonaga, Schwinger, and
Feynman, and had as its aim a demonstration that
Rosenfeld's result implies merely a renormalization of
charge rather than a nonvanishing photon mass. An
unanticipated source of potential difficulty arose in
this calculation from the fact that not one but taco gauge
groups are simultaneously present (i.he group associated
with gra, vity in addition to the familiar electromagnetic
group) and that these groups are not combined in the
form of a direct product but rather in the form of a
semidirect product based on the automorphisms of the
electroma. gnetic gauge group under general coordinate
transformations. This means that if a fixed choice of
gauge is to be maintained, every coordinate transfor-
mation must be accompanied by an electromagnetic
gauge transformation. The calculation wa, s pushed,
however, again only to the lowest order of perturbation
theory; in this order, which involves only single closed
Feynman loops, the ensuing complications are easily
dealt with.

At about the same time investigations of a more
ambitious kind were undertaken by 8ergmann. '
Although the renormalization philosophy had proved a
resounding success in quantum electrodynamics it was
still under critical attack because the methods then (and
frequently even now) in use involved the explicit
manipulation of divergent quantities. Similar (although
more elementary) diKculties also persisted in classical
particle theories with one important exception, namely,
the theory of the interaction of point masses with
gravity. In 1938, Einstein, Infeld, and Hoffmann4 had
shown that the la,ws of motion of such particles follow
from the gravitational field equations alone, without
divergent quantities ever appearing or such concepts
as self-mass intervening at any time. Moreover, this
result had been subsequently extended to include
electrically charged particles, and gave promise of being
applicable to spinning particles as well. The gravi-
tationa, l field thus appeared as a k.ind of classical regu-
lator, and Bergmann reasoned that the same might be
true in the quantum theory. Since the fields are basic,
in the Einstein-Infeld-Hoffmann view, and the particles
are merely singularities in the fields, Bergmann's first
task was to quantize the gravitational field. It was to
be hoped that commutation relations for particle po-
sition and momentum would then follow as corollaries.

The obstacles which Bergmann faced were enormous.
First of all, since the laws of particle motion depend
crucially on the nonlinear properties of the Einstein
field equations, it was necessary to quantize the full
nonlinear gravitational field. Secondly, it was necessary
to find some way of defining pa, rticle position and
momentum in terms of field variables alone. Thirdly,
it would eventually be necessary to include spin, so that

3A bibliography of Sergmann's early work. will be found in
P. G. Bergmann, Helv. Phys. Acta Suppl. 4, 79 (1956).

4 A. Einstein, L. Infeld, and B. HofI'mann, Ann. Math. 39, 65
(1938),

quantized particles obeying a Dirac-like equation could
be described. Fourthly, it would be necessary to extract
Fermi statistics (for the particles) out of the Bose
statistics obeyed by the gravitational field. Finally, it
would be necessary ultimately to remove the asymmetry
between particle and field inherent in the Einstein-
Infeld-Hoffmann approach, so as to be able, as in
quantum electrodynamics, to account for pair produc-
tion and vacuum polarization. It is not surprising
that Bergmann's goal today remains as elusive as ever.

To achieve this goal Bergmann set out upon the
classical canonical road in search of a Hamiltonian.
Despite the fact that canonical methods, by singling
out the time for special treatment, run counter to the
spirit of any relativistic theory —above all, such a
completely covariant theory as general relativity —such
a procedure seemed a good one for several reasons.
Firstly, no other method was then known. Secondly,
canonical methods afford quick insights into certain
aspects of any theory. Thirdly, it seemed that standard
perturbation methods would become available for
certain types of calculations.

However, Bergmann immediately ran into major
difhculties (some of which had already been foreseen
by Rosenfeld) in the first stages of his program. These
are referred to as "the problem of coestraiets, " and are
manifested in the following ways: Some of the field
variables possess no conjugate momenta; the momenta
conjugate to the remaining field variables are not all
dynamically independent; the field equations themselves
are not linearly independent, and some of them involve
no second time derivatives, thus complicating the
Cauchy problem. These difficulties are all related and
arise from the existence of the general coordinate-
transformation group as an invariance group for the
theory.

Similar difficulties had already been encountered
with the electromagnetic field and methods for handling
them were well known. The same methods, however,
proved to be much more dificult to apply in the case
the gravitational field. An obstacle is created, for
example, by the fact that not all of the relations between
the momenta (i.e., the constraints) are linear. More-
over, because the invariance group of gravity is non-
Abelian (in contrast to the gauge group of electro-
dynamics) tedious calculations must be performed to
check that the commutators of the various constraints
lead to no inconsistencies.

Bergmann and his co-workers performed much valu-
able ground work in formulating the difhculties in a
precise way and in partially resolving them. In the
meantime additional help came from an unexpected
quarter. In 1950Dirac' published the outline of a general
Hamiltonian theory which is in principle applicable to
any system describable by an action functional. Dirac's
methods were quickly seized upon by Pirani and Schild'

' P. A. M. Dirac, Can. J. Math. 2, 129 (1950).' P, A, E. Pirani and A. Schild, Phys. Rev. ?9, 986 (1950).
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for application to the gravitational field. Unfortunately,
these authors chose to develop the theory within the
framework of a "parameter formalism, " in the hope,
which eventually proved to be misplaced, of retaining
a manifest covariance which Dirac's methods would
otherwise destroy. The complexity of the resulting
algebra prevented them from computing all of the
constraints.

The theory remained in this incomplete state for
several years. It was not until impetus was provided by
the first international relativity conference in Bern in
1955 (Jubilee of Relativity Theory) and the second one
in Chapel Hill in 1957 that things began to move again.
A small step forward was made by the author, " who
showed, using the Pirani-Schild formalism, that the
four so-called "primary" constraints could, by a phase
transformation, be changed into pure momenta. This
meant that the state functional for gravity must be
independent of the go„components of the metric tensor
(ted=0, 1'2, 3). Shortly afterward Higgs' showed that
three of the so-called "secondary" or "dynamical"
constraints are the generators of infinitesimal trans-
formations of the three "spatial" coordinates x', x', x'.
The implication of this was that the state functional
must be independent of the coordinates chosen in the
spacelike cross sections x = constant and hence cannot
be taken to be an arbitrary functional of the metric
components g;, (i, j= 1, 2, 3). Developments thereafter
came rapidly. Dirac himself had by this time begun to
apply his methods to the gravitational 6eld. As a result
of simpli6cations and clari6cations which he introduced,
it became easy to show that the fourth dynamical con-
straint is consistent with the others, and the formal
theory achieved for the first time a state of technical
completion. It was then possible to begin asking "What
does it all mean?"

On the classical side, the problems of physical inter-
pretation were soon resolved by the work of Arnowitt,
Deser, and Misner, "who showed how to use the canoni-
cal theory to provide a rigorous characterization of
gravitational radiation and "energy. " In the quantum
domain, however, the interpretation of the formalism
remained puzzling and obscure for several years, because
one did not know the right questions to ask. It is only
recently that the relevant issues have begun to come into
focus, largely as a result of the patient researches of
Wheeler, "whose ideas have proved a great source of
stimulation to many workers, including the author.

' Reported at a meeting at Stevens Institute of Technology in
January, 1958 (unpublished).

s P. W. Higgs, Phys. Rev. Letters 1, 373 (1958); 3, 66 (1959).' P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 326 (1958);
A246, 333 (1958); Phys. Rev. 114, 924 (1959).

1 R. Arnowitt, S. Deser, and C. W. Misner, in Gram&ation: An
Introdzcctcon to Current Research, edited by L. Witten (John
Wiley 8z Sons, Inc. , New York, 1962).

"The work of Wheeler and his associates is well described in
J. A. Wheeler, Relativity Groups and Topology, 1963 Les Holches
Lectlres (Gordon and Breach Science Publishers, Inc. , New York,
1964). This reference contains a large bibliography of additional
papers on quantization, collapse, and many other related topics.

The present paper is the direct outcome of conver-
sations with Wheeler, "during which one fundamental
question in particular kept recurring: 8'hat is the stric-
ture of the domain manifold for the quantum me-chanical
state functionally The attempt to answer this question
has required a more far-reaching analysis of the tech-
nical structure of the canonical theory than can be
found in the previous literature. The results of this
analysis are here presented and used to develop an inter-
pretative framework which, although tentative, is
perhaps capable of serving in a variety of contexts.

Attention is mainly con6ned to the ca,se of closed
Gnite worlds, Grstly because the issues which finite
worlds raise are more critical and bizarre, and secondly
because the case of in6nite worlds is better handled
within the framework of the so-called manifetlsy co-
variant theory which will be treated in two subsequent
papers of this series. The latter theory, which has also
achieved a state of technical completion following the
pioneering work of Feynman, '3 differs utterly in its
structure from the canonical theory, and so far no one
has established a rigorous mathematical link between
the two. At the present time the two theories play
complementary roles, the canonical theory describing
the quantum behavior of 3-space regarded as a time-
varying geometrical object, and the covariant theory
describing the behavior of real and virtual gravitons
propagating in this object.

Section 2 of the present paper begins with the deri-
vation of the canonical Lagrangian. Its structure in
terms of the extrinsic and intrinsic curvatures of the
hypersurface x'= constant is displayed, and attention
is called to its relation to the total Geld energy in an
asymptotically Qat world. Section 3 is devoted to the
primary and secondary constraints of the theory and to
the independent question of coordinate conditions.
Quantization is introduced in Sec. 4. Here the puzzling
question of the role of a vanishing Hamiltonian is re-
solved by emphasizing the distinction between finite
and infinite worlds. Asymptotic energy is an indispen-
sable concept in an in6nite world, and the Hamiltonian
must be chosen accordingly. In a 6nite world there is
no asymptotic energy, and an intrinsic description of
the dynamics must be found, based on the constra, ints
alone. The consistency of the constraints is demon-
strated by straightforward computation of their com-
mutators. The factor-ordering problem is disposed of by
formal arguments which in effect assert that field vari-
ables taken at the same space-time point should be
regarded as freely commutable. The "p constraints" are
shown to be the generators of 3-dimensional coordinate
transformations.

In Sec. 5 the metric representation is introduced. The

"Any errors or wrong conjectures it contains are the author' s
own.

13 R. P. Feynman, Mimeographed letter to V. F. Weisskopf
dated January 4 to February 11, 1961 (unpublished); Acta Phys.
Polon, 24, 697 (1963),
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distinction between 6nite and infinite worlds is again
noted, and it is emphasized that the state functional in
the former case depends only on the 3-geometry of the
hypersurface x'= constant and not on the label x' itself.
The concept of a manifold BR of 3-geometries is intro-
duced, and the role played by the Hamiltonian con-
straint in determining its geometrical structure is
suggested. The coeKcient of the momenta in the Hamil-
tonian constraint may be regarded as a metric of a
6-dimensional hyperbolic Riemannian manifold 3I.The
structure of this manifold is studied in detail, and its
geodesic incompletability, owing to the existence of a
frontier of in6nite curvature, is noted. The possibility
of relating 3f to the question of "intrinsic time" for the
state functional is discussed, and a natural de6nition for
the inner product of two state functionals is proposed.

In Sec. 6 a natural metric based on M is assigned to
the in6nite-dimensional manifold 5R, and some of the
properties of geodesics in 5R are examined. An attempt
is then made to indicate the extent to which the dy-
namical properties of the quantized gravitational field
are determined by the structure of 5R. The attempt is
heuristic and far from complete, and much work remains
to be done. The problem is approached through the
WEB approximation and Hamilton-Jacobi theory.
Einstein's equations are revealed as geodesic equations
in BR, modi6ed by the presence of a "force term. "The
classical phenomenon of gravitational collapse shows
that the force term is not powerful enough to prevent
the trajectory of 3-space from striking the frontier of
5K. The problem of determining when the collapse
phenomenon represents a real barrier to the quantum
state functional is brieAy discussed, and a boundary
condition (vanishing state functional) at the barrier
1s proposed.

The barrier boundary condition raises difhculties
with the de6nition of probability. In order to study
these difhculties it is useful to test the theory on a
simpli6ed model. In Sec. 7 the quantized Friedmann
universe is studied in detail, and its static wave func-
tions in the WEB approximation are obtained. In order
to obtain nonstatic wave functions which resemble a
dynamical universe evolving it is necessary to introduce
a clock. The combined wave functions of universe-clm-
clock are studied, and it is pointed out that normaliz-
ability of the wave functions requires precise commen-
surability between the periods of universe and clock.

Wave packets exhibiting quasidassical behavior are
constructed in Sec. 8, in three different representations.
Two of these make use of proper times de6ned by the
clock and the universe respectively; the third treats
universe and clock symmetrically through their mutual
correlations. Attention is called to the de6ciencies of
the 6rst two representations arising from the fact that,
in a covariant theory, time is only a phenomenological
concept. In the third representation probability Qows
in a closed 6nite circuit in con6guration space, and wave
packets do rot ultimately spread in time. Use is made of

this fact in Sec. 9 to show how the inner-product
de6nition can be rescued from the negative probability
difhculties arising from the barrier boundary condition
4=0 at 2=0 (R= radius of universe). It is also shown
that the conventional Cauchy data for the wave func-
tion su%ce to determine the quantum state completely.

Section i0 is devoted to speculations on the general
theory. An interpretation of quantum mechanics due
to Everett (see Ref. 52) is described and proposed for
dealing with the concept of "a wave function for the
universe. "Such an interpretation is essential if the wave
function is unique. Evidence is presented that the
Hamiltonian constraint may indeed have only one so-
lution. The problem of time-reversal invariance and
entropy is brieAy discussed. Two technical appendices
follow at the end of the article.

Attention is called to the following points of notation:
Latin indices range over the values i, 2, 3 and Greek
indices over the values 0, 1, 2, 3. Differentiation is
denoted by a comma. The coordinates x and xi are
assumed to be timelike and spacelike, respectively, and
the geometry of space-time is assumed to be such that
the hypersurfaces x'= constant are capable of carrying a
complete set of Cauchy data. So-called "absolute units"
in which h=c= 16mG= 1 (G being the gravitation con-
stant) are used throughout, as is also the signature—+++ for the space-time metric g„„.The Riemann
and Ricci tensors, and the curvature scalar, are taken
in the respective forms

(1.2)

(1 3)

where

r„„-=2g"(g". +g-—.. g". ) g"g'"—= s." (14)
The corresponding tensors in the spacelike cross sections
x'= constant are distinguished by means of a prefixed
superscript (3). These conventions have the property
that )E. is non-negative in a space-time containing
normal matter and satisfying Einstein's equations, and
that ~'&E. is positive in a 3-space of positive curvature.

v ~v"=&' p'=v"p (2.2)

2. EXTRINSIC AND INTRINSIC CURVATURE.
CLASSIC FORM OF THE LAGRANGIAN

The canonical theory begins with the following de-
composition of the metric tensor:

—a'+M'
P;)(g")=

~~p' Vij
(2 1)

~

~~

~~

~—2 ~—2pj
(g"")=

~—2pi v~j ~ 2ptpjj—
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When the conventional Einstein Lagrangian density
is reexpressed in terms of the new variables, it is found,
after some calculation, to take the form E„= y' 'y' (y;p, ,—y;;,g,)dS', (2 7)

from the Lagrangian (2.6) a surface integral E„gi ven by

g—=—det(g„„)=n'y, y—=det(y;;),

2—=g'I' &'lR= ny'~'(K "K" K'—+ &'&R)

-2(~"K) .+2b"KP'-~"y" )

where

(2.3)

(2.4)

and hence adds a corresponding quantity to the canoni-
cal energy. In an asymptotically Rat world it is always
possible to find an asymptotically Minkowskian refer-
ence frame in which n, P;, and y,; take the static
Schwarzschild forms

K—y y' Kpi,
)x=—~"X;;,

the dots denoting covariant differentiation based on
the 3-metric y;;.

The quantity E;;, which transforms as a symmetric
tensor under spatial coordinate transformations, is
known as the secorrd fgrsdumemfal form It des.cribes the
curvature of the hypersurface x'= constant as viewed
from the 4-dimensional space-time in which it is em-

bedded. It is therefore also frequently called the
extrinsic col,ture teesor of the hypersurface, as opposed
to the imtrimsic clnatlre feasor ~3'E.;;, which depends
only on p;; in the hypersurface. In a Qat space-time
&')A@ is completely determined by E;; but in a manifold
of arbitrary curvature there need be no relationship
between the two. The contracted forms &'&E. and E;;K"
—E' will be referred to as the intrinsic and extrinsic
curvatures, respectively.

The last two terms of Eq. (2.3), being total deriv-

atives, are dynamically irrelevant and may be dropped.
The Lagrangian then becomes

ny'~'(K K" K'+ "&R)d'x— (2.6)

which has the classic form "kinetic energy minus po-
tential energy, "with the extrinsic curvature playing the
role of kinetic energy and the negative of the intrinsic
curvature that of potential energy.

The form (2.6) is manifestly invariant under 3-
dimensional general coordinate transformations. Pre-
cisely for this reason it differs from the Lagrangian of
ordinary 6eld theories, for the ~3'R term of its integrand
contains linearly occurring second spatial derivatives
of the 6eld variables. With an ordinary 6eld theory in
an in6nite universe this would be of no signi6cance. The
usual assumption that the 6eld vanishes outside some
arbitrarily large but 6nite spatial domain permits
linearly occurring second derivatives to be eliminated by
partial integration without affecting either the dynami-
cal equations or the canonical de6nition of energy. In
the case of gravity, however, the 6eld never vanishes
outside a 6nite domain unless space-time is Qat, and
although such a partial integration leaves the dynamical
equations unaffected it does change the de6nition of
energy. It is easy to verify, in fact, that it subtracts

M M x'x&

vv ~ be+—,(28)'r ~ ' "r"~ Sx r'

3. THE CONSTRAINTS

The momenta conjugate to n, P,, and y;, willbe denoted

by ~, ~', and x'&, respectively. They have the explicit
forms

=0, (31)

7r'= =0
7

8p;, p

(3.2)

=—7i~p(K' —7'K)
8y;;,0

(3.3)

Eqs. (3.1) and (3.2) being known as the primary con-
straints. The primary constraints are purely formal
statements, which express the fact that the Lagrangian
(2.6) is independent of the "velocities" n, p and p;,p. '

'4 Failure to bring the Lagrangian into the form (2.6) was
responsible for the difhculties originally encountered with the
primary constraints.

where r'—=x'x' and M is the effective gravitational mass
of the field distribution. Substitution of (2.8) into (2.7)
yields

(2 9)

It is to be noted. that the removal of E„ from the
Lagrangian does not correspond to a mere redefinition
of the energy zero point. E„is not a fixed constant but
depends on the state of the field. In fact it is the energy,
for as we shall see presently the canonical "energy"
based on (2.6) always vanishes. (Indeed, E„ is the
energy even when other fields are present. ) Since
neither (2.6) nor (2.7) have any explicit dependence on

x, the quantity E„ is conserved. General relativity is
unique among 6eld theories in that its energy may
always be expressed as a surface integral. This was the
source of Bergmann's hope to use gravity as a regulator,
but it is also a source of diS.culties. We note in particular
that the surface integral vanishes for a closed 6nite
world. It is only for in6nite asymptotically Qat worlds
that the energy concept has meaning.
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These "velocities" are arbitrary and cannot be re-
expressed in terms of momenta. They therefore cannot
be removed from the Harniltonian, which, with the aid
of (3.3), takes the form

H= (7m, o+2r'p;, p+n'&y;;, p)/J2x I. —

(2m o+2r'p; 0+nK+ p,x') d2x (3 4)

where

',y "'h—,n-, /+V;n;~ V,,V2/)~—"~"—V'" "'& (3 5a)

y'/2(K—, K" K"' "—'R),— (3.5b)

+=1, P;=0,
which reduces the Harniltonian to

(3.7a)

(3.'Ib)

Another favorite choice is

(3.8a)

which corresponds to the requirement that the volume
of every hypersurface x'= constant be stationary under
small timelike deforrnations, " and that the spatial
coordinates in each hypersurface be harmonic. To obtain
the explicit forms of the conditions which Eqs. (3.8a)
impose upon n and P, , one notes that these equations
imply the vanishing not only of their left-hand sides but
of all their space-time derivatives as well. Taking the
Poisson brackets of K and (y'/2y"); with the Hamil-
tonian (3.4) one finds the conditions

(3.8b)

In an infinite asymptotically flat worM these equations,
which are of the elliptic type, may be solved subject to

"If 3-space is infInite this applies to the volume inside every
Bnite domain.

