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Spin-Exchange Scattering in Uniform Magnetic Fields*f
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The role of a uniform magnetic 6eld in the collision of two one-electron atoms is analyzed using previously
developed density-matrix techniques. During the collision, all magnetic-moment interactions are small
compared to the usual singlet and triplet potentials, and the only eGect of the magnetic Geld is to alter the
asymptotic states. This effect may be described in terms of the unitary transformation which diagonalizes
the Breit—Rabi Hamiltonian. The properties of this transformation are given in detail for electronic spin —,

'
and arbitrary nuclear spin. In addition to presenting a general formulation for this scattering problem,
explicit formulas are given for spin exchange in the scattering of polarized beams from unpolarized targets.

I. INTRODUCTION

N theoretical treatments of spin-exchange scattering,
„„it is customary to ignore effects of the external
magnetic fields used in experiments. ' Because all
magnetic-moment interactions are negligible during
such collisions, the only effect of the field is to change
the character of the asymptotic states. The scattering
in the presence of an external magnetic field must
therefore be related by a suitable unitary transformation
to that which occurs in the absence of the field. It is the
purpose of this paper to exploit this simple idea to
obtain an improved theory of spin exchange. ' The
starting point will be the general theory already
developed by one of the present authors, which was
formulated independently of the particular properties
of the initial and final states of the collision. '

In Sec. II we show how the unitary transformation
which diagonalizes the Breit-Rabi Hamiltonian for a
single paramagnetic atom plays a role in the collision
of two such atoms. The details of this transformation
for the case of electronic spin —,

' and arbitrary nuclear
spin are then given in Sec. III in a form suitable for
this problem. Finally, explicit cross-section formulas are
obtained in Sec. IV for the case of the scattering of a
polarized beam of atoms from an unpolarized target.

II. FORMULATION OF THE SCATTERING
PROBLEM

The interaction of two paramagnetic atoms may be
written as

H=H~(1)+H~(2)+V(