X'= 2~'~.;= 2~'~—',;—y"(2P—, , ~ y, 2/) ~~", —(3.6)

The momenta, as well as 3'. and X', are all 3-densities
of unit weight.

It is not hard to show that Einstein's empty-space
Geld equations may be obtained by taking the Poisson
bracket of the va, rious dynamical variables with the
Hamiltonian (3.4) and then imposing Eqs. (3.1) and
(3.2) as external constraints. Since the undermined
"velocities" n, // and p, , 2 are multiplied in (3.4) by 2r and
x', their Poisson brackets with anything may be ignored.
If desired, one can always assign definite values to o. and
P; which may be purely numerical or may depend on
the y;; and x". Each choice corresponds to the impo-
sition of certain conditions on the space-time coordi-
nates. For example, one may choose

the boundary conditions n-+ 1, P;~0 at infinity in
asymptotically Minkowskian coordinates. In a finite
world of nonvanishing curvature, however, they usually
possess either no physically admissible solutions, i.e.,
solutions for which n remains everywhere positive, or no
solutions at all. Since the Laplace-Beltrami operator has
a negative spectrum, the first equation, for example,
cannot be solved in a 3-sphere.

Conditions of the above type correspond merely to
restrictions on the coordinates and have no physical
content. There exist conditions of yet another type
which actually restrict the dynamical freedom of the
Geld and which hold regardless of whether a specific
choice has been made for u and P; or not. These are
obtained by noting that since the primary constraints
hold for all time, the x' derivatives of m and x' must
vanish. Stating this in the form of a Poisson bracket
with II, one arrives immediately at the so-called
secondary or dynamical coestrai its:

3C= 0,
X'= 0

(3.9)

(3.10)

Equation (3.9) will be called the Ham2ltonian con
straint" in virtue of the structure of the function K,
which appears in (3.5b) as the difference of the extrinsic
and intrinsic curvatures, in analogy with the classic
form of the Hamiltonian as the sum of the kinetic and
potential energies. This Hamiltonian, however, vanishes,
as does indeed the total Hamiltonian (3.4). That is to
say, in any "Ricci-flat" space-time (i.e., one satisfying
Einstein's empty-spa, ce equations) the extrinsic and
intrinsic curvatures of any hypersurface are equal. As
has been emphasized by %heeler, " the converse of this
theorem is also true, namely, if 3'. vanishes over every
hypersurface then space-time is Ricci-flat. This suggests,
as will be verified later, that it is the Hamiltonian con-
straint which provides the essential description of the
"intrinsic" (i.e., coordinate-independent) dynamics of
the gravitational Geld.

~% =0,
x''II =0

%+=0,

(4.1)

(4.2)

(4.3)

X'%'=0 (4 4)
"All four constraints (3.9), (3.10) are sometimes referred to as

"Hamiltonian constraints. " We prefer to reserve the terminology
for this particularly important constraint.

4. QUANTIZATION, CONSISTENCY OF THE
CONSTRAINTS) FACTOR ORDERING

In the quantum theory, Poisson brackets become
commutators. This means that the constraint Eqs.
(3.1), (3.2), (3.9), and (3.10) cannot become operator
equations, for otherwise the Hamiltonian (3.4) would
yield no dynamics at all, extrinsic or intrinsic. Instead
they become conditions on the state vector +' ':
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and hence
HC =0, %tH=0, (4.6)

4'ty;, (x',x)@=+ty;;(O,x)+. (4.7)

A similar result holds for any other Geld operator or
product of Geld operators. Since the statistical results
of any set of observations are ultimately expressible in
terms of expectation values, one therefore comes to the
conclusion that nothing ever happens in quantum
gravidynamics, that the quantum theory can never
yield anything but a static picture of the world. "

To see what is wrong with this conclusion one must
examine the behavior of H, or more precisely 3'., at
inGnity. In an infinite asymptotically Rat world the
Geld disperses ultimately to a state of infinite weakness.
In the asymptotic region K therefore tends to its domi-
nant linear term y;;,;;—y,, ,;;=O,which is the well-
known fourth constraint of linearized gravity theory. "
This term is the asymptotic limit of the term which is
removed from the integrand of H by the partial inte-
gration discussed in Sec. 2, and which gives rise to the
surface integral (2.7). In the linearized theory, however,
it becomes a constraint which has no relation to the
total energy. Therefore if the full theory is to be appli-
cable not only in the nonlinear region but also at infinity
where the linear theory holds sway, it must make use
of the Hamiltonian

H„=H+E„, - (4.8)

which results from the partial integration. The integrand
of this Hamiltonian reduces, in the asymptotic region,
to an expression quadratic in the y's and m's, namely,
the usual integrand of the linearized theory.

It follows that in an inGnite asymptotically Oat
world Eq. (4.5) should be replaced by

Even with this replacement, however, the appearance
of the world is still static whenever 0 is an eigenstate
of energy-momentum. To obtain nonstatic behavior
one must construct wave pctckets, by superposing many
different momenta. But this is precisely what one wants
to do in order to provide S-matrix theory, for example,
with a rigorous foundation and insure that the field
really does disperse ultimately to a state of infinite
weakness.

'7 X is assumed to be ordered in an Hermitian fashion.' Cf. A. Komar, Phys. Rev. 153, 1385 (1967).

These quantum constraints are often a source of
puzzlement and confusion. Consider the equation

y;,(x',x) = e'~"y;;(O,x)e '~ x—= (x',x', x') (4.5)

which is the quantum-mechanical relation expressing
the Geld operator p;; on an arbitrary hypersurface in
terms of the corresponding operator on the hypersurface
x'=0. Suppose we choose ct and P; as in Eq. (3.7a).
Then Eq. (4.3) and its conjugate imply'r

Although the above discussion makes use of the co-
ordinate system defined by Eqs. (3.7a), the same prob-
lems arise in any other asymptotically Minkowskian
coordinate system, and the same conclusions apply. To
the extent that we can ignore the possible lack of corn-
rnutativity of n and P; with K and X' in the construction
of an Hermitian Hamiltonian, the same apparent static
behavior of the Geld will occur whenever we incorrectly
use H instead of H„ in Eq. (4.9).

It should be noted that coordinate conditions such
as (3.7a) and (3.8a) are operator equa, tions and not con-
straints on the state vector. " (This follows from the
complete arbitrariness of n and P, in the classics, l

theory. ) On the other hand, equations such as (3.8a),
which hold only when a and P, are suitably restricted,
are rot operator equations. Indeed, they are not even
constraints, but become instead expectcttiort Mltte-
8$NQt'LOSS

(3.8c)

which hold for all values of x provided they hold at
some initial instant and Eqs. (3.8b) are satisfied. They
do not hold in all permissible states merely in virtue of
(3.8b).

Although we know that the physical content of the
classical theory is unaffected by the choice of co-
ordinates, it is not so easy to prove, using the canonical
theory, that the results of a calculation of some physical
quaetlm amplitude is independent of the choice of co-
ordinates. It is not enough merely to know, for example,
that two different coordinate systems both take the
Minkowskian form n~ I, P;~ 0, y, , —+ 5;, at infinity,
in order to conclude that the physical 5 matrix remains
unchanged under the transformation from one system
to the other, for the operator AH, which represents the
change in the Hamiltonian in passing from one system
to the other, produces effects which propagate to
inGnity. In order to prove invariance of the S matrix
under coordinate transformations (including q-number
coordinate transformations), one would have to show
that AH affects only the nonphysical Geld modes at
infinity. The obstacle to such a demonstration is the
lack of commutativity of the operators appearing in the
dynamical equations, pa, rticularly when n and P; de-
pend nonlocally on y,, and x". Although noncorn-
mutativity has no effect on the scattering amplitudes in
lowest order, it plays havoc with the radiative correc-
tions. For the study of radiative corrections a manifestly
covariant theory is almost essential. In the following
paper of this series the theory of gravitational radiative

"There is an alternative approach to the quantum theory of
gravity which makes use of an action functional which is not
coordinate-invariant and which generates no primary or secondary
constraints. In this approach the constraints must be imposed
from the outside. They take the form of coordinate conditions
whose form is not arbitrary but is determined by the action func-
tional itself. In this case the coordinate conditions are constraints
on the state vector. This is the approach which has been followed,
for example, by Gupta LS. N. Gupta, in Recent Developments
vn Gerteral Relatevt'ty (Pergamon Press, Inc. , New York, 1962)g.
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corrections wi l be displayed in all its complexity, and
the 5 matrix in the mainfestly covariant theory will be
proved to be fully coordinate invariant. This result has
not yet been proved in the canonical theory, and for this
reason we shall include little further discussion of the
case of infinite asymptotically Rat worlds in this paper,
but will concentrate henceforth on 6nite worlds.

In the finite case there is no distinction between H and
II„,and hence we must fa,ce up anew to the difficulties
posed by Eq. (4.7). The following procedure will be
adopted: Instead of regarding this equation as implying
that the universe is static we shall interpret it as inform-
ing us that the coordinate labels x& are really irrelevant.
Physical significance can be ascribed only to the intrinsic
dynamics of the world, and for the description of this
we need some kind of intrinsic coordinatization based
either on the geometry or the contents of the universe.
In the case of infinite asymptotically Oat worlds the
Minkowski coordinates at infinity have independent
physical relevance as preferred coordinates (up to a
Lorentz transformation) based on an a priori assumed
isometry group (the Poincare group) for the asymptotic
region. One may say that they are intrinsically de-
termined by an implicit laboratory or observer at
infinity, and that the constraints serve merely to elimi-

nate the nonphysical modes from the field. In the case
of Qnite worlds, however, the constraints a,re every-
thing; they and they alone must yield the complete
quantum-mechanical description of the world geometry.
One of our tasks in the remainder of this paper will be
to try to convince the reader that the equations of con-
straint really do saturate the theory, that nothing else
is needed.

We must 6rst establish the fact that the constraints
are consistent with each other, and this raises some
issues of factor ordering. " Unfortunately, general
agreement has not yet been reached on how to resolve
these issues, and hence the proposals which follow must
be regarded as tentative. We emphasize, however, our
view that the factor-ordering question is not very im-

portant to the theory as a whole, and should in no case
be permitted to impede attempts to apply the theory to
concrete problems. It arises in every local-Geld theory
possessing nontrivial spectral functions, and bears
mainly on problems of interpreting divergences. The
latter are always resolved by symmetry arguments or
by removing in6nities from divergent integrals in an
invariant way. How such procedures operate in the
case of gravity will appear in the papers devoted to the
manifestly covariant theory, where questions of factor
ordering will again be discussed.

Consistency of the constraints is established if it
can be shown that commutators of the constraints lead
to no new constraints. The basic commutation relations

' See, for example, J. L. Anderson, in ProceeCings of the 196Z
Eastern Theoretical Conference, edited by M. E. Rose (Gordon and
Breach Science Publishers, Inc. , New York. , 1963), p. 387. See
also J. Schwinger, Phys. Rev. 130, 1253 (1963); 132, 1317 (1963).

of the canonical variables themselves are

5-, -'j='3(,"), LX, - '3='3"',
Ly" ~""j=ib

all other commutators vanish;

(4.10)

in which a notation is employed which emphasizes the
bitensor transformation character of the quantities on
the right, with primes being used, either on indices or
on the variables themselves, to distinguish diGerent
points of 3-space. Here 8(x,x') denotes the 3-dimensional
8 function, and

8,"—=8,'8(x,x'), 3;,""=—8;;"b(x,x'
(4 11)

(The 8 function will ordinarily be viewed as a bidensity
of zero weight at its first argument and of unit weight
at its second. )

The primary constraints evidently give no trouble,
since they commute with each other and with the
secondary constraints. We therefore turn to the latter
and look first at the X constraints. These will be taken
precisely as written in Eq. (3.6), with the momentum
factor x'~ standing to the right. However, the index
will be lowered by dining

X$ QIQX ) (4.12)

which, since p,; stands to the left, yields an alternative
form for Eq. (4.4):

X;4=0. (4.13)

X; has the important property of being homogeneous
bilinea, r in the y;; and the x'&, with the y s to the left
and the x's to the right. Therefore its commutator with
any other X;. has the same property. To compute this
commutator it is helpful 6rst to compute the following:

i X Bj"'d'x'

= —v" ~~V vs ~k' —V s—its (4 14)

zr'&, i &s 8$"'d'x'

= —(zr"8$ ) s+zr '8P s+zr'"5P (4 15)

LX;, xpf = —z x„"c";;.d'x", (4.16)

which reveal the X's as generators of 3-dimensional co-
ordinate transformations. Under the infinitesimal co-
ordinate transformation S'=x~+BP, the chang'e in any
function of the y;;, x"and their derivatives is given by
commutation with i J'x;Bc'd'x, provided the function
has no explicit dependence on x. From this it follows at
once that
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(v;,m
'&—m'&v;, ) = 6ib(x, x) . (4 19)

The quantity on the right is certainly a c number. There-
fore we may write

[6i8(x,x), i X~.Std'd'x')=0. (4.20)

On the other hand, if we apply the same commutator
to the left we obtain

[(v;p-'& x'&'v;;), i x,.bP'd'x'j—

=—[(v' "—"v')~Pj.=—6 [~(*, )&k'j.' (421)

Equating the two results we Gnd

where the c's are the structure constants of the general
coordinate transformation group:

'el/ pll gpp plE gp/ (4

The same observations, combined with the fact that
K is a scalar density, yield the formula

[X;,K'j = iSeb, ;(x,x') . (4.18)

Again the ordering of factors remains the same on both
sides of the equation. The only term of BC which might
lead to difhculty is the one quadratic in the momenta.
But all of the factors which appear in this term have
homogeneous linear transformation laws under the 3-
dimensional coordinate transformation group and hence
remain undisturbed in position when commuted with
X;. Thus, the commutators (4.16) and (4.18) yield no
new constraints, and the choice of factor ordering for
K is so far arbitrary.

Now note that all of the above results could have been
obtained equally well had the opposite ordering been
chosen for X;, with the x's standing to the left and the
y's to the right. The difference between the two choices
for X; therefore commutes with everything and is
evidently a c number. It is a c number, moreover, with
de6nite transformation properties; namely, it is a
covariant 3-vector density. From this we may conclude
that it can only be zero, for otherwise 3-space would
contain a preferred direction quite independently of any
geometry which may be imposed on it. The reasonable-
ness of this conclusion also follows from a straight-
forward formal computation of the difference between
the two X s, which yields derivatives of 8 functions with
coincident arguments. Any ordering may therefore be
chosen for X;, and if y;; and x'& are Hermitian so is X;.

The same conclusions do not automatically hold for
X', since the difference between two orderings for it
involves an undifferentiated 5 function. Let us there-
fore see what we can say about the formal symbol
b(x,x). Consider the third commutator in (4.10). If we
set x'= x and contract all the indices, we obtain

This equation must hold for arbitrary 8P. Thereforei
although most people would say that h(x, x) is in6nite,
we see that it is actually zero.

In order to understand how this formal result can be
consistent with the rest of the theory one must erst
note that Eqs. (4.3) and (4.13) are really abbreviations
for the correct forms

Xtd'x 4=0 for all $, (4.23)

X pd'x 4'= 0 for all p (4.24)

The anal result is

where $ and P are arbitrary but smooth c-number weight
functions. The problem of taking commutators of field

quantities at the same space-time point therefore never
arises with pairs of constraints but only in connection
with the definition of the functions 3C and X; themselves.
This means that the 8 function may, without incon-

sistency, be thought of as the limit of a sequence of
successively narrower twim Peaked fu-nctions, all of
which are smooth, have unit integral, and vanish at the
point x'= x in the valley between the peaks. An example
of such a function in one dimension would be 5(x)
=hm(2~) '[f, (x —ge)+f, ( +xg )—e2f, (x)i(1+e)j,
wheref(x) , e(x=—'+e') ' In .an inlnite world, passage to
the limit e —+0 would correspond to the usual cutoff

going to infinity in momentum space, while maintenance
of the valley at x'= x would yield a particular regulari-
zation of the resulting divergences. The answer to the
question whether or not this regularization is equivalent
to the quite diferent procedures which will prove useful
in the manifestly covariant theory must await a demon-
stration of how to derive one theory from the other. In
the meantime we shall in this paper simply adopt it as
a rule that any two field operators taken at the same
space-time point commute. The consistency question
for the constratints then reduces to that of the classical
theory.

There remains to be considered only the commutator

[K,K'j. At erst sight it might be thought that the com-
mutator of the two quadratic-in-the-momenta terms,
one from K and the other from K', leads to diKculties.
However, these terms contain no derivatives (of the
v's or m's) with respect to the 3-space coordinates and
hence they commute. Since the terms y'~' &'&R and y"~'
(')R' contain no momenta, they lik.ewise commute.
The only commutators which remain are the cross
commutators, and these can be evaluated by judicious
use of the variational formula

~(v" "~)=v"v"v"'(~v;. .;~-~v';..~)

—v'"("'&*'—-'v" "'&)&v'. (4 25)

[b(x,x)8Pj;=0. (4.22) [K,K']= 2iX'8, ,(x,x')+iX', ;8(x,x'), (4.26a)
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or, more correctly,

Xtid'x, X(sd'x = z x'(gib, , $—i„$s)d'x (.4.26b)

If we were still concerned about the order of factors we
would find that a symmetric (Hermitian) ordering for X
would yield a symmetric ordering for X' in (4.26),
namely X'=-', {y'J,x,), and the problem at issue would
then be to evaluate the commutator [7'&',X;].From our
present point of view this commutator vanishes, and
consistency is maintained. "

~ ~7ru—
7 ~

i8n i8P;
(5 &)

The primary constraints tell us that Wheeler's 0'
depends only on the y's. %e shall indicate this, for the
present, by writing 4 in the form 4[y]. (Since we are
working in a closed Gnite world, it would be meaningless
to include also a dependence on xs.)

Consider now the X constraints. In the metric repre-
sentation these take the form

(5.2)

which are the necessary and sufhcient conditions that
@[y)be an invariant under coordinate transformations
In a 6nite world this means that 4' depends only on the
geometry of 3-space. One possible way to express
this dependence would be to regard 0' as a function of a
discrete infinity of variables, namely all the independent
invariantsz beginning with J'7' 'dsx J'P'~s &'&Ed'x,

s' J. Schwinger (Ref. 20) proposes an alternative resolution of
the factor ordering problem which, in the notation of the present
paper, runs essentially as follows: Replace X in the Hamiltonian
constraint by (p'/9C), where () indicates that the factors are to
be placed in some (arbitrary) symmetrical order. Then compute

L(v'"sc), (v"~sc')3= l'Elm'v*', (x,))+fr"v*"',(x; ) ll~. '(, ')

=-,'zL(7'V', (xz') )p(~"~"",(xz) &gS, '(x,x').

Since the commutator

pp'y" (x ') g =z (p'y" +y "y' ' )s, '(x x )
is antisymmetric in x and x', it follows that

[v'p", (x,')]+Py"y"&', (x;)]=0,
whence

L(v'~x), (v"~X')j=zh'v" (x )+v"v"z'(x )'gs, ;(x,x') in which the
x's stand to the right. Demonstration of consistency of the other
commutators is elementary.

S. THE FUNCTIONAL WAVE EQUATION AND
THE STATE-FUNCTIONAL DOMAIN

MAJEIFOLD

Further analysis of the canonical theory requires the
introduction of a specific representation for the quantum
states. %heeler" has chosen for thjis purpose what may
be called the rrzetric representatiorz, in which + becomes a
functional of the metric components g„„, and the mo-
menta become functional differential operators:

J'j ' ' &'&E'dsx, etc. , which can be constructed out of
products of the Riemann tensor and its covariant deriv-
atives, with the topology of 3-space itself being sepa-
rately specified.

Higgs' has pointed out that in an infinite world such a
characterization of 0' would be inadequate, for in this
case the asymptotic coordinates also play a role. 0
could instead be represented as a functional of any
three of the six coordinate-invariant functions":

0 (5.4)

with the boundary conditions i A ~ xA at infinity. The
f's define a harmonic coordinate system, and Eqs. (5.4)
yield Bp" /z)zi =0 as a corollary. If y", y" q" are
arbitrarily chosen then p", p", p33 are determined

by integrating successively the equations 8 y "/Bzis
el~11//~1 g~ls/g~s ci~ss/g~s $~12/c)~1 g~22/

r)q' gq"/gg'= gq"/—gg' r)q"/—gq' H space-time is

asymptotically Qat and the coordinates x' are Minkow-
skian at infinity, then these equations can be consistently
integrated with the asymptotic boundary conditions

~ ~AB.

The above example is cited in order to re-emphasize
the fundamental difference between finite and in6nite
worlds. In the finite case we may replace the symbol
4'[y] by%'[&sip] to display the fact that @depends only
on the 3-geometry, denoted here by &"g, and on nothing
else, whereas in the infinite case we must write some-

thing like 0 [&s&td, Z], with 2 symbolizing the surround-

ing laboratory which determines the asymptotic co-
ordinates (including, in the Schrodinger picture, the
coordinate x ).

%e shall denote by BR the set of all possible 3-geome-
tries which a Gnite world may possess. The following
question will arise: Can a topology be imposed upon 5R

which is both meaningful and at the same time useful
in the context of the quantum theory of 6nite worlds?
One possibility which suggests itself is to view 5K as an
infinite-dimensional vector space whose "points" are
discrete sets of invariants mentioned earlier. The
topology could be that defined by the Cartesian Inetric
on this space, and the symbol &sip could be replaced by
a set of vector components. In fact, this possibility is
not very useful, and although we shall actively pursue
the question of assigning a metric, and indeed a pseudo-
Riemannian structure, to BR, no advantage will be
gained by attempting to make our symbolism more
explicit. It will be sufhcient simply to keep in mind the
idea that 5K is not just a mere set but is actually a,

~ In the Schrodinger picture + would also depend on x0.

~AB(~) — ~lfs~ijt. A .i B .$3(~ i.(x))dsx

A, 8=1, 2, 3, (5.3)

where the t's are scalars satisfying the elliptic differen-
tial equation
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manifold. Thus we shall say: OE is the domain munifotd
for the state functional 4, and the &s&b are its "points. "

So far nothing has been said about dynamics. The
only way in which dynamics can enter the picture is
through the Hamiltonian constraint. This now takes the
form

equation in M takes the form

,dv
-I '—=0, tr] y

—'—)=0.
d82 d8 dN 4 drj)

This has the general solution'4

(5.11)

where

lt'2 o

~
G,.k.— +&»2 &»R ~eg&»by=0,

) (5.5)
y(B) =M e"'M, (5.12)

where M is an arbitrary nonsingular 3X3 matrix and N
is subject only to the restrictions

Gljkl —27 (YckVj l+ Ylryjk VijVkl) ~

—Z/2f (5 6) N =N, trN=O, trN'=1, (s.13)

g
—(32/3) 1/2~1 (4 (5.7)

and any five other coordinates fA orthogonal to it. The
covariant metric then takes the form

where
0 (3/32) l'GAB)

GAB= ti("( "I,A'f '(,B)

v—= (Vv).

(5 g)

(5 9)

(5.10)

Expression (5.8) reveals M as a set of "nested" 5-dimen-
sional submanifolds, all having the same intrinsic shape
and differing only in the scale factor (3/32)f'2. The shape
is described by the positive-de6nite metric GAB which,
since expression (5.9) remains invariant under a dilation
of the y's, is independent of l.

The manifold having GAB as a, metric will be denoted
by M. It is shown in Appendix A that the geodesic

"There is nothing automatically pathological, however, about
having two functional derivatives acting at the same point, as in
(5.5). For example, if I= 42J'dxf dx'y(x)K(xx') y(x')—, where y is
an arbitrary function and K is a fixed kernel, then 'Ib/O (y)bxy(x)
=K(x,x). Pathology occurs only if K(x,x') is singular at x'=x.

According to our rule of freely commuting 6eld opera-
tors taken at the same space-time point, the functional
differential operator b/by;; must always be understood
to give zero when acting on a y~~ at the same point. "
If it were not for this rule, we might try to regard the
first term in the parentheses of (5.5) as a kind of Laplace-
Beltrami operator in a 6-dimensional Riemannian
manifold having 6;,~g as its contravariant metric.
Although such an interpretation is inappropriate for
the operator itself, it is nevertheless useful to regard
6;,I,~ as a metric tensor and to study the properties of
the manifold which it de6nes. These properties,
which are derived in Appendix A, turn out to be quite
interesting.

The manifold in question will be denoted by M. When
p.;; is positive definite (as it is for a spacelike hyper-
surface) M has the hyperbolic signature +++++.
A "pure dilation" of p.;j (i.e., multiplication by a,

multiple of the unit matrix) constitutes a typical
"timelike" displacement. It is convenient to introduce
the timelike coordinate

Itf'AB 2~AB ~ (5.15)

I'rom the latter it follows that M is an "Einstein space"
of constant negative Gaussian curvature. It is further-
more not de.cult to show that the Riemann tensor
(5.14) has vanishing covariant derivative, which implies
that M is, in fact, a symmetric space" with a certain
group structure. The group structure may be deduced
from the observation that the transformation

y'=L yL, (5.16)

where L is an arbitrary constant nonsingular 3X3
matrix, leaves the metric (5.9) unchanged. The full
linear group in three dimensions therefore acts isometri-
cally on M. Because of the dilation invariance of the
points of 3II, however, it is only the simple Lie Group
Sl.(3,R) which acts effectirjety on it. It is easily verified
that Sl.(3,R) acts transitively on M and, moreover,
that the isotropy subgroup" at any point is isomorphic
to SO(3). M may therefore be identified as the coset
space

M= Sl.(3,R)/SO(3) . (5.17)

Although the manifold 3I is geodesically complete,
the manifold M is not. It is shown in Appendix A that
all geodesics in M ultimately hit a frontier of infinite

'4 The tilde "~"denotes the transpose. All matrices are assumed
real."See, for example, S. Helgason, Differential Geometry and
Symmetric Spaces (Academic Press Inc. , New York, 1962). The
author is indebted to Professor Helgason for enlightment as to
the group structure of jrj'. .

the last of which guarantees that 8 is the arc length.
Since e"' is analytic for all values of 8, M is geodesically

complete. It is not dificult to show that any two points
of 3f may be joined by a unique geodesic and that if
the two points are represented by symmetric matrices
y~ and y~ having the same determinant then their
distance of separation is (tr/ln(yi 'y2))2) 'j2. The
manifold 3' is evidently noncompact and diffeomorphic
to Euclidean S-space.

By straightforward computation one may verify
that the Riemann and Ricci tensors of 3I have the
respective forms

RAB CD tr [p T,D"f "I,C'f

X(y,Ay 'y, B —y,By 'y, A)j, (5.14)
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curvature. "Timelike" and null geodesics hit it at one
end; "spacelike" geodesics hit it at both ends. This
frontier, which will be denoted by Ii, is located at (=0,
as may be inferred from the readily computed curvature
scalar

&s&R= —60/t s.

A question now arises as to what estent the Rieman-
nian structure of M may be regarded as imposing a
structure on 5E by way of the Hamiltonian constraint.
Without attempting to answer this question directly,
we may point out certain very suggestive features of
the theory. First of all, the existence of the timelike
coordinate t in 3E suggests that a corresponding
"intrinsic time" exists in 5R and that the Hamiltonian
constraint does indeed have dynamical content. This
idea is given support by the following considerations:
The specification of a given 3-geometry requires the
assignment of essentially 3 independent quantities at
each point of 3-space. If we regard the usual enumera-
tion of the degrees of freedom possessed by the gravi-
tational field, namely two for every point of 3-space, as
being valid in a 6nite world, this leaves one quantity
per 3-space point to play the role of intrinsic time.
Baierlein, Sharp, and Wheeler"" have shown in the
classical theory that if the intrinsic geometry is given
on any two hypersurfaces then, except in certain
singular cases, tlie geometry of the entire space-time
manifold, and her&ce the absolute time lapse between the

two hypersurfaces, is determined. Moreover, it is deter-
mined solely by the constraints. Analogously, the
quantum theory is completely determined by the
transformation functional (t'&g'I ts&g"), where

I
ts&g)

denotes that state of the gravitational field for which
there exists at least one hypersurface having an in-
6nitely precise geometry ts&g. Wheeler" has emphasized
the imporatnce of the two-hypersurface formulation
of gravidynamics (or "geometrodynamics" as he calls
it) and has suggested the use of the Feynman sum-
over-histories method to compute the transformation
functional. "

Another suggestive feature of the theory is the follow-
ing. Because of the hyperbolic character of 3f the
Hamiltonian constraint (5.5) resembles a Klein-Gordon
equation, with —y'~2 &')E playing the role of the mass-
squared term. An important difference, however, is
that ("E can be either positive or negative, and hence
the "wave" propagation of the state functional is not
con6ned to timelike directions.

"R.F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys. Rev.
126, 1864 (1962).There is nothing mysterious about the existence
of a manifold of "time" variables. The same manifold exists in con-
ventional Geld theory in those formulations which make the state
functional depend on an arbitrary spacelike hypersurface.

"The sum-over-histories or "functional integral" method has
not yet been applied to any "practical" problem of quantum
gravidynamics. It will be encountered in heuristic and formal
applications in the following papers of this series. Its consistency
with the Dirac theory has been demonstrated by Leutwyler. (See
H. Leutwyler, Phys. Rev. 154, 81155 (1964).g

In spite of this difference the analogy with the
Klein-Gordon theory suggests the following de6nition
for the quantum-mechanical inner product of two states

and 4y',

The infinite product, which arises because (5.5) is
really not just one equation but ~' equations, is
here taken over all the points of 3-space, and is to be
understood in a formal sense as representing the result
of a limiting process based on a sequence of lattices in
3-space, each lattice requiring the introduction of a
corresponding normalizing constant Z. The symbol Z
denotes the topological product of a set of 5-dimensional
M-hypersurfaces Z(x) (one chosen at each point of
3-space), the dZ'& being their directed surface elements.
It is an immediate consequence of the Hamiltonian
constraint that this inner product is independent of the
choice of Z(x)'s provided some kind of appropriate
boundary conditions are satisfied at the "edges" of Z.
It is also worth noting that since the G;;y, ~ do not involve

any spatially differentiated p's, the operators standing
in the in6nite product all commute, and hence no
factor-ordering difhculties arise here.

In view of the coordinate invariance of the state
functionals the inner product integral (5.19) contains a
3)& ~'-fold redundancy arising from the geometrical
indistinguishability of 3-metrics which differ only by
coordinate transformations. "This produces a diverg-
ence which must be formally absorbed into the normal-
ization constant Z, and reminds us that 5R is not just
the topological product of M with itself over all the
points of 3-space, but is a subspace of the latter
manifold.

Another dif6culty with the de6nition (5.19) concerns
the problem of "negative probability. " This problem
arises here, just as it does for the Klein-Gordon equation,
from the fact that the Hamiltonian constraint involves
a second derivative with respect to the "time" co-
ordinate. If the Z(x)'s are chosen "spacelike, " then the
only way to assure positive de6niteness of (5.19),
when 0 ~=4', is to restrict the content of%' to "positive
frequency" components with respect to every "time"
coordinate 1 (x). Restriction to such components,
however, implies that N, vanishes nowhere in the range—~ (t (~, and this conflicts with the one-sided
character of l, namely i')0, which follows from the
geometrical analysis revealing the existence of a fron-
tier in M at /=0. One might hope that an analytic
continuation could be performed around |=0, but

'8 A coordinate transformation generally produces a change in
Z, but this does not a&ect the integral.
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whether this would have any physical meaning is
unclear. The singularity in the Hamiltonian constraint
at f=0 is a strong one, as may be seen by rewriting (5.5)
in the form

(32/3)
gAB + (3/32)g2 {3)g

X+[{3&g=0, (5.20)

which makes use of (5.7) and (5.8). The question at
issue is whether the frontier in M generates a corre-
sponding barrier in 5K beyond which there is no possi-
bihty of extending the state functional. Unfortunately,
in the present state of our knowledge no clear-cut
ansv er can be given to this question. Some of the
problems which have a bearing on it, however, can be
identified. These will now be discussed.

6. THE METRIC OF 9R. THE HAMILTON-JACOBI
EQUATION AND GRAVITATIONAL COLLAPSE

The most obvious way to approach 5K is through the
manifold 3f"', which is de6ned formally as the topologi-
cal product of 3f with itself over the points of 3-space:

may be avoided without loss of generality, namely,
coordinate singularities which arise from the impossi-
bility of covering compact manif olds with a single
well-behaved coordinate system. We shall alw ays as-
sume that 3-space is covered with a Gnite set of over-
lapping coordinate patches, each of which can be put
into one-to-one correspondence with a certain portion
of the Cartesian mesh in Euclidean 3-space, and on the
boundaries of which the coordinates are heM fixed. In
addition a set of supplementary connection formulas
between patches must be assuemd to hold in the overlap
regions. All of this paraphernalia is to be understood
as included in the definition (6.1), which means that
each function y;j(x) is really a set of functions, one in
each coordinate patch, and, that the x's in Eq. (6.1)
are to be understood as ranging over all values in all
patches.

Now let y to be a 6xed point of 3f"'.Consider the set
of al1. points which may reached from y by coordinate
transformations. This set is known as the orbit of y
under the coordinate transf ormation group and will
be denoted by "orb y." There is a one-to-one corre-
spondence between the orbits in JI/I"' and the points of
5K. In fact no generality is lost if they are identiled:

M"'—=g M(x) . (6.1)
orb y—= {'& g . (6 2)

The "points" of M"' are the matrix functions y;;(x).
For brevity they will be denoted simply by y. In practice
the definition (6.1) must be supplemented by some sort
of continuity requirements. For example, y may be
required to be continuous and piecewise differentiable.
However, we do not wish to be precise about this here,
since as yet no rigorous theory of the role of. the manifold
5K in the quantum theory exists. We wish Inerely to
point out some of the issues involved, and to leave the
formalism itself as unencumbered as possible. Thus we
shall be willing to admit any sort of pathology for
which we can get away with, i.e., for which some sort
of physical interpretation exists, however idealized,
which permits y to be handled in a consistent fashion.
For example, geometrical singularities at which the
Riemann tensor behaves like a differentiated 8 func-
tion, or for which integrals like J'y'j' {3~Ed@ still
exist, will not be excluded a priori. In the same spirit,
we shall not place any restrictions on coordinate
transformations beyond perhaps requiring them to be
differentiable (so that tensor transformation laws exist
almost everywhere) and one-to-one (so that they form
a group). Thus we shall not automatically exclude
transformations for which the Jacobian either vanishes
or diverges at certain points. The ultimate question
will always be: What is the barrier beyond which we
cannot goP In every case this will probably depend, to
some extent at least, on the context, and we do not
wish to prejudice the answer in advance.

There is, however, one trivial pathology which may

Suppose M"' is endowed with a metric. (That this is
feasible will appear in a moment. ) If this metric satisfies
a certain condition then it will impose, in a natural way,
a metric on BR. The condition is that the coordinate
transformation group in 3-space be an isometry group
of M"', The associated metric in 5R is then obtained by
dedning the distance between two neighboring orbits
to be the shortest dist ance in M"'.

It is shown in Appendix 3 that the above condition
is satis6ed if and only if the metric in M"' transforms,
under 3-dimensional coordinate transformations, con-
tragrediently to the Kronecker product 7;,g~ ~ . This
means that the metric in 3E"', which we shall denote
by 8"~", must be a contravariant bitensor density of
weight at both x and x'.

There are indnitely many contravariant bitensor
densities which can be constructed out of the y's and
which might serve as acceptable Inetrices for 3II"'. Of
these, however, there is only a single one-parameter
family which is loca/, i.e., which involves only undif-
ferentiated y's and for which both g"""and its inverse
vanish when x&x'. This family is given by

gijk'v L~ll2(~ik~jl+~il~jk+)~ij~ki)g(» xi) (6 3)

where X can assume any real value except ——', . If we
wished to impose a positive-deIj. nite metric on 5K, so
that we could use, as the condition for the identity of
two 3-geometries, the vanishing of the "distance"
between them, then the metric of 3f"' itself would have
to be positive de6nite. In the present case this requires

3 the simplest choice being 'A =0. On the other
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hand, the choice X= —2 is the natural choice if we
assume that Eq. (6.1) defines not merely a topological
product but also a geometrical structure generated by
the original metric on M. For then we have

(6.4)

(dV;s)—

(de .s &dei.;
(6.7)

geometry itself. Here 8 is either the arc length (6.6) or,
in the exceptional null case, an affine parameter, and
dp;, /d5 must satisfy the starting condition Lcf. Eq.
(824)j

where

ggs p =—G;;si5(x,x'), (6.5)

with G;,si given by Eq. (5.6). In this case the "arc
length" d5 associated with a displacement dy;; in M"'
is given by

d6'= d'x d'x' 8'~"'dvedys p

+ll2(+is+ji +ij+kl)d+. d+ &ds~ (6 6)

Geodesics in 3f"' are not, in general, geodesics in 5K.
However, in Appendix 3 it is shown that if a geodesic
in M"' intersects one of the orbits in its path orthogo-
nally then it is a geodesic in 5R, and, moreover, it
intersects every other orbit in its path orthogonally.
This means that it is in principle possible to use formula
(A69) of the Appendix to determine the distance be-
tween two 3-geometries. In practice, of course, the
amount of labor involved is formidable, assuming that
the 3-geometries are given in the form of two matrix
functions yr(x) and ys(x). One must integrate expres-
sion (A69) over 3-space and then find the minimum of
the integral as one of the functions, say yt(x), is held
fixed while the other ranges over the various equivalent
forms it can take under coordinate transformations.
This means solving the complicated set of nonlinear
partial differential equations which result from the
corresponding variational principle and which, in
effect, yield the coordinate transformation which "lines
up" yt(x) and ys(x), so that a geodesic from one to the
other intersects orbits orthogonally.

Such complications can be avoided if one merely
wants to know the distance from a given 3-geometry to
the froritier "In this case, .since the frontier is an ex-
tended object and is at different distances —spacelike,
timelike, and null —in different directions, it is necessary
to specify a direction dy@/d5 in addition to the 3-

29 By frontier we do not necessarily mean barrier. It must be
repeatedly emphasized that very little is known about the general
conditions under which extensions beyond the frontier can be
carried out. Here we are defining the frontier to be simply the locus
of points p in M"3 for which the matrix y;;(x) has one or more
singularity points (p=o) in 3-space, regardless of whether or
not these singularity points represent real geometrical singularities.
A formal definition would be

F=—U F(x) II 3E(x'),
X X+X

where II and V denote the topological product and union,
respectively, and F (x) is the frontier of M(x).

which guarantees that the starting direction will be
orthogonal to the starting orbit. The square of the dis-
tance in the frontier in the assigned direction is then
given by'o

dp'y' d&I l
6'=min2o(y, dy/d5) O'J"

d5 d5
(6.8)

where G'&"' and o are defined in Appendix A, Eqs. (A1)
and (A63), respectively, and "min" denotes the mini-
mum value over 3-space. The metric tensor at the point
(or points) in 3-space at which the minimum occurs will
become singular when the "point" y in M"' has pro-
gressed a distance 5 along the geodesic. The geodesic
can then go no further without changing the signature
of a portion of 3-space. The frontier has been reached.

It does not automatically follow that 3-space acquires
a geometrical singularity at the frontier. However, there
are several facts worth noting.

(1) The occurrence of a singular metric cannot be
avoided by changing the coordinates as one proceeds
along the geodesic. Although it is true that a coordinate
transformation can carry one from one point to another
in 3f"' and even, seemingly, away from the frontier,
yet since expression (6.8) is a scalar, 5 remains un-
changed. What happens is that the coordinate trans-
formation also changes the direction dv;;/d5. Moreover,
the covariance of Eq. (6.7) ensures that the ortho-
gonality of the geodesic to the orbits is left unaffected.

(2) As long as no coordinate transforrnations are
performed while y is moving along its orthogonal
geodesic, the coordinate system in 3-space, if initially
nonsingular, will remain nonsingular until the frontier
is reached. No such statement can be made for nonortho-
gonal geodesics, which in some cases follow a circuitous
route in 5K from a given &"g back again to the same
&'&g, but in a di6erent coordinate system. "

(3) It is not necessary that the metric become singu-
lar simultaneously at all points of 3-space in order that
"When dy;;/d 4 is a null vector in M, expression (6.8) becomes

an indeterminate form 0/0. At such points in 3-space (6.8) may,
in view of Eq. (A54) which implies 6 =constant Xp'/', be replaced
simply by 5'=4(y'&dy;;/d5)~.

"In attempting to visualize M" and 5K it is helpful to have a
simpler model in mind. The following is suggested: Let the big
manifold be Euclidean 3-space and let the group be rotations about
an axis. The orbits are then circles concentric with the axis and at
right angles to it, and the orbit manifold is the Euclidean half-
plane. A straight line (i.e., geodesic) in the big manifold will be a
geodesic in the orbit manifold if it intersects or is parallel to the
axis, so that it intersects every circle in its path at right angles.
A straight line which is skew to the axis, however, is a hyperbola
in the orbit manifold, and a skew line at right angles to the axis
returns again to each orbit which it intersects.
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VL(2)gj= 6, exp(i' N), (6.1o)

where 6, and %" are assumed to be real functionals
satisfying (roughly) the restriction

I &~/&v;;I«I ~B~/Bv;;I. (6.»)
The phase then satisfies the Hamilton- Jacobi equation"

the frontier be reached. On the other hand, this car
happen. It happens, for example, when dy, j/d5= con-
stantX&, j, which obviously satisfies (6.7). In this case
the geodesic motion is one of pure dilation, and the
square of the distance to the frontier is, apart from an
unimportant factor, simply the volume of 3-space.

(4) In the case of a pure dilation it is obvious that
a geometrical singularity (zero volume) does occur at
the frontier. That geometrical singularities must also
occur in many other cases as well follows from the
readily verified relation

d (')R/d5= —(')R"dy,j/d5, (6.9)

which holds as long as condition (6.7) is satisfied. In
Appendix A it is shown that most geodesics (i.e., all
but a set of measure zero) strike the frontier at points
where some of the y,j (and hence some of the dy;;/d5)
become infinite, even though y itself vanishes. Except
in special cases, therefore, expression (6.9) will acquire
singularities at the frontier.

With these mathematical preliminaries in mind let
us now have a look. at quantum dynamics. It is helpful
to begin by analyzing Eq. (5.5) in the WEB approxi-
mation, so as to make the maximum possible use of
classical ideas. %e write

"y;;,00 = (lna), 0(y@,0—P;.j—Pj.;)+

Tmrs, 0(Yrs, 0 2Pr s)+4rrGijisl.
Sing)5y

B'N
X

I

n'G ~;, +P .„ Id'x'. (6.16)

The integration which appears in the last term of this
equation may be performed with the aid of the identities

m'n'r's'G
8yj, tbsp

1-8G „„, Pg Pg
+71/2((8)Rsl 721 (2)R)

2- ~vai

X$(»»r)+ 2 +rl j2+m'rs'Vr's'

unique 4-geometry. The 4-geometi. y may be computed
by making the identification 2r'j=B'N/8&, , and inte-
grating the equation

By s/B 200 = 2aG,;2i8'N/Byi, l+P, .,+P, ;, . (6.15)

which follows from (2.5) and (3.3)."The quantities cl

and P; are, as always, completely arbitrary, at least in
sufficiently small finite regions. (Some global restrictions
will generally exist. )

It is not hard to verify that (6.15) does indeed yield
a solution of the classical 6eld equations for each initial
3-geometry. One simply differentiate s (6.15) with
respect to x0 and replaces B'N/By2l by its expression in
terms of n, P. .. and By,j/Bx0. One finds

G. . +s/2 (3)g
Byg 8yg, )

(6.12) X(&,". .—& ~ ",, ), (6.17)

B(0, G;j»B~/B~„)/BY;, =o. (6.13)

while the amplitude satishes the conservation law
82'N ) 8'N

E8y2iby ~ ) . By„„
(1B, , N m' Bm', Sl,) (6 18)

In addition, the X constraints impose the restrictions

pÃV) (88)
(6.14)

Each solution of the Hamilton-Jacobi equation (6.12)
determines a family of solutions of the classical field
equations (i.e., a family of Ricci-flat 4-geometries)
having the following property: For every 3-geometry
there exists one and only one member of the family
which has the 3-geometry as a spacelike hypersection,
i.e., for which the 3-geometry is to be found among the
infinity of spacelike hypersections which the member
admits. Once 'H is given, each 3-geometry determines a

"The Hamilton-Jacobi equation for general relativity appears
to have been first written down by A. Peres, Nuovo Cimento
26, $3 (1962).

G&JI('&y ~ y —4~2'&/2 (3)g

Let us also assume that the integral

(6.19)

I=— y'/' &'&2M'x (6.20)

'3 The inverse problem of constructing the 'N which corresponds
to a given family of solutions of the classical field equations has
been analyzed in detail by U. H. Gerlach (to be published). The
author is indebted to Gerlach for the opportunity of studying this
analysis in manuscript prior to publication.

which are obtained by functionally differentiating Eqs.
(6.12) and (6.14) and making use of (4.25). The result
is a set of six local-6eld equations which, together with
(6.12) and (6.14) re-expressed in terms of n, p;.j, y;;,0, are
equivalent to the ten Einstein empty-space equations.

Let us now make the simplifying assumptions e„=0,
P;=0. We then have
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which permits x to be identi6ed with the arc length ItI in
the manifold M"' and permits the first of Eqs. (6.14)
to be re-expressed in the form

(G'~»d~„/d5) ;=0,. (6.22)

(extended over the whole of 3-space) is nonvanishing.
%e may then choose

(6.21)

shearing components corresponding to the presence of
the gravitational radiation which is, in fact, needed in
order to "close up" the universe. On the other hand, the
3-geometry may still be spherical in a coarse-grained
sense. That is, although the sign of y'~' &3)E may
Quctuate at a 6ne-grained level due to the presence of
gravitational waves, its mean value may approximate
that of a 3-sphere. In this case Eq. (6.25) takes the ap-
proximate form

which is identical with (6.7), showing that x is in fact
also the arc length in 5K. Finally, Eq. (6.16) takes the
form

d2V

d7'
=—6(4vr4 V) '/' (6.27)

d 7;; dy;~ dy~; 1 dy;; dpI„.& d'7m. n

+ + +t+-i/2+. Qmsrs

d$2 dQ dQ 2 d{$

leading to a total lifetime of the universe given by'4

d'art, d lno, 'd
X = —2o.'("&E —-'y', "'R) . (6.23)

T= -,'(2'')-'/s
(V 4/s V4/3) 1/2

=%2 cn '(0~-,')R, =2.628 . , (6.2g)

If the right-hand. side of Eq. (6.23) were zero, the
sequence of 3-geometries (as 5 varies) would trace out a
geodesic in 5R. The right-hand term may therefore be
regarded as a "force" term which caused the actual
"trajectory" of 3-space to deviate from a geodesic.
The following important questions arise: Is this "force
term" powerful enough to keep the trajectory from
striking the frontier) If not, what does arrival at the
frontier mean physicallyP

Before giving answers to these questions, let us erst
take a crude over-all look at some of the simple impli-
cations of Eq. (6.23). It is not diRicult to verify that if
this equation is multiplied by —,y' 'y'&' and the result is
integrated over 3-space, the following equation is
obtained:

d'V d inn dV
V=— q'/sdsx (6.24)

d5' d5 d5

or equivalently,
d'V ——I 7

d7
(6.25)

where v is the "proper time":

d'r/d5 =rr. (6.26)

From this it follows that the curve of V as a function
of g is concave downward whenever I is positive. Under
these circumstances an expanding world tends to "slow
down" while a contracting world tends to accelerate
towards collapse.

A case for which I is positive is that in which 3-space
has the geometry of a 3-sphere. The geometry cannot,
however, remain spherical more than instantaneously,
since the right-hand side of Eq. (6.19) is then every-
where positive, which requires the vector d7;;/d5 to be
"spacelike" in M for all I, thus ruling out the possibility
of a pure dilation. The derivative dy;;/d5 must contain

where R, is the radius of maximum expansion. Here
it is clear that the "force term" in Eq. (6.23) does not
prevent the 3-geometry from striking the frontier.

In the general case there are two factors which govern
the trajectory of 3-space. Firstly, the condition o.„=o,
which has been adopted in the above discussion, is
known to be a poor one for keeping the hypersurfaces,
x = constant, smooth. When these hypersurfaces are
sandwiched together, as here, with spatially uniform
intervals, they often quickly develop geometrical
singularities which have nothing to do with the geome-
try of space-time. " Such singularities can usually be
avoided simply by relaxicg the condition o.,;=0.
However —and this is the second factor—it is now
known from the work of Avez, "Penrose, ' Hawking, "
and Geroch" that a nontrivial sitrgglarity ir/ space time-
"almost always" occurs at some point in the history of
any physically interesting universe. At such a point
abandonment of the condition n, ;=0 is of no use.
3-space will acquire a geometrical singularity anwyay.
Thus, if the initial hypersurface is suKciently close to
the point of onset of a change in 3-space topology, or if
a so-called "trapped 2-surface"" is on the point of
being born within it, then it will develop a geometrical

34 This is to be compared with T=2R, for a Friedmann uni-
verse fIlled with radiation treated as an ideal gas. Note that it is
not possible to use expression (6.28) as an upper bound on the
lifetime of the universe. Although it is easy to show that it is the
spherical geometry which, for ixed V, makes I stationary (i.e.,
independent of small variations in the metric), this stationary
point is neither a maximum nor a minimum, and hence it is not
possible to assert that I&6(47r4V)1/3.

3'The phenomenon occurs already in a Qat space-time. It is
not possible to construct a family of uniformly spaced curved
spacelike hypersurfaces in Minkowski space without the members
of the family developing a geometrical singularity either in the past
or in the future. The singularity always develops in the convex
direction, contrary to the situation in a Euclidean manifold.

s' A. Avez, Ann. Inst. Fonrier (Grenoble) 13, 105 (1963)."R.Penrose, Phys. Rev. Letters 14, 57 (j.965).
3 S. W. Hawking, Phys. Rev. Letters 17, —.- (1966)."R.P. Geroch, Phys. Rev. Letters 17, 445 (1966).
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N= S(exp(i'%) —exp( —i'H) $. (6.29)

Then 4 itself vanishes at the barrier, and this might
conceivably alleviate the singularity in Eq. (5.5) which
would otherwise occur, and permit an extension of 0'
beyond the barrier.

If one is looking for an example on which to practice
hand-waving arguments he might consider a situation
in. which 3-space is about to undergo a change in

singularity which has nothing to do with the mainte-
nance of the condition n, ;=0. In this case the force
term in (6.32) is again powerless to prevent the tra-
jectory of 3-space from striking the frontier; indeed it
may hasten the impact.

The occurrence of a singularity in space-time itself
is known as gravitation&al collapse G.ravitational col-
lapse may involve the whole of 3-space, as when the
volume of the universe goes to zero, or it may involve
only a small part of it (e.g. , a collapsing superstar). It
seems extremely likely that the almost universal inevi-
tability of gravitational collapse is closely connected to
the existence of the frontier in SY. However, the estab-
lishment of this connection in rigorous terms is a major
problem which remains unsolved. The existence proofs
of Refs. 36—39 give no indication of the precise physical
nature of the collapse singularity except for the state-
ment that the normal causal properties of space-time
break down there. This alone, of course, is enough to
guarantee that the singularity represents a real barrier
beyond which it is impossible to extend the solution of
Einstein's equations. It means that in certain regions of
the universe (or in the universe as a whole) time for the
classical physicist, ultimately comes to an end beyond
which he can make no further predictions.

The question now arises whether the classical col-
lapse barrier, which we shall denote by S, is also a
barrier for the solutions of the quantum equation (5.5).
That the answer is not obvious may be seen as follows.
Consider 6rst a point &'&g in 5R which is not on S. If
&'&g has a singularity this must be due to the hyper-
surface x'= constant being chosen poorly. At the singu-
lar point in 3-space both the right and left sides of Eq.
(6.12) will diverge. Correspondingly the two terms inside
the parentheses of Eq. (5.5) will each contribute a
divergence at this point. The two divergences will,
however, cancel so that Eq. (5.5) is still satis6ed.
Consider now a point on (B. Here something special
happens which causes Eq. (6.12) to break down. How-
ever, it does not automatically follow that Eq. (5.5)
likewise breaks down, for there exist possibilities for
treating Eq. (5.5) which have no counterparts in the
classical theory. For example, we note that if 'H is a
solution of Eq. (6.12) then so is —'K. Moreover, the
addition of an arbitrary constant to 'K leaves Eq.
(6.12) unaffected. Let this constant be adjusted so that
Vi' vanishes at the point on (9 in question, and choose for
the WEB form of the solution of (5.5), the slperposi ti on

topology. It can be shown that a change of topology
requires (a) the development of a geometrical singularity
in 3-space and (b) a breakdown in the causal structure
(e.g., hyperbolic signature) of space-time at the onset
of the singularity. Therefore topological transitions
cannot be handled classically. However, since the
singularity in &3&g need occur at only a single point of
3-space it may develop in such a way that the corre-
sponding singularities of Eq. (5.5) all cancel. We are
careful, of course, not to say that the singularities will
cancel. No one really knows whether topological
transitions can be handled quantum mechanically.

Although the classical and quantum barriers may not
be identical, and although each may depend to some
extent on the particular solution of the Hamilton-
Jacobi equation (6.12), or of the "wave equation" (5.5),
under consideration at the moment, it seems very
probable that there exists an irreducible core which is
common to all barriers. We have suggested that it may
be possible to continue 4' past 3-geometries which con-
tain isolated singularities. However, it is extremely
difficult to imagine how such a continuation could be
performed beyond a 3-geometry which has a dense set
of singularities, or which is singular at at/ of its points,
e.g., a 3-space of zero volume. It is therefore likely that
the following set theoretical inequality holds:

orb+ P(x)WSqaS, (6.30)

+L"&8/=0 for all~+b on Sq. (6.31)

Provided it does rot tire olt to be Nttiesatety iecozsisteet,
this condition, which is already suggested by (6.29),
yields two important results. Firstly, it makes the
probability amplitude for catastrophic 3-geometries
vanish, and hence gets the physicist out of his classical
collapse predicament. Secondly, it may permit the
Cauchy problem for the "wave equation" (5.5) to be
handled in a manner very similar to that of the ordinary
Schrodinger equation. Thus let Z be a hypersurface like
that which appears in Eq. (5.19). Since the dimen-
sionality of +,F(x) (the orbit of which forms the
"core" of S@) is the same as that of Z, namely 5&( m ',
it would appear that the specification of 0' on 2,
together with the boundary condition (6.31), is equiva-
lent to its speci6cation on two hypersurfaces and hence
suKces to determine 4[&'&8( completely for all o»8.

where S@denotes the quantum barrier. In the remainder
of the paper we shall assume that this inequality does
hold.

The fact that is not the empty set is an embarrass-
ment to the classical physicist, for it means that his
theory breaks down. The fact that (9@ is not the empty
set, however, is not necessarily embarrassing to the
quantum physicist, for he may be able to dispose of it
by simply imposing, on the state functional, the follow-
ing condition:
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If this heuristic argument [based on the analogy of
Eq. (5.5) to the Klein-Gordon equation( is indeed

valid, then it is not necessary to specify also the normal
derivatives of + on Z, despite the fact that Eq. (5.5)
is of the second differential order. "

The only obvious difficulty with condition (6.31)
is that it makes the presence of "negative frequency"
components in 4 unavoidable (see the discussion at
the end of Sec. 5) and hence leaves one very unclear
as to how to use Eq. (5.19) to define inner products and
at the same time maintain positive definiteness of prob-
ability. In the following sections we shall show how this
difhculty can be resolved in a special case.

(re+ 3.)e=o, (7.1)

where K is the Hamiltonian of the system (or systems)

giving rise to the additional energy. In order to avoid
having to deal with entities as complicated as gravitons,
with their spin and orbital states and their mutual
interactions, we shall make use of such additional

energy in the form of noninteracting material particles
"at rest". The Friedmann universe is obtained by
distributing these particles uniformly throughout a
3-sphere and "freezing out" all the degrees of freedom
of the gravitational field save one, namely, that which

corresponds to the time-varying spherical radius R.
If yP;; denotes the metric (in some coordinate system)

of a 3-sphere of unit radius, then the 4-metric of the
Friedmann world may be written in the form

(—n' 0)
(g")- IEo ~) (7.2)

where n and R depend only on x'. Substituting this into

(2.6), integrating over the volume 2''R' of the Fried-
mann universe, and remembering that &3)R for a 3-sphere
is 6/R', we obtain for the effective Lagrangian of the
gravitational field

L= 12~'[—a 'R(R p)'+uRj. (7.3)

As for the material particles (dust) which fill the
universe, we shall, for reasons which will become clear

as the analysis proceeds, endow them with internal

dynamical degrees of freedom which may be described

' Alternative and more detailed heuristic arguments leading to
the same conclusion have been given by H. I eutwyler, University
of Bern report, 1965 (unpublished).

'T. THE QUANTIZED FRIEDMANN UNIVERSE

The simplest classical model which exhibits the
collapse phenomenon is the Friedmann universe. If
the Friedmann universe is assumed to be closed it
must be filled either with gravitational radiation or
with some other form of energy. It is not diKcult to
show that when other forms of energy are present in
addition to gravity, the Hamiltonian constraint condi-
tion (4.3) is replaced by

by canonical coordinates q' and Lagrangians of the
form /(q, q), the dot denoting differentiation with
respect to proper time:

g Q g 0. (7.4)

Just as we have done for the gravitational field, how-
ever, we shall "freeze out" all the internal degrees of
freedom save a small number by requiring all the
particles to be identical and to be in coherent identical
states (i.e., "in step"). Under these conditions the
effective particle Lagrangian becomes

L=nlVl(q, n 'q, p), (7.5)

where E is the total number of the particles in the
universe.

Adding (7.3) and (7.5) to obtain the total Lagrangian
we see that once again we have the primary constraint

where

H+H= em, p+IIR, p+P, q', p L L- —
=m.n, p+n(BC+K),

II= BL/BRp —24~,
'——n—'RR p,

P; (3L/jq, p= +pi p = gt/gq

~=——11'/48~PR —12~PR

X—=1Vm, m—=P,q' —/.

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

The symbol m is here used to denote the internal
Hamiltonian of the particles because the Hamiltonian
is, in fact, the rest mass, provided the arbitrary zero
point of the Lagrangian / has been properly chosen.
%e note that the "kinetic energy" term in the gravita-
tional Hamiltonian (7.10) has the opposite sign (i.e.,
negative) from that of conventional Hamiltonians. This
is because the only motion permitted to a Friedmann
universe is one of pure dilation, and hence the co-
ordinate R is "tirnelike. "

The condition m, o= 0 leads immediately to the
dynamical constraint K+ %=0 which, in the quantum
theory, takes the form (7.1). In the R representation
this becomes

8 R-'4 12~ R+r~ (e=—o, (7.12)
r48~' BE.

where factors have been ordered in such a way that the
Q.rst term inside the parentheses becomes a one-
dimensional Laplace-Beltrami operator, ' and m is now
the particle mass operator. Equation (7.12), which is

' Here a de6nite ordering must be chosen. Since the number of
degrees of freedom is now 6nite the ordering question cannot be
treated as a problem in interpreting formally divergent symbols.

m = 8(L+L)/an, p
——0. (7.6)

The wave function of the quantized Friedmann uni-
verse therefore cannot depend on o..

The total Hamiltonian becomes
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C =0 at X=0 or, equivalently, 0 =0 at E=0 (7 15)

analogous to (6.31) is imposed, then Eq. (7.14) becomes
simply the Schrodinger equation of a particle of mass
32m.2/3 moving at energy Nm in the one-dimensional
potential

y=~, X&0,
v= 12%2X2/3 X&0

(7.16)

Now unless the mass eigenvalue m happens to be such
that Nm is one of the allowed eigenvalues of Eq. (7.14),
the function C will not be normalizable but will be-
have in an exponential manner for large values of X.
This is not necessarily bad if we insist on viewing E,
and hence X, as a "time" coordinate, for it is usually
impossible to require that a state function be nor-
malizable with respect to time. Moreover, we may
hesitate to allow the universe as a whole to determine
the spectrum of masses which we can put into it, for
in the classical theory the universe exerts no such con-
trol. However, several convincing arguments can be

the analog of (5.5), must account completely for all

the physical properties of the Friedmann universe.
It is by no means obvious how the familiar properties

of the Friedmann world are to be extracted, in the
classical limit, from Eq. (7.12), nor is it obvious what
signi6cance is to be attached to 0' in the purely quantum
domain. Difhculties of this type are not new to physics.
A similar problem faced Schrodinger when he first
wrote down the equation of the hydrogen atom. In
his case there was a period of intense discussion, largely
guided by Bohr, which ultimately led most physicists,
with only a few dissenters of whom Einstein was the
champion, to accept what has come to be known as the
"Copenhagen view. "The Copenhagen view depends on
the assumed a priori existence of a classical level to
which all questions of observation may utlimately be
referred. Here, however, the whole universe is the object
of inspection; there is no classical vantage point, and
hence the interpretation question must be re-argued
from the beginning. While we do not wish to stress this
point unduly, since, after all, the Friedmann model
ignores the vast complexities of the real universe, it is
nevertheless clear that the quantum theory of space-
tirne must ultimately force a deviation from the
traditional Copenhagen doctrine.

Leaving aside these questions for the moment, let
us note some of the simple mathematical properties of
Eq. (7.12). If we carry out the point transformation

X=R'~' C =—(BR/BX)'"—e=(-')"'R—"% (7 13)

Eq. (7.12) is converted to

—(3/64m') B'4/BX'+127r'X' 'O'= Nm@. (7.14)

H the particles are in eigenstates of mass, so that m

may be treated as a c number, and if the boundary
condition

adduced which suggest that 4 must nonetheless be
normalizable. The most iiTiportant of these is that a
closed Friedmann universe has, in the classical theory,
a maximum radius of expansion. Henceif a correspon-
dence principle is to exist, based on a transition to a
classical limit, R must be effectively bounded from
above. The existence of the classical turning point, as
is well known, corresponds to the restriction to nor-
malizable state functions.

For present purposes it suffices to determine the
normalizable solutions of Eq. (7.12) in the WEB
approximation. From the phase integral condition"

e+-,'= —(2 ) 'f ddddd

Rmg, x

[R(R .,—R)] ~ dR, (7.»)

R,„—=Nm/12' 2,

we obtain the "energy" spectrum

(7.18)

@~10"0 (7.21)

and if all the degrees of freedom of the real world were
taken into account the number would be vastly greater.
However, despite the enormity of the quantum num-
ber, the function (7.20) does not provide a classical
description of the universe, for it is a static function,
composed of standing waves undergoing neither ex-
pansion nor contraction. The standing waves may, to
be sure, be regarded as a superposition of waves
"traveling" in opposite directions, those "traveling"
in the direction of expansion (increasing R) correspond-
ing, by virtue of the "timelike" character of E, to the
"positive frequency" components mentioned at the
end of Sec. 5, and those "traveling" in the direction
of contraction corresponding to "negative frequency"

~ Here n+4 is used in place of the usual e+-', because of the
"hard wall" character of the potential t,

'7.16) for X(0.
~ Cf. Ref. 11, p. 462.

Nm = [48m'(e+ —')$'~2 e = 0,1,2, . (7.19)

Computation of the normalized state function itself
involves only elementary integrals. Inside the turning
point it is found to have the form

4 = (2/~R, )"'[(R,/R) —1g-'"
)&sin(6~'[(2R —R )(R(R —R))'~'

+R ' sin '((R/R, „)'~')]), (7.20)

while outside it falls off to negligible values at distances
of the order of E. ' ' beyond E

In realistic situations this function has an enormous
number of nodes. For a Friedmann world approximat-
ing the actual universe one 6nds, very roughly,
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where

'K = W(R,—J)+W(q,J)+const (7.23)

d= —I2 ) 'f IldR JII), II= —=BW/BR, (7.24)

the integral being taken over a complete expansion-
contraction cycle of the Friedmann universe. For these
solutions Eq. (7.22) takes the separated form

BW
+127r'R= K(q, BW/Bq) =E(J), (7.25)

48vr'8 BE.

where E(J) is a certain function of the J;.
The q' are obtained as functions of R and the J, by

integrating the simultaneous equations

where

dq'/dR =V'(q J)/U(R, J), (7.26)

components. "However, in order to make this "travel"
apparent we need some other coordinate besides R.

It is at this point that the internal particle dynamics
enter the picture. The collective internal motion permits
the particle ensemble to be used as a clock.. Classically
the temporal behavior of E. may be determined by
means of the correlation which exists between E and
the q'. This correlation is described by the solutions of
the Hamilton- Jacobi equation

SC(R,WV/BR)+ K(q, WV/Bq) =0. (7.22)

We may assume the particle Lagrangian t to be that of a
multiply periodic system. The constants of integration
of Eq. (7.22) are then conveniently taken to be the
action variables J; of the collective Lagrangian L, and
since the equation is obviously separable we have
solutions of the form

where the 8' are "phase constants. " Equations (7.31)
may be solved algebraically to express the q's in terms
of R and the constants of integration J;, O'. The 8.
determine the relative phases of the simultaneous oscil-
latory motions, and. the J; determine the amplitudes.

In the quantum theory an analogous correlation
between E. and the q' can be established provided the
state function has the form of a superpositioqq of solu-
tions of (7.12) corresponding to diQerent eigenvalues of
m. It is well known that a multiply periodic system
cannot be used as a clock. if it is in an eigenstate of
energy. The uncertainty principle requires many
different energy levels to be represented in its wave
function. Here, however, we run into a very special
diKculty which is peculiar to the quantum theory of
space-time. The values which m can assume are already
determined by the quantization condition (7.19) quite
independently of the form of the particle I agrangian l.
Hence, unless the operators K and —K have at least
one eigenvalue in connnon, the JIamik'opia constraint
(7.1) will have mo solltions at all. Equation (7.1) is
unlike an ordinary time-independent Schrodinger
equation in that it picks out only a single eigenvalue of
the operator %+K. Moreover, the latter operator,
being the sum of two operators having spectra bounded
respectively from above and from below, has itself a
spectrum which stretches from —~ to ~.

For purposes of the present discussion we must
assume not only that X+X has a zero eigenvalue but
that this eigenvalue is highly degerrerute. Ke shall
postpone until Sec. 10 a discussion of what the actual
state of affairs may be in the real universe. For the
present we concentrate on mathematical developments.

We shall con6.ne ourselves to the %KB approxima-
tion and look for solutions of Eq. (7.1) of the form Lcf.
Eq. (6.11)]

V'= (BK/BP;)P aw)d)q I= (7.27) O'=A expt i(—W+W)), (7.32)

B'W BJ B'W BE
U =V'

BRBJ BJ; BqdBJ; BJ;'

which, together with (7.26), yields

(7.29)

U= (B3'./BII) n= Ri) (Rid
——(24m2R) 'BW/BR. -(7.28)

The integrals of Eqs. (7.26) are not hard to obtain. If
Eq. (7.25) is differentiated with respect to J;, one finds

where A is a real amplitude satisfying (hopefully) the
inequalities Lcf. Eq. (6.12)j

BA BS' BA

M M Bg'

BW
(7.33)

A differential equation for A may be obtained by sub-
stituting (7.32) into (7.1). One finds

B'W BJ B'IU
dg&=- —dE,

BJ,Bqd BJ; B'JBR
(7.30)

$K(R, i B/BR BW—/BR)—
+K(q, iB/Bq+ BW—/Bq) jA =0. (7.34)

whence
BH/ BJ

+
BJ BJ; BJ;

(7.31)

4'Owing to the negative character of the kinetic-energy term
of the Hamiltonian (7.10), the directions of "travel" of the ex-
ponential components of a standing wave are opposite to the con-
ventional ones.

When the inequalities (7.33) are satisfied the "big"
terms of (7.34) already add up to zero by virtue of the
Hamiltonian-Jacobi equation (7.22). In order to obtain
conditions on A we must include the smaller, "higher-
order" terms, and for this purpose it is convenient to
introduce a, smooth real test function i)2(R,q) which
vanishes outside a finite closed region in the R—

q
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manifold. 4' We then subtract the equation The operators J(R, i—B/BR) and J;(q, i—B/Bq) are ob-
tained by solving the equations

dR dq yA [K(R, i8/BR —BW/BR) II= —BW/BR P = BW/Bq' (7.46)

dR dq A [q, K(R, i8—/BR BW—/BR)

+I'.(q, i 8/Bq+—BW/Bq))A =0. (7.36)

When the inequalities (7.33) are satisfied, this becomes
approximately

i dR dq[(Brp/BR)V+(8&p/Bq')V'jA'=0, (7.37)
0

which, by virtue of the arbitrariness of p, implies (after
an integration by parts)

8(A'V)/BR+ 8(A 'V')/Bq'= 0 (7.38)

This equation, which is the analog of (6.14), assures
conservation of the "Aux of probability" in the R-q
manifold.

The general solution of Eq. (7.38) can be obtained
by making use of the relations

+X(q, i8—/Bq+ BW/Bq) jA =0 (7.35)

from its complex conjugate and use the Hermiticity of
3C and K to obtain

for the J's in terms of II, R, and the E's and q's, making
the replacements II~ iB/B—R, P, —+ —iB/Bq', and
carrying out appropriate Hermiticity symmetrizations.
Now

J(R, i 8/BR—)%'= fexp[i( —W+W) j}
XJ(R, i 8/B—R BW/—BR)A, (7.47)

J;(q, iB—/Bq)e= (exp[i( —W+W))}
XJ,(q, iB/—Bq+BW/Bq) A . (7.48)

Because of the identities

J(R, BW—/BR) =J,—J;(q,BW/Bq) =J;—(7.49)

the "big" terms of (7.47) and (7.48) already yield
Eqs. (7.44) and (7.45). Hence the "higher-order" terms
must vanish. With the aid of the inequalities (7.33)
and a test function p, as before, one easily 6nds that
this implies

8(A'8J/BII)/BR =0, (7.50)

8(A'8 J /BP )/Bq&'=0. (7.51)

But BJ/BII= —(8'W/BRBJ) ' and BJ;/BP =D '&

Hence, substituting (7.43) into (7.47) and (7.48), and
making use of the identity

VBB'/BR+ V&BB'/Bq& =0 (7.39) 8(DD ", )/Bq'=0 (7.52)

where

8(V8'W/BRB J)/BR =0,
8(P D)/Bqi '0

D= det(D, &), D '= 8'W/Bq'8 J.

(7.40)

(7.41)

(7.42)

A'= (8'W/BRB J)DF(B), (7.43)

where F is an arbitrary function of the 8'.
Actually the form of F is not arbitrary, since there

are other di6erential equations which the state func-
tion (7.32) must satisfy in addition to (7.12), namely,
the eigenvalue equations

and where 8', in Eq. (7.39) is regarded not as a constant
of integration but as a function of R and the q', de6ned

by (7.31).It is easy to see that Eq. (7.39) follows from
(7.29) and (7.31). Equation (7.40) is obtained by dif-
ferentiating (7.29) with respect to R, while (7.41) is
obtained by differentiating (7.29) with respect to q~

and multiplying by the matrix D '&' inverse to (7.42).
Prom these relations it follows immediately that

which can be shown to hold by virtue of the symmetry
of BD&'/Bq' in j and k, one finds that F must be a
comstamt, independent of the 8;.

In order to obtain normalizable solutions of (7.12)
the J's must be quantized. In addition, the branch-
point behavior of the functions W and W at the classical
turning points must be taken into account, and super-
positions of the form (7.32) corresponding to the dif-
ferent branches must be employed. These superposi-
tions are the standard WEB solutions.

Suppose we freeze out all the collective particle
degrees of freedom save one, and suppose this degree of
freedom corresponds to a motion of libration in a smooth
potential. Then we may distinguish two branches of
the function W, a branch W+ which increases with
increasing q and a branch W which decreases with
the increasing q. Similarly we may distinguish two
branches, 8"+ and 8", of the function S'. These
branches are determined only up to arbitrary constants.
The constants may be adjusted so that the WEB
solutions take the form

J(R, i 8/BR)%' =J%', —

J;(q, iB/Bq)@=—J;+

(7.44)

(7.45)

O'„=A„[exp(—iW„+)+exp(—iW„, )$
X [exp(iW„+)+exp(iW„—)j, (7.53)

where
45 It is aways to be understood that the E-q manifold is re-

stricted to positive values of R (exclmding zero). W +—=W+(R,e+-,'), W„+—=W+(q, n+-', ), (7.54)
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motion in a potential is time-reversal invariant, and
hence

I
V'I =

I
V I l V'I =

I V
I

8. A WAVE PACKET FOR THE UNIVERSE.
THE CONCEPT OF TIME

I xo. 1. Packet traces in the 2-q plane. (Case AN=3, An=2. )

only those quantum numbers n, n being permitted
for which

J=n+ ,s . w-hen J=n+-', . (7.55)

dJ/d J=mrs/An, (7.56)

where Ae and An are relatively prime integers. Ae and
hn are the spacings between adjacent permitted values
of the quantum numbers e and n, respectively. An
immediate consequence of Eq. (7.56) is that the angular
frequencies (with respect to proper time) of the E
and q motions are always (within the allowed range of J
values) commensurable. These angular frequencies
are given by

co= dF/d J—=ted J/d J,
ro= dF/d J, —

and, in the allowed range, satisfy

code =uAn.

(7.57)

(7.58)

(7.59)

Use of the angular frequencies permits Eqs. (7.29)
to be re-expressed in the form

BW O'H/'

V—=ss,
c)RBJ c)q8J

whence (7.43) becomes

A'= F(ato/V V.

For later convenience we shall choose

F=AN/2rres =hn/27rco.

(7.60)

(7.61)

(7.62)

The normalization constant 2„ in expression (7.53)
is then given by

A„=( „6 /2 i V.V i)"'
=H&-+ -—&-)/2 I V.V.ll ', (7.63)

the subscripts indicating that the quantized values of
the quantities to which they are aKxed are to be

employed. No signs have been placed on the V's to cor-
respond with the diferent branches of the t/I/"s, because

If the operator 3C+SC is to have a zero eigenvalue
which is highly degenerate, it is clear from Eqs. (7.25)
and (7.55) that the coherent internal dynamical be-
havior of the particles 6lling the universe must be
precisely matched to that of the universe itself in such
a way that the derivative dJ/dJ is a cotssfattt ratiofsal
Number over a wide range of values of J. We shall write

We are now in a position to construct a state function
exhibiting classical behavior. %e do this by superposing
many WKB solutions:

the prime indicating that the summation is to be
carried out only over those quantum numbers which
satisfy condition (7.55). If the a's are carefully chosen,
0, will have the form of a "wave packet" which
traces out a classical trajectory, namely, a generalized
lissajous 6gure in the E-q plane. It is easy to see that
Eq. (7.31) is just the condition for constructive inter-
ference, provided the symbols in the equation are
understood to denote the "peak" values of the quanti-
tities to which they refer.

In view of the commensurability condition (7.59)
the lissajous 6gure is necessarily closed and of 6nite
length. 4' A typical set of packet traces is shown in
Fig. 1 for the case An=3, An=2. The action variable
J is the same for each trace, but the phase constant 8

varies from one to the other. The following facts may
be inferred from the 6gures: Each trace lies within a
rectangle having sides equal to the full amplitudes of
the oscillations. Except in the degenerate cases depicted
in Figs. 1(a) and 1(e), each trace divides the rectangle
into 2hehn+Ats+An+1 disjoint regions. Although the
size and shape of corresponding regions vary from 6gure
to 6gure, each region contains an imsariatst point which
is independent of 8. These points are shown in the
6gures.

The degenerate curves are those which have collapsed
onto the invariant points. They are divided by the
invariant points into a total of 4hehn segments, which
will be called ieMriuet segments. The invariant seg-
ments may be labeled in a systematic fashion, starting,
say, from the "southwest" corner of the enclosing
rectangle, bypairs of integers (r,r) satisfying 1&r&2hts,
1&r&2hn. %hen an invariant segment is used as a
contour of integration (see Sec. 9) it will be denoted by
the symbol Z„,, )See Fig. 1(c).j Each invariant seg-
ment corresponds to a lapse of proper time of amount
T/4hrs=T/4hn where T and T are the oscillation

periods.

"Degenerate forms of closure Lace, for example, Figs 1(a) and
1(e)g, in which the packet "moves" back and forth along the same
curve, are to be understood as included in this statement. Also, if
successive groups of a's are chosen to vanish in such a way that
the effective spacing between adjacent quantum numbers becomes a
multiple of Aa (or An), then the packet trace will consist of rN

separately closed Lissajous figures superimposed upon one another.
Such a trace must be understood as representing a siegle packet
which consists of m disconnected parts. Although the following
discussion can be extended to include such situations, they will,
for simplicity, be excluded from consideration.
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(r X,j=i, L~,I'.]=i. (8.4)

It is important to remember, however, that the quan-
tum r's are not Hernzitiae. This follows not only from
their periodic character, which arises from their de-
pendence on the 0''s LEqs. (8.2)j, but also from the
fact that their canonical conjugates, K and SC, have
discrete, "one-sided" spectra, bounded, respectively,
from above and below. The usual eigenvector proper-
ties which hold for Hermitian operators therefore do not
hold for the r's, and we must distinguish between right
and left eigenvectors.

Let us introduce the left eigenvectors (r',~'
~

which, in
virtue of (8.4), may be chosen to satisfy

i (r',~'—
)
= (r', ~'[ae, —i (r', ~'I = (r', ~'~Se (8.5).

A wave packet will be called good if its state function
has negligible values throughout most of each region
containing aIl invariant point. Except at intersection
points or turning paints only one af the branches of
each of the funetians 5' and W is involved in the
constructive interference of the WKB funetians at
any one position along a good packet trace. Thus, for
"motion" in a "northeasterly" direction the relevant
branches are W+, W+, provided we use the standard
convention that time increases in the direction of in-
creasing W and W. Continuing around the compass we
have W+, W for SE;W, W for SW; and W, W+ for
NW. The trace is thus divided into brunch segmerIts

having dehnite quadrant orientations.
A given branch segment may be intersected by other

branch segments which further subdivide it. The re-
sulting pieces will be called simpte segrnemts. Each sim-

ple segment is intersected by precisely one invariant
segment, and the two may therefore be labeled by the
same integers. The branches involved in a given simple
segment are W+, W, or W, W if r+r is odd and
W+, W, or W, W+ if r+r is even, the choice depend-
ing on the direction of "motion. " The direction in
which the packet moves as time increases may be in-
dicated by afFixing arrows to the packet trace, as in
Fig. 1(c). If the W's are adjusted so that 5=0 cor-
responds to a degenerate trace, then the arrows are
reversed by changing the sign of 8.

Proper tiIne itself is defined by

(8 2)

where the cv's are de6ned by Eqs. (2.52) and (7.58), and

0= BW/BJ 0= BW/BJ (8.3)

Classically the angle variables 0" and 0 are canonically
conjugate to —J and J, respectively, and hence r and ~
are canonically conjugate to K and $C, respectively. In
the quantum theory this leads)one to write the com-
mutation relations

~p=g. '~ ri)(et, (8.8)

provided the normalization (I
~

e') = b„„ is assumed. In
virtue of Eqs. (8.5) we may also write

(r,r,
~
I)= (sr„Ae/2~) 't' exp[—iE„(r—~)]. (8.9)

The normalization here is chosen so as to maximize the
orthogonality properties of the vectors (r,~ ~

relative to
the physical subspace. Noting that co„Ae gives the ap-
proximate spacing between adjacent permitted "energy"
eigenvalues E„,we have

(r,~ ~

ts'1 r',~')
= (2~) ' P '(exp f —iE„L(r—~)—(r' —s') j))AE„

=~(( —)-("- ')). (81o)

If the "energy" spectrum were continuous and ranged
from —~ to ~ the function 5 would be the Dirac 8.
In reality it is a function which although divergent at
the origin does not coInpletely vanish elsewhere. Thus
the eigenvectors (r,r. ( are only approximately ortho-
normal, a fact which stems from the lack of strict
Hermiticity of the operators r and c.

Instead of working with the vectors (r,~ ~
it is more

interesting to work with (r,q~, (R,~), and (R,q~, which
are defined in an obvious fashion. The"normalization
of (R,q ~

may be fixed by setting

(R,qim)=e„, (811)

where 0'„ is the function having the WEB approxi-
mation (7.53), with A„given by (7.63). In a similar
manner the normalization of (r, q~ and (R,s( may be
fixed by giving the %KB approximations of their
inner products with

~
e). We shall choose

(r,q[+)—=e.=(s) An/2~] V, ))'"
Xe '~"'Lexp(iW, +)+exp(iW. )$, (8.1—2)

(R ~ I ) = C'~= (~.~/2~l I' I)"'Lexp( —i~ +)

+exp( —iW'„))exp(iE„g). (8.13)

We may also introduce the corresponding canjugate
vectors, denoted by ~

r', ~'), which are right eigenvectors
of the conjugate operators rf and rt N.ow let (P denote
the projection operator into the physical subspace of
allowed state vectors. Using Eqs. (8.5) and the Hamil-
tanian constraint (7.1), which may be rewritten in the
farm

(X+X)tp= tl (X+I:)=0, tP2= 6, (8.6)

it is easy to see that (r,z
~

(P depends only on the differ-
ence r—~. This simple dependence may be recognized
as a quantum consequence of the classical correlation

(8.7)

which follows from (7.31) and (8.2).
The projection operator (P is conveniently defined in

terms of the eigenvectors Irk+4, n+~) of the J's.
Writing

~
m+4, n+-', )—=

~
e) whenever the quantum

numbers are restricted as in (7.55), we have
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FIG. 2. Packet traces in the (a) Rw and (h) r g-
planes. (Case An=3, an=2. )

BW/BJ =coe+8, (8.16)

where 6 is a phase constant and the other symbols
denote the peak. values of the quantities to which they
refer. 4r Differentiation of Eq. (8.16) with respect to ~
and use of Eqs. (7.28) and (7.60) yields

dR/de= V= —(24rrsR) ID

=R-I[R(R„—R))I~s. (S.17)

The integration of this equation is most easily carried
out with the aid of an angle p defined by

This gives

de/dy= R (8.18)

dQ= [R(R, R)) I~'dR, —(8.19)

which yields the familiar cyclodial trajectory of the
dust-filled Friedmann universe:

R=—',R,„(1—cosg), (8.20)

z= sIR (g—Sing), (s.21)

the constants of integration being chosen so that E.=O,
pe=0 at e=0. We note that by virtue of the boundary

4' Equation (8.16) also follows from (8.2), (8.3), and (8.7).

Denoting by 4 and C arbitrary superpositions of the
functions +„and 4„, respectively, we may write the
Schrodinger equations

ir)4/Br =X(q, i8/Bq—)W, (8.14)

it)4/8~=3('. (R, ir)/B—R)4 . (8.15)

When the function 4', of (8.1) has the form of a
wave packet so also have the corresponding functions
4 and +,. The form of the packet tra, jectory in the
case of the function 4 may be determined by noting
that the condition for constructive interference, which
establishes the correlation between E and g, is

condition (7.15) the packet rebounds repeatedly from
the collapsed state until it ultimately loses its identity
owing to spreading. Throughout the period of each
rebound the width of the packet remains at all times
finite, never suffering infinite compression. Transition
through collapse thus becomes, in the quantum theory,
a continuous process —something which cannot be
achieved within the classical framework.

Figure 2 shows the curves traced out in the R—e
and v- —q planes by the packet of Fig. 1, and reveals a
slight complication which was overlooked in the above
simple analysis. The curves in the two planes appear to
depict Am and An distinct packets, respectively, rather
than only a single packet. The extra "ghost packets"
arise because the complete spectra of R and 3'. are not
made use of in the superposition (8.1). Only every
Acth level of BC and every Anth level of $C occur. This
means that v and ~ are determined modulo T/An=T/hn,
rather than modulo T and T, respectively, and a given
packet must consequently appear "simultaneously" in
several places in order to allow for the resulting proper-
time ambiguity. 4'

The multiple traces intersect themselves along ~e—1
and dtr —1 phase-invariant lines, respectively. (See
the indicated lines in the figures. ) These lines divide
the bralch segments (which are defined just as for the
R-q lissajous figures) into simple segments. Each simple
segment is straddled by a unique pair of points at which
maximum destructive interference occurs. The pairs
«points may be connected by arcs intersecting the
associated simple segments. These arcs will be denoted

by X„,t and X&,, in the E—c and v-—
q planes, respectively.

The pairs of suffixes r, t and 3, r have the ranges r=1,
2. . Ae r=12 - 5n /g=. —2 —1012) ) ) ) ) ) ) ) )

and may be used in an obvious manner to identify
either the simple segments or their associated inter-
secting arcs. Examples of arcs and point pairs are
shown in the figure.

Kith the introduction of the three wave functions

4, 4, and 0' we now have at our disposal three distinct
mathematical windows from which to view the Fried-
mann world. From one window the material content of
the universe is seen as a clock for determining the
dynamical behavior of the world geometry. From
another it is the geometry which appears as a clock for.

determining the dynamical behavior of the material
content. From the third the geometry and the material
content appear on equal footing, each one correlated
in a certain manner with the other.

It is the third window which is to be preferred as
most accurately revealing the physics of the quantized
Friedmann model. The variables v and ~, because of
their lack of Hermiticity, are not rigorously observable
and hence cannot yield a measure of proper time which
is valid under all circumstances. It is only with good

"This has also the consequence that (R,e I
6'I R', s) and

(r, q I
+ Ir, q') do not have the form of simple 5 functions, although

they diverge at R=R' and q=q'.
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wave packets that these variables are useful. But even
with a good packet the description in terms of v. and c
is not perfect, as is revealed, in a striking way by the
fact that the wave packets 4 and +, inevitably spread
in "time, " whereas the packet 0 does not. It is for
this reason that we may say that "time" is only
a phenomenological concept, useful under certain
circumstances.

It is worth remarking that it is not necessary to drag
in the whole universe to argue for the phenomenological
character of time. If the principle of general covariance
is truly valid then the quantum mechanics of every-day
usage, with its dependence on Schrodinger equations of
the form (8.14) or (8.15), is only a phenoinenological
theory. For the only "time" which a covariant theory
theory can admit is an intrinsic time dehned by the
contents of the universe itself. Any intrinsically de6ned
time is necessarily non-Hermitian, which is equivalent
to saying that there exists no clock., whether geometrical
or material, which can yield a measure of time which
is operationally valid under all circumstances, and
hence there exists no operational method for determin-

ing the Schrodinger state function with arbitrarily high
precision. This statement also follows directly from the
uncertainty principle. Because every clock has a "one-
sided" energy spectrum, its ultimate accuracy must
necessarily be inversely proportional to its rest mass,
When the whole universe is cast in the role of a clock,
the concept of time can of course be made fantastically
accurate (at least in principle) because of the enormity
of the masses and quantum numbers involved. But as
long as the universe is 6nite, a theoretical limit to the
accuracy nevertheless remains.

9. THE INNER PRODUCT

We shall now use the results of the two preceding
sections to show how the definition (5.19) for inner
products can be rescued from the negative-probability
disaster, at least in the case of the quantized Friedmann
model. First we must derive the form which (5.19)
takes in this model. Consider the following integral:

y{[K(q, ia/Bq) e—b5*e eb*K(q,—i a/Bq) e,)—dq,

where 4, and. %b are arbitrary complex functions of R
and the q', and y is a real test function. Because of the
Hermiticity of $C this integral may be rewritten in the
form

eb*[se(q, ia/Bq), y—fe dq

i eb*V'(q, —ia/Bq) ~ (By—/Bq')e. dq, (9.1)

where V' is defined by (7.27), but with the replacement
P; ~ ia/Bq' instead of E,=BW/—Bq', and where the

dot in the right-hand integrand indicates that the
factor By/Bq' is to be inserted between noncommuting
factors in the terms of V' in such a way as to yield the
commutator on the left. If now the diQerential operators
occurring in V' are peeled to the left and right, via inte-
grations by parts, in such a manner that they no longer
act on By/Bq', then the integral takes the form

—i (By/Bq')(eb'V'e. )dq

=i ya(eb*V'e )/Bq'dq, (9.2)

where V' denotes the result of the peeling process.
Because of the arbitrariness of y it follows that

[x(q, ia/—aq)eb5*e. eb—*x(q, i a/aq)e. —
= a(e,*V'e )/aq' (9 3)

In a similar manner we find

[x(R, ia/BR—)e,)*e. eb*x—(R, ia/BR)e-.
= a(e,*Ve.)/aR, (9.4)

where in this case we can give an explicit form for V:

i f B B
v=

~

z- ~ z « z «z -«).—y-.s)-
487r'k BR BR

The analog of (5.19) is now obvious, namely,

(eb,e.) = (eb*Ve.dq+eb*V'e. dRdZ;), (9.6)

where Z is an appropriate surface in the R-q manifold
and dZ; is the directed surface element of its projection
into q space. From Eqs. (9.3) and (9.4) it follows that

a(e,*ve.)/aR+a(e, *V'e.)/aq'= o, (9.7)

whenever 4 and +b are physical state functions satis-
fying the Hamiltonian constraint (7.1). Therefore the
integral (9.6) is independent of Z provided the boundary
of Z remains in a region where 0' and +b vanish.

When the coherent dust 6lling the Friedmann uni-
verse is restricted to only one degree of freedom the
inner product (9.6) reduces to

(eh,e.) = (eb*Ve.dq eb*V™e.dR—), (9.8)

where Z is an appropriate contour in the R-q plane. The
key word here is "appropriate. " In analogy with our
previous treatment. of the manifold BK of 3-geometries
in the general theory, we may view the R-q plane as
endowed with a natural metric determined by the struc-
ture of the functions K and X. With respect to this
metric the coordinates R and q are "timelike" and
"spacelike", respectively. If the Hamiltonian constraint



B RYCE S. DEWITT 160

(7.1) were an ordinary wave equation we would
naturally adopt for the contour Z a "spacelike" line
such as R=constant. However, just as in the general
theory, so also here, "wave" propagation is not re-
stricted to timelike directions. Indeed, from the
lissajous traces of Fig. 1, it is evident that the Fried-
mann universe not only executes "timelike" and
"spacelike" motions with impartiality, but even turns
around and "moves" backward with respect to the
"time" coordinate. The distinction between "timelike"
and "spacelike" clearly does not have the same pervasive
signi6cance here as it does in ordinary wave theories.

If we were actually to choose, for Z, a line R=con-
stant, we would obtain the useless result (+q,+,)=0
for all + and 4b. This is because all physically admis-
sible state functions have non-negligible values only in
a finite domain of the R-q plane. Hence any line R= con-
stant can be deformed into a line along which +, and%'b
effectively vanish, without affecting the value of the
ntegral (9.8) at all. The same is true if 2 is a "timelike"
curve which starts at R=O and goes out to in6nity in
the R-q plane. Since any normalizabile superposition of
the functions (7.20) vanishes at R=O at least as fast
as R', such a curve can also be deformed into one along
which +, and @i,vanish, without affecting (9.8).

How then shall we choose Z? The answer is to be
found in the conservation laws (6.13), (7.38), and (9.7).
From our analysis of the Lissajous traces of Fig. 1 it is
evident that probability Rows in a closed 6nite circuit
in the R qplane. Z m-ust therefore be a finite curve,
chosen so as to intersect a unidirectional unit Aux of
probability of each of the two functions 4, and 0'b.

This means that Eq. (9.8) can be used to define inner
products only when +, and 4'b both have the form of
good packets. If they do not have this form or if they
fall into the degenerate category depicted in Figs.
1(a) and 1(e), then some other representation must be
employed. An analogous condition must hold in the
general theory if Eq. (5.19) is to be valid. Whenever the
condition is violated the usefulness of Wheeler's "metric
representation" diminishes.

It is not dificult to show that Eq. (9.8) indeed yields
an acceptable value for the inner product under the
required conditions. The case in which the two packets
do not overlap (except at intersections) may be dis-
posed of at once; (4'q, 0',) then clearly vanishes. The
only case which need concern us is that in which the
two packets overlap, at least partially, throughout the
entire length of their trajectories. The J values at their
"peaks" then di6er negligibly compared to the spread
of values contained in their superpositions. As our
initial contour we shall choose an invariant segment
Z... corresponding to the average of the peak J values.
Since the packets are "good" we know that 0', and 0'b
vanish at its endpoints. Suppose Z„,, intersects a
NE-SW branch of the lissajous figure formed by the
packet traces

l e.g., the segment Zi ~ shown in Fig.
1(c)$, and suppose the orientation of both packets is
the same, say NE, at the point of intersection with
Z, ,, Then it is only the W+, W+ branch of each packet
which interferes constructively along Z„,, Approxi-
mating 4' and %b by their WEB forms, keeping only
those parts which refer to the branch in question, and
taking note of the inequalities (7.33), we have

(+&,+.)= (4 t,*V+.dq 4&,*V@.)dR—

(cv 4&»'»/4~'l V V V V l)'~'()exp(iW„+)V exp( iW +)j—
&r, r

)&expl —i(W, +—W +)]dq—expLi(W„.+—W„+)7l exp( —iW„+)V exp(iW, +)jdR), (9.9)

where the b's are the coeKcients of the expansion of 0 b. to

4 b
——Z„'b„N„. (9.10) (+~ + )=2-'&-*~- L(~.»/2~IV. l)dq

Having dropped the parts of the WEB functions
which refer to irrelevant branches, we may now extend
the contour Z„,, until its ends coincide with points at
which maximum destructive interference (of the W+,
W+ parts) occurs

l
e.g. , the points A and J3 in Fig. 1(c)j.

The contour then corresponds to a proper time lapse
of T/2» instead of T//4Am, and spans just the right
number of nodes so that the integral in (9.9) vanishes
except when e= e'. Expression (9.9) accordingly reduces

(~ »/2~I V l)dR]

=Q '
b *a„l (aa,T/4m-)+((v„T/4m) j, (911)

the positive sign of the 6nal bracketed factor being
obtained by appropriately orienting the original con-
tour Z„,.The contour Zi, 2 in Fig. 1(c) shows the correct
orientation. If the direction of "motion" of the packets
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is reversed then the orientation of the contour must be
reversed.

For good packets the frequencies co„and ~„remain
sensibly constant and equal to the peak frequencies
2m/T a.nd 2~/T, respectively, over the range of effective
e values in the sum (9.11).Therefore we have

which is just the accepted definition. By virtue of the
Z invariance of expression (9.8) the contour may now
be displaced to any location, including turning points
where the %KB approximation breaks down. All that
is required is that the contour cut each wave packet
only once and that 4 and C~ vanish at its endpoints.
We therefore have quite generally

X„*X„.dR=5 „, X„*X„dq=b„„.. (9.19)

Thus, we may write

@(R,q) =Q„' X„(R)X„(q) X„*(q')

where X„and X„have the WKH approximations

X„=((o./2~I V.I)'"
&([exp(—i'„+)+exp(—iW )], (9.17)

x.= (~„/2m I V.I)"'
&([exp(iW„+)+exp(iW„)], (9.18)

and satisfy the orthonormality conditions

(%~*V@dq 4b*—V@',dR) =P„' b *a„, (9.13) X%'(R',q') dq'/X (R') (9.20a)

the relation "=" tending toward "=" the more
precisely defined the packets +, and +~ become.

If, in the above derivation, the two packets had been
oppositely oriented then one of the pairs of functions
W+, W+ in Eq. (9.9) would have had. to be changed to
W, W, and the integral, with the extended contour,
would have vanished even when m=n'. This, however,
does not conflict with (9.12) since, in the case of op-
positely oriented packets, the relative phases of a„and
b vary so rapidly with e that the inner product vanishes
anyway.

An entirely similar analysis can be carried out in the
R-g and v-q planes. Here the inner product integrals
are given by

=P„'X (R) X,(q) X„*(R')

X4(R',q') dR'/ X,(q'), (9.20b)

which express 0' everywhere in terms of its values on
the infinite contour R=R' or on the infinite contour
f=g .

However, when the function N has the form of a
wave packet 0, it should be equally possible to de-
termine it completely by knowing its value over a
finite contour Z which intersects the packet only once.
That this is indeed the case follows from the fact that
for a good packet the integrals

(C p,C,)= (C't,*VC.dr C t,*C dR),—(9.14)
(C.*V@.dq O„*V+.dR), —(9.21)

(e.,e,)= (4 t,*@,dq —%t,*&4,dr), (9.15)
for all n, may to a high degree of accuracy be replaced
simply by

which reduce to the familair J'C ~*C,dR and J'e b*C.dq
when the contours are distorted to a=constant and
a=constant, respectively. If the ranges of integration
of the latter integrals are extended to include all per-
missible R and q values, the integrals must be divided
by Ae and hn, respectively, because of the presence of
the ghost packets.

The above analysis permits us to adopt a new view-
point regarding the Cauchy problem for the Hamil-
tonian constraint. At the end of Sec. 6 it was conjectured
that by virtue of the boundary condition (6.31) [(7.15)
in the present context) the state function will be de-
termined everywhere as soon as it is specified on a
hypersurface. This is very easy to demonstrate in the
present context, because of the separability of Eq.
(7.12), which permits the eigenfunctions 4„ to be ex-
pressed in the product form

Vn(R, q) = (2~6&/~n)'~'Xn(R)Xn(q), (9.16)

(+ *I V-I +.dq +-*I~.
l
+.dR—) (922)

When the packet is good these integrals have non-
negligible values only for a restricted range of e values
centered on the peak of the packet, over which

I V„I
varies slowly. Let the peak e values be determined by
evaluating (9.22) for all e. Then let the contour be
extended until its ends reach points of maximum de-
structive interference, as determined by the peak e value
and the slope of the packet branch where it intersects
Z."Suppose the slope is NE-SW, corresponding to the
classical functions W+, W+ or W—,W . Denote by

' It may be objected that in choosing Z to intersect the packet
along a definite branch we are assuming some preliminary knowl-
edge about the approximate "location" of the packet. This
preliminary knowledge, however, divers in no fundamental respect
from the knowledge which we always have in other more familiar
instances, e.g., that a given particle is "somewhere in the
laboratory. "
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@„++and 4' the parts of (the WEB approximation
to) 0'„associated with these functions. Now compute
the integrals

where Z' denotes the extended contour. Of these
integrals, only those corresponding to the previously
determined signi6cant e values need be included, and
of these, in turn, only those corresponding to a de6nite
choice of signs (either ++ or ——) will have non-
negligible values (corresponding to a definite packet
orientation, which becomes thus determined). The
values in question are just the amplitudes u of Eq.
(8.1) and from these the entire state function can be
constructed. This means that for a good packet the
Cauchy data are not only the same as for the ordinary
Schrodinger equation but are also effectively taken from
a compact domain of "con6guration space. "

10. DISCUSSION A5'D SPECULATION

Perhaps the most impressive fact which emerges
from a study of the quantum theory of gravity is that
it is an extraordinarily economical theory. It gives one
just exactly what is needed in order to analyze a par-
ticular physical situation, but not a bit more. Thus it
will say nothing about time unless a clock to measure
time is provided, and it will say nothing about geometry
unless a device (either a material object, gravitational
waves, or some other form of radiation) is introduced to
tell when and where the geometry is to be measured. "
In view of the strongly operational foundations of
both the quantum theory and general relativity this
is to be expected. When the two theories are united the
result is an operational theory petr excellence

The economy of quantum gravidynamics is also
revealed in the manner in which the formalism de-
termines its own interpretation. We have seen how the
Hamiltonian constraint, in the case of a 6nite universe,
forces us to abandon all use of externally imposed co-
ordinates (in particular x') and to look instead for an
internal description of the dynamics. We have seen

~' For details on the quantum theory of measurement in general
relativity see B. S. DeWitt, in Gravitation: An Introduction to
Crtrrent Research, edited by L. Witten (John Wiley 8z Sons, Inc. ,
New York, 1962).

"A notable failure to recognize this fact is to be found in P. W.
Bridgman, in Albert Einstein, Philosopher Scientist, edited by
P. A. Schilpp (Tudor Publishing Company, New York, 1949).
Bridgman's confusion, which is shared by others, stems from the
fact that in traditional formulations of general relativity one
speaks about things, such as curvilinear coordinates, which have
no operationally defined reality. This confusion would have been
eliminated had modern coordinate-independent formulations of
di6erential geometry been available in 1916. Modern methods
make it plain that coordinate systems are precisely what general
relativity is not talking about. General relativity is concerned
with those attributes of physical reality which are coordinate-
independent and is the rock on which present day emphasis on
invariance principles will ultimately stand or fall.

how the metric structure of the manifold 5K, with its
frontier of in6nite curvature, suggests a natural bound-
ary condition for the state functional, which may
simplify the Cauchy data needed to specify a state.
And 6nally, if it be permitted to extend the results of
our study of the Friedmann model to the general case,
we have learned how (and when) to use the inner-
product definition (5.19), by recognizing that proba-
bility Qows in closed circuits in 5K.

This "principle of self-determination, " which per-
meates even classical general relativity, has been ele-
vated to the rank of a universal principle by Everett, "
who applies it to ordinary nonrelativistic quantum
mechanics. As conventionally formulated quantum
mechanics comes in two packages: (1) formalism and
(2) interpretation based on the existence of a classics, l
level. According to Everett, package 2 should be thrown
away. Quantum mechanics is a theory which attempts
to describe in mathematical language a situation in
which chance is not a measure of our ignorance but is
absolute. Naturally it cannot avoid introducing things
like wave functions which undergo repeated 6ssion,
corresponding to the many possible outcomes of a
given physical process. According to Everett, the wave
function nonetheless provides a faithful representation
of reality; it is the universe itself which splits.

To those who would immediately object that they
do not feel themselves split, Everett replies that this
only con6rms the theory; they are not supposed to feel
it. Everett allows into the theory only those elements
which are in the formalism itself, namely, a Hilbert
space, a Hamiltonian, and a Schrodinger equation for
vectors in the Hilbert space. From these meager begin-
nings one can show, by standard arguments, that the
wave function for a Hamiltonian which, in conventional
language, would be described as that of a system coupled
to an apparatus, evolves into a superposition of vectors
representing the possible values of some system vari-
able together with corresponding apparatus "readings. "
Moreover, if the "measurement" is repeated on a large
number E of identically prepared systems, the final
superposition consists of vectors representing various
possible sets of E values for the system variable to-
gether with corresponding apparatus "memory se-
quences" which record these values. No interpretation
of the mathematics is admitted up to this point; in
particular no u priori interpretation is given to the
coeKcients in the 6nal superposition.

Now let the coeflicients in the 6nal superposition in
the case of a single system be denoted by c„.Then the
coeKcients in the case of E systems will be products of
c's. It can be shown" that if one removes from the 6nal
E-system superposition all those vectors which corre-
spond to memory sequences in which the recorded
values of the system variable fail to meet the standard

ss H. Everett, III, Rev. Mod. Phys. 29, 454 (1957).
'3 N. R. Graham, Ph.D. thesis, University of North Carolina

(unpublished) .
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requirements for a ramdom sequence with Probabilities

~c„~s, to any arbitrary, but 6xed, degree of accuracy,
the resulting wave function is indistinguishable from
the true 6nal wave function in the limit F—+ ~. By
"indistinguishable" we mean that the difference between
it and the true wave function has vanishing norm.

The probability interpretation of quantum mechanics
thus emerges from the formalism itself. Nonrandom
memory sequences are "of measure zero" in the 6Qal

superposition, in the limit X—+~. Each automaton
(i.e., apparatus elm memory sequence) in the super-
position sees the world obey the familiar quantum laws.
However, there exists no outside agency which can
designate which "branch" of the superposition is to be
regarded as the real world. All are equally real, and yet
each is unaware of the others. Thus if, within a given
branch, an automaton, which has measured a given
variable without changing it, subsequently checks his
original observation, his memory sequence will not
fail him. He will get his original value, and not that of
some other branch. Moreover, if he comlnunicates with
another automaton who has simultaneously made the
same measurement, their results will agree, which means
that the two are in the same branch and that communi-
cation between di6erent branches is impossible. The
automaton therefore never feels himself split.

Everett's view of the world is a very natural one to
adopt in the quantum theory of gravity, where one is
accustomed to speak without embarassment of the
"wave function of the universe. " It is possible that
Everett's view is not only natural but essential. For
example, if the Hamiltonian constraint possesses only a
single solution, so that the wave function for the uni-
verse is unique, then some conception like Everett's
would appear to be needed in order to assess the physical
signi6cance of such uniqueness. '4

In our discussion of the Friedmann model we as-
sumed that the operator K+K possesses a highly
degenerate zero eigenvalue. How plausible is this as-
sumption in the case of the actual worldP In the case of
the Friedmann model we were obliged to match the
internal dynamics of the dust with that of the universe
as a whole, with one hundred percent precision. Let us
try to be a little more realistic. Suppose we replace the
dust by a gas of noninteracting scalar bosons, but still
maintain a rigid spherical geometry. Then we have an
infinity of degrees of freedom. However, this in6nity is
discrete, because the universe is 6nite. Moreover, and
this is important, there can never be more than a 6nite
number of 6eld quanta present in the state vector super-
position, since the total energy (of the bosons) cannot be
infinite. This is true even if the bosons are massless,
since there is no infrared catastrophe in a finite world.

Now it is not at all diflicult to verify that the Hamil-
tonian K in this case does not match K in any obviously

"See J. A. Wheeler, The Monist 47, 4& (I962)

commensurable way. "For each choice of boson quan-
tum numbers R becomes a well-de6ned function of R,
and the combination X+R has a well-defined spectrum.
But only by the sheerest accident does this spectrum
include zero. All the evidence points to the fact that
the complete spectrum of K+ K, although discrete, is
everywhere dense on the real line and does not condense
into a set of finitely separated, infinitely degenerate
levels. A similar situation holds with vector bosons and
with fermions, and it seems hardly likely that the switch-
ing on of interactions between the particles will change
the picture.

One might now suggest that we look for a way out of
this predicament by relaxing the spherical rigidity
restriction. However, this would merely correspond to
the introduction of a gas of interacting tensor bosons,
i.e., gravitons. It therefore appears that the same situ-
ation holds even in the general theory and that the
Harniltonian constraint of the real world may indeed
have only one solution. "

If the state functional of the universe is unique how
can we interpret itP In the case of the Friedmann model
a single eigenfunction 0 „certainly has no resemblance
to the real world, nor to any other reasonable world for
that matter. A plot of ~%'„~ ' in the R-q plane looks like
a lot of bumps separated from one another by a rec-
tangular array of nodal lines, certainly nothing like a
lissajous figure. However, suppose an extra term were
added to the Hamiltonian X+ 3C which had the effect
of strongly correlating the phase of the coherent particle
clock with the phase of the universe, without changing
either the (zero) eigenvalue or the quantum numbers.
Then the Hamiltonian would no longer be separable and
the nodal lines of ~%„~' would no longer form a rec-
tangular array. The bumps would instead tend to
cluster around the Lissajous figure having the favored
correlation, the 6gure itself now being somewhat dis-
torted due to the correlation interaction, but still
de6nitely recognizable.

The Hamiltonian of the real world is highly non-
separable, and there is a high degree of correlation
among its in6nity of modes. This must express itself
as a kind of "condensation" of the state functional into
components having many of the attributes of the quasi-
classical Friedmann packets. "At the same time, be-
cause of the size of the universe, we know that the
"Everett process" must be occurring on a lavish scale:
The quasiclassical components of the universal state

"M. Miketinac (private communication).
~6 The spectrum of gQ+$Q, or of gQ itself, can be shifted by the

introduction of a "cosmological term" in the Einstein I agrangian.
If this spectrum is actually everywhere dense then we have the
amusing result that a minute change in the cosmological constant
can produce an enormous change in the zero-eigenvalue eigen-
vector and hence in the physical properties of the universe."If the state functional of the universe is unique then it is no
longer possible or even meaningful to apply the inner-product
definition (5.19} to the state functional as a whole. However, it
might still be applied, in some reduced form, to its quasiclassical
components.



8 RYCE S. DEW IT Y

functional must be constantly splitting into a stupen-
dous number of branches, all moving in parallel without
interfering with one another except insofar as quantum
Poincarb cycles allow rare anomalies to occur. According
to the Everett interpretation each branch corresponds
to a possible world-as-we-actually-see-it.

We have seen that the Friedmann packets in the R-q
plane do not ultimately spread in "time"; every expan-
sion-contraction cycle is exactly like every other.
Unless some form of leakage to other channels occurs
(e.g., transitions to different 3-space topologies) the
same must be true for the real universe (assuming it to
be closed and finite). In the absence of such channels
there could be only owe expansion-contraction cycle,
repeated over and over again, like a movie film, through-
out eternity, the monotony of which would be alleviated
only by the infinite variety to be found among the
multitude of simultaneous parallel worlds all executing
the cycle together. Such a conclusion holds, in fact,
regardless of whether the total state functional is
unique or not.

A question naturally arises in regard to entropy.
Within a given branch of the universal state functional
the entropy would be observed (by appropriate auto-
mata) to increase with time. ' It might be supposed that
this increase would continue only during the expansion
phase of the universe and that it would reverse itself
during the contraction phase. This is not so, for one
has only to remember that the length of a Poincare
cycle for even a small part of the universe is vastly
longer than a rebound cycle, and hence except for a
vanishingly small fraction of branches the entropy must
continue to increase (at least locally) until final col-
lapse is reached, at which point the very concepts of
entropy and probability, as well as time itself, cease to
have meaning.

However, if the operator R+ 3! is time-reversal
invariant, and if its zero eigenvalue is nondegenerate,
then the state functional of the universe is necessarily
time-symmetric. This means that for every Everett
branch in which entropy increases with time there must
be another in which entropy decreases with time. To an
observer in the second branch "time" in fact appears to
be "Rowing" in the opposite sense. Because of the ex-
treme sensitivity of the state functional to slight changes
in the operator X+R (see Ref. S6) it is difficult to say
how these conclusions must be modi6ed if, as recent
experiments suggest, the real world is not invariant
under time reversal. However, the world being as

» Each branch corresponds to a pure state in the traditional
sense. This does not, however, prevent the assignment of an ef-
fective entropy to it. For a sufBciently cemplicated system even a
pure state may be assigned an entropy based on the coarse-grained
properties of the state rather than on an ensemble average. In
the classical theory this is illustrated by computer calculations of
I-body systems. Even though the position and velocity of every
body is known, the system as a whole possesses eGective thermo-
dynamical properties, the determination of which is in fact the
goal of the computation.

complicated (and hence ergodic) as it is, it is still quite
possible that there is no preferred direction in time. The
ensemble of Everett branches in which time has a given
direction of flow may very well be balanced by anothex
ensemble in which time Qows oppositely, so that reality
as a whole possesses no over-all time orientation despite
the absence of time-reversal invariance.

APPENDIX A: THE MANIFOLD M

3f is de6ned as the 6-dimensional space of points"
(y;j) having as covariant and contravariant metric
tensors, respectively, the expressions

Gijkl +1/2(+ik+jl++il+jk 2+iJ+kl)

Gijkl 27 (Vjk7jl+Vil7jk Vij Ykl) q

/ . . & —1/2f . . l

satisfying
Q . . Gabkl g . .kl

(AI)

(A2)

(A3)

Index pairs may, if desired, be mapped into single
indices according to the rules

j/ll p ) +22 7 ) +83 7 )

2
—1 ~/42~ —2—1/2~ 5 ~ 2—1 p/62(A4)

6;;~'~ 5~~, I", 6=1 . 6, etc.

although this is seldom convenient or necessary.
By straightforward computation one may verify the

variational law

G . . )Gijkl Yijgy ..

from which it may be inferred that

G—=det(G'&'kl) = —ily '

(AS)

(A6)

where a is some constant. In the special case y;;= 8;; one
easily 6nds that the roots of 6'j~' are ——'„1,1, 1, 1, 1,
from which it follows that a= ~ and that the signature
of M is ++++j.The components y;; evidently
are "good" coordinates in M as long as y/0.

If the i of Eq. (5.7) is chosen as anew coordinate then
the surfaces of constant i have orthogonal trajectories
whose tangent vectors are proportional to

~f/~v = 'fvij"-
or, in contravariant form,

G';ki&t /&vkl= —6&'v;j.

(A7)

(A8)

If the orthogonal trajectories themselves are labeled by
a set of ffve additional new coordinates t", A=I 5,
then

y"av /at =4f-'4"/4"=0 (A9)
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and, moreover, By;,/Bf must satisfy

Pij ~gkl
Gijkz 0

at' A

From these facts one may infer

(A10)

Bvj3/ai =3t '7v,

7jj Bi /BVij

(A12)

(A13)

BV'3 BV33 f 4'
(A»)

ai. Bi. E ay, , ay„l

p'4B, (A31)

~ABC =IBC,A I AC,8+I BC 1 AE IAC I BE
= tr[y, cy

—'(y, Ay
—'y, B—y,By

—'y, A)

Xai. /B~], (A26)

&ABCD=~ABC &E33=tr[p 'p. 33' 'p. cp '
X (y Ay

—'y B—y By
—'y A)], (A27)

~AB—~CAB g~AB ~ (A28)

The corresponding quantities in the full manifold M are

(A29)

I"AB'= (3/32)ÃAB, (A30)

~AO'= ~OO = I'OO'=o,

~ABC ~ABC (3/3—2) (GA c4 GBC4—), (A33)+ (all other components vanish)

+AB +AB+SGAB (9/8)GAB p

Gij kl ~1/2~i7c~j l

at.A agB at-A at-B
(A14)

from which the metric (5.8) follows.

The above relations yield the following useful
identities:

(A34)

(A35)

(A36)

EAo —Rpp —0 p

&'&R= —60' ',(A15)tr(YaAi
/, BY) =bA,

tr(yai A/ay) =0,

tr(y 'y, A)=0,

tr[~-'(y AB—y, Ay-'y, B)]=0,

(A16)

(A17)

(A1s)

By;, a&A

g ..kl &+ . .+kZ

ai av3 t
Bi A (d'y dy dy-

= tr
I

— -p
—'— . (A37)

ag kds' d8 ds
tr(y AM) tr(Nai A/ap)

where the index 0 is used for components in the direction
of the "timeline. " coordinate i.

The geodesic equation in 3f is obtained directly from
(A25):

d2t A dgB @c
(A1 9) 0 +FBc

d8 d8 d8

=
~ tr(MN+MN )—x~ tr(yM)tr(y 'N), (A20)

tr(y, ABM) tr(NB| /By)+ tr(y, BM)tr[N(ai' /By), A]

= —-,'tr(y, AM) tr(y —'N)

+3 tr(yM)tr(y 'y Ay 'N), (A21)

tr[y, AM(ai A/ay) N]

=2 tr(MN )+—,'trM trN —-,'tr(yMy 'N). (A22)

Equations (A20) and (A22) follow from (A19), while

Eqs. (A18) and (A21) are obtained from (A17) and
(A20), respectively, by differentiation. M and N are
arbitrary 3)&3 matrices.

Using these identities and remembering the cyclic
invariance of the trace, it is easy to compute the
following:

This reduces to (5.11) upon multiplication with y, A

and use of (A17), (A18), and (A19).
When one stays within the manifold M it is conven-

ient to map the matrices y into matrices a of unit
determinant:

(A38)

In the solution (5.12) of the geodesic equation, y may
be replaced by a provided M is restricted to have unit
determinant. To find the geodesic connecting two
matrices a~ and a~, let 8=0 at a3 and choose M in the
form

M =d3"'0, (A39)

where 0 is an orthogonal matrix which diagonalizes a3

and d3'~' is a diagonal square root of the resulting
diagonal matrix. Then if 812 is the distance between
a1 and a2 the matrix N satisies

&' =«[~(BV/BV) ~(BV/BV)]
g gCB B B (A23) ¹&~= 1n(d&

—'"Oa20 d& '3')

From the condition trN'=1 one obtains

(A40)

rABC= (GAC, +GBC,A +AB,C) = tr)p, c'(
X (—y, Ay 'y, B—y,By 'y, A+2y, AB)y

—']
& (A24)

r„c—=CCDf"„
= tr[(—y,Ay-'y, B+y,AB)ag /By], (A25)

B~~' ——tr[ln(d~ ' 'Oa~Od~ '~')]'
= tr[ln(a3 'a2)]' (A41)

which permits the matrix N itself to be determined.
The logarithm of a matrix is an effectively unambiguous
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concept, and the law of cyclic invariance of the trace
applies to transcendental matrix functions as well as
to rational functions. The uniqueness of the geodesic
(5.12) is easily checked by noting that the matrix 0 is
determined up to a transformation of the form O'= PO
where P is either a permutation matrix, if the roots of
a~ are all distinct, or a more general orthogonal matrix,
if some of the roots coincide. Such a transformation
leaves (5.12) invariant. It is also easy to verify that it
does not matter which of the eight possible square
roots of di is chosen for di' '

The geodesic equations in M take the form

integrating Eqs. (A46) and (A49),

f (s) =
t s(2Kn+s) $'~2= Kn cs—ch(K8),

S
8(s) =—ln

2K 2Kc2+s

(A50)

(A51)

The ranges of the variables are

0(s(~, —~ &8(0, 0&f'(~, (A52)

and one sees that the geodesic strikes the frontier at
$=0.

In terms of the matrix y the above results may be
expressed in the form

~here

d2t
0= + (3/32)f' —

I

ds2 dsi
'

0=

(
d8 ' df'Ad|B

~A.B
4$ dS dS

d2f.A df.B @c df-A dt.
+P~ A +2f—1

ds dS ds ds ds

(A42)

(A43)

y(s) = $—K'n csch(K8)]4~'M e"'M, (A53)

where N is restricted as in (5.13) and M is now required
to have unit determinant.

ENlt geodesics. In this case it is the constant o. which
serves to fix the scale of s. Setting 2Kc4=1, P=O, and
choosing the positive root in (A49), one finds, with
the boundary condition f(0)=0,

f (s) =s»2. (A54)
Differentiating the latter equation and making use of
(A43) multiplied by f2-'ABd| /ds, one finds

d'8 2 d8 df

f ds dsds
(A45)

which may be integrated to yield

ds t2
(A46)

0, is an arbitrary integration constant which, without
loss of generality, may be taken positive. When n/0
one may write

dtA t2 dlA

d8 n ds
(A47)

which, in combination with (A43), yields (A37),
showing that geodesics in M project onto geodesics in M.

Substitution of (A46) into (A42) yields

de' K2c4'

+ =0, K—= (3/32) 'i2
s'

which integrates to

(A48)

/ds =~ (K2c221
—2 p) it 2 (A49)

where p is another integration constant. Using the
metric (5.8) it is easy to verify that standard nor-
malization for the affine parameter s is obtained by
choosing P= —1, 0, or 1 according as the geodesic is

timelike, null, or spacelike.
Ti222elike geodesics In this case f .must always in-

crease (or decrease) with s. Therefore choosing the
positive root in (A49) and the boundary conditions

t (0)=0, 8(~)=0, one finds, upon setting p= —1 and

This yields
8=(2K) 'lns.

t.(s) —ear

y(s) = (Ke"')4~2M e"'M.

(A55)

(A56)

(A57)

The ranges of the variables are

0&s(~, —~ (8(~, 0(t (~, (A58)

and the geodesic is again seen to hit the frontier.
Spaceli74e geodesics. In this case there is a turning

point at f'= K42 and both roots in (A49) can occur. Setting
P=1, and choosing the boundary conditions f(0) =0,
8(K42)=0, with s&~0, one finds

t (s) = fs(2Kn s)j»2=—Kc4 sech(K8), (A59)

$
8(s) =—ln (A60)

2K 2an —$

y(s) = pK'42 sech(K8) $4~ M e"'M (A61)

The ranges of the variables are

0&s&2Kc2, —~ &8& ~, 0& f & u, K(A62)

and the geodesic is seen to hit the frontier at both ends
(s=0, 2K).

Using the above results it is possible to obtain an
expression for the "distance" to the frontier from any
point in M. If y is a fixed point and ( is a contra, variant
vector at y, then

16 Ltr X'—22(tr X)'g'~'y(22)'~' tr X
~h, 6)=— ~ j.t2

3 Ltr X'—22(tr X) '7'~' —(2) '~' tr X (A63)

X=y—'g

There is no preferred zero point for the arc length 8

in M. Hence the following integral of Eq. (A46) may
be chosen:
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ds2 — dt.2+i 2d82 (A66)

where 0. is one-half the square of the distance from y to
the frontier along the geodesic which starts from y in
the direction of g. The formula holds as long as trX
((trX2)'/2 so that the denominator is positive, for
otherwise the geodesic escapes to in6nity in the direc-
tion of g. o takes on its minimum value, —(16/3)y' ',
when the geodesic is a path of pure dilation which
arrives at the frontier at the point y=0. The condition
for this is tr X'=-', (tr X)'.

It should be noted that when the geodesic is not a
path of pure dilation, it usually strikes the frontier at a
point where some of the y;; become infinite, in spite
of the fact that 7 itself vanishes there. To see this,
first observe that expressions (A53), (A57), and (A61)
all have the limiting behavior

y(s) ~ (2~'ne")'/2M e 2M as s~ —a&. (A64)

Next note that in virtue of the conditions (5.13) N
always has one root which is at least as negative as—(6)'/'. But 4~/3= (2)' '. Therefore the only way in
which a blow up of the exponential can be avoided in
(A64) is for the roots of N to be precisely —(6)'/',
—(-')' ' (-')'/' Without loss of generality N may be
chosen diagonal. The limiting form of y(s) in this
special case is then

(2/12m) 4/' 0 0
y(0) =M 0 (2~'n)' ' 0 M. (A65)

0 0 0.

Since M and c2 are arbitrary (subject to detM=1) it
follows that any singular symmetric matrix having an
odd number of vanishing roots can be reached by a
geodesic. Matrices having two vanishing roots can be
reached (in a 6nite distance) from nonsingular points,
but only along paths which su6er in6nite absolute
acceleration at the frontier.

It is not difficult to obtain an expression for the
geodesic distance between two matrices y~ and y2 in M.
The geometry of j/J may be summed up in the compact
formula

APPENDIX 3: THE MAHIFOLDS M"' AND BR

In discussing these manifolds it will be convenient
to use an abbreviated notation which avoids the neces-
sity of writing integral signs or excessive numbers of
indices bearing various numbers of primes. This nota-
tion will be applicable to completely general manifolds
and, in fact, will be used again in the following paper of
this series in quite a different context, thus providing
additional justi6cation for its introduction here.

The functions y;/(x) will be replaced by the symbol
p'. More precisely, the symbol y is replaced by q, and
the quintuple (i,j, 'x, x,2x)2by the single index i In.

general applications the q's may constitute either a
6nite discrete set of real numbers or, as here, a set of
functions or "fields."When the index i has a continuous
character, the summation convention for repeated
indices will be understood to include integrations over
the continuous labels for which it stands. In this
Appendix no restriction will be placed on the range of
values which the indices can assume.

The q 's are "coordinates" in a manifold (M"' in the
present case) on which a group acts. Group elements
will be denoted by barred letters x, y, etc. and their
components in some coordinate system in the group
space will be denoted by S, y&, etc. For example, the
3-dimensional general coordinate transformation group
may be coordinatized by the functions x'(x) which
de6ne the coordinate transformation x' —+x'. In the
condensed notation the quadruplet (i,x',x',x') gets
replaced by the single index e.

The multiplication table of the group defines a set
of function(al)s F [g,x] satisfying

F [g,x]=(yx) . (B1)

For example, in the case of the coordinate transforma-
tion group this functional has the form

F' *[gx)=g'(x(x)) .

By virtue of the group postulates F [x,y] also
satisfies the following fundamental identities:

t=t' coshae, x=t' sinh/18, (A67)

which follows from (5.8). With the introduction of the
variables

FN[x, e]=F"[e,x]=x~,

F [x,x—']=F [x ',x]=e,
F [z,yx]=F [zg,x],

(B2)

(B3)

(B4)
this is converted to

ds'= —dt'+ dx', (A68)

which is formally just the line element of 2-dimensional
Minkowski space. Hence

O (yr, y2)
—= -', (S12)'= ——',(t1—t2)'+-', (X1—X2)'

2(2f 102 cosh&s12 fl f 2 )
= (16/3) (2 (yry2)»4 cosh[(3/32) 1/2e12]

1/2 p 1/2) (A69)
where 312 is given by (A41).

where e is the identity element of the group and x '
denotes the inverse of S. In the case of the coordinate
transformation group, we have e'(x) =x'.

Instead of dealing directly with F~[g,x], one more
often makes use of a set of auxiliary funcation(al)s,
together with the structure constants of the group.
These are defined, respectively, by

L"e[x]=(&F Ly x]/&g—e).
c~e~=—(82F~[g,x]/5geH&

PF [y,x]/trt/&bx—//), „, (B6)-.
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In the case of the coordinate transformation group one
finds L'; [x]=8',8(x(x),x'), while the structure con-
stants are as given in Eq. (4.17). In the case of Qnite-
dimensional Lie groups the functional derivatives in
(85) and (86) become ordinary derivatives.

By repeatedly differentiating Eqs. (32), (33), (84)
and setting various elements equal to the identity, a
number of important relations can be established.
Among them we cite the following:

L p[e]=8 p,

L—la L—1e — ge L—1P J—Iy
1 t op

(87)

q"=c'[s,q], (310)

where the function(al)s C'[x, p] satisfy the identities

(811)

c p,c'~i+ c ~,c'g p+ c )ac'py =0. (39)

In Eq. (88) the arguments of the funcation(al)s have
been suppressed, and differentiation is denoted by a
comma. L '

p denotes the matrix inverse to L p. In the
case of the coordinate transformation group it is given
by L "i [S]=8',5(x,x(x'))8(x')/~t(x').

As a result of the action of the group the variables
q' suffer a transformation which may be expressed in
the form

Kith these preliminaries out of the way the question
of imposing a, metric on the manifold of q 's may now be
considered. Let such a metric be denoted by g,,[p]. If
the group is to generate isometric motions in the mani-
fold then this metric must satisfy Killing's equation:

g"~,i&v'+g»&v". '+g'~&v', ~=o (819)

$ +i Ri +i$fa. (321)

and Eq. (820) says simply that g,, must transform
contragrediently to the Kronecker product y'q». This
is a necessary and su%.cient condition for the isometry
of group operations.

Now let dp' be an arbitrary displacement, with the
corresponding "arc length" ds given by

ds2= g;&'d

grady&.

(822)

If dp' happens to be orthogonal to the orbit of q under
the group then it satisfies the condition

with 5y' given by Eq. (815). It is not difficult to see
that this equation may be regarded as a group trans-
formation law for g,, :

egg
—=gg iby"= —g»R~;5( g,iR~—

,,"e$ . (820)

When the transformation law (315) is linear and
homogeneous, then

4"[y*,v]=c"[vP[*,~ ]]. E&' ad(p&'=0, (823)

Differentiation of (812) leads to

4',.[S,q]=R'p[C[x, q]]L—'P [z],
where

(313)

R'-[v]—=C",-Le, ~]. (814)

The function(al)s R' appear in the law of transforma-
tion of the y's under infinitesimal group operations.
Under the action of a group element having the co-
ordinates e +8), where the 8$'s are infinitesimal, the
q's suffer the change ds = g;~d P'd p~ (325)

and (322) gives directly the distance between neighbor-
ing orbits. In the case of the manifold 3f ', with the
metric (6.5) and the transformation law (316), (317),
the condition (823) takes the form

v"(d7,;.~—dv, ~.;)=o. (324)

More generally, the distance between orb p and
orb(y+dq) is given by

Sip'=R' 8$ (815) where d&' is the projection of dp' normal to the orbit:

(Functional arguments are again suppressed. ) For ex-

example, under the infinitesimal coordinate transforrna-
tion x'=x'+8)', the 3-metric y,; suffers the change

d+i (gi Ri +aPRk g„)d+j

YaP= gij+ e+ P ~

(826)

(327)

(328)

8y,,= R,,: 8("'d'x', (816)

where

R,,k
=—y,, ~8(x,x') —y»8, ,(x,x—') —y;~8,;(x,x') (817a)

(817b)

When the indices n, P include continuous labels the
"matrix" y p is tyipcally a differential operator (sum
of differentiated e f'unctions) and its inverse y P is a
Green's function.

Equation (325) may be written in the alternative
forms

(318) ds =g,zd p'd p~= g;zG p'd p~, (829)

If the transformation laws (810) and (314) are linear
as in this case, then R', , i,——0. (The reader should avoid
confusing differentiation with respect to the x's in the
explicit notation and functional di6erentiation with
respect to the q's in the compact notation. )

where
gz~'= gs~

—g;a~ ~'Y ~~ Pgi& ~ (330)

g;; is the metric in the manifold of orbits, and the ques-
tion arises how it transforms under the group. This
question is answered by establishing the following
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transformation laws:

hR' =R—' Sip&= (R'p, ,R' —c&p R' )5)p (831)

~Vap=&ap ifiV.' (c &aVvp+c &pVav)bk ~ (832)

&v.P=v.P—„~~'=(',V P+ce,v")~V. (»3)

It is straightforward to compute

gap= gij P,a'P, p Yyb a p)

gaA gAa= gij 'p, a+,A gijR pl/ a+,A )

gAB= gij'P, A &P,B gAB+ gAag gPB y

(840)

(841)

(842)

Equations (832) and (833) are corollaries of (819),
(827), and (831), while (831) itself is a consequence of

the identity
R' R&p—R'p R& =R' c&ap) (834)

where

gAB= gij+,A P,B )

g p=l Ip~pv& g g&p —g p

(843)

(844)

~'-=R'pL~jL "-L&3,

v'-A=R'p jL~l~jAL "-L*l,
(837)

(838)

~' p=R' LvÃj L9)L "I:*PL"p[*j
+R'vL~3L '"-.pL&], (839)

which are obtained by applying Eq. (813) to (836). In
the work which follows the arguments x, q, and s will
be suppressed,

which is obtained by differentiating Eq. (813) with
respect to aP, setting x= e, antisymmetrizing in ci and P,
and making use of (88). With the aid of (831) and
(833) it is straightforward to show that g;; transforms
just like g;;. This means that group operations are
isometrics of g;j just as they are of g;;, and suggests
that g;; is eQectively a function of orby alone. In order
to make this fact explicit a coordinatization of the
orbit manifold will be introduced.

This may be accomplished by first introducing a
hypersurface in the q manifold, de6ned by a set of
simultaneous equations

f-L~j=0,
where the index n ranges over the same continuum (or
discrete set, as the case may be) as the group indices.
The only requirement on the hypersurface is that it
intersect the orbit of every point contained in (at least)
some finite portion of the q manifold. A coordinate
system is then laid down in this hypersurface, with the
coordinates denoted by sA. If the hypersurface has been
carefully chosen each orbit will intersect it in a single

point, and the s's at that point may be used to label the
orbit itself. For example, in the manifold M ' one may
choose for the equations (835) the harmonic condition
(y'j'y"), ;=0; then any three of the functions ipAB(q)

of Eq. (5.3) may be chosen as the s's.
A general point in the q manifold will be reached by

moving off the hypersurface along (i.e., within) an orbit
thus:

&'I &p)=C"9' v'oLsjj (836)

where yo'Lsg is the starting point on the hypersurface.
The group coordinates x together with the s's provide
a new labeling scheme for the points of the q manifold,
and the task before us is to compute the metrics gij
and g;j in this new coordinate system. For this purpose
we shall need the relations

One then readily verifies that the contravariant metric,
with components g P, g "(=g" ), g"B, is given by

g'=g'+g"g. Ag"'g C", (845)

= —g gPBg

gA Cg ~A (847)

It is now easy to show that gAB and gAB (and hence
g"B) are independent of the x's. Thus, using (837) and
(838) one finds

/ ~

gAB, a gij, kg, A &P,BP,a+ gij (P,AaiP, B+P,AiP, Ba)
= (g,, iR"p+gi,;R"p,,+g,jR"p,;)

X &p' Aip', BL 'p (848)

But this expression vanishes by virtue of the group
transformation law for g;; LEq. (820)]. Since g,; obeys
the same transformation law it follows that

gAB, a (849)

That is, the metric gAB of the orbit manifold depends
only on the s's, as was expected.

For the study of geodesics in the p manifold the
following derivatives will also be needed:

/
gapV= gV, &'p, ,a p, p p,V+gijl, p, aV p,p+ 0', asap, pV)

=gaiL'. L ",,p+gpiHL ', (850)
/

gaA, P gijkiP, &P,,AaiP, P+gijl iP, aeiP, A+ iP, aiP, AP)

= gA, L&iL "p, . — (851)

dxp dsAd'xp d'sA dxp dx&

0=gap +gaA +I'p,. +21'pA.
ds ds ds ds ds ds

d2;A dsB
+ I'AB. , (852)

ds ds

d'x d'sB dx dxp xa de
gAa +gAB +I apA +2TaBA

ds ds ds dS ds ds

dP d2:~

+I'BcA, (853)
ds ds

where the I"s are the Christoffel symbols. Multiplying

These are obtained with the aid of (819), (837),
(838), and (839).

The geodesic equations in the p manifold may be
written in the form
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(852) by gA&g'", subtracting the result from (853) and using the fact that gAB, ——0, one obtains

d'za de dze dx" dx&

0=gAB +~BCA +k LgnA, p+gpA, a gap, A gAbg (gay, p+ gpss, a gap, y)g
ds' ds ds ds ds

dx" dz~

+PgaA, B gaBA , gAyg (gnPB+, gPB,a gaB,P)j +2L(gBag gPA), C+(gCng gPA), B (gBag gPC)A
ds ds

dz~ dz~—gApg'(gB-, C+gC-.B)3, (854)
ds ds

where the I"s are the ChristoGel symbols of the orbit manifoM. The terms of this equation can be regrouped by
judicious use of identities such as g B,A= (gn, g&~g») A and p~, Ag&p ———g&'g&p, A and by replacing derivatives of the
form g p, , and g A, p by their exPressions (850), (851).The final useful result is

d z dz dz dz~ dxt' dz~

gAB +TBCA +L(gAvg ),C (gCyg ),Aj gaP +gnB
ds ds ds ds ds ds

dx dkB dxp dkC dx f dxr dkB)
+lg7'. Al g.- +g,B ge +g«+gA, g"I'.(I- "p,-—I- "-.p) ~ gm +g»

~
(855)

ds ds ds ds ds k ds ds )
Now suppose the geodesic intersects one of the orbits orthogonally. The condition for this is Lcf. Eq. (823)$

which, when multiplied by L 'I', yields

%hen this condition is satisfied we have

R'pg;;d q 'jds= 0,

dx& dz~

gap +gnA 0 ~

ds dS

(856)

(857)

and hence

dz~ dz~ dx dz~ dx dxt' dz" dz~

gAB +2gaA +gap gAB
ds dS ds ds ds ds ds ds

ds =d8

(85S)

(859)

so that the arc length in the p manifold becomes the same as in the orbit manifold. Moreover, by virtue of (855)
it follows that the z's in this case satisfy also the geodesic equation in the orbit manifold,

dz~ dz~
=0

d z
gAB +1BCA

d8 d8 da
(860)

provided the orthogonality condition (857) is maintained along the entire length of the geodesic. But this is an
immediate consequence of Eqs. (850), (851), and (852), for by differentiating the left-hand side of (857) with
respect to s, one obtains

d'x~ d'z~ dxt' dx& dx~ dz~ dz~ dz~

gnP +gaA +gnP, y +(gaP, A+gaA, P) +gaA, B
ds ds ds ds ds ds ds ds

dxp dx& dxp dk" (' dxp dkA) dg&

g v2, pa +gpA, a =~ g~p +gw. ~1'.L 'n,;—, (861)
ds ds ds ds 4 ds ds ) ds

which vanishes by virtue of (857) itself. Therefore, if the geodesic intersects one orbit orthogonally then it intersects
every orbit in its path orthogonally, and, moreover, it traces out a geodesic curve in the orbit manifold.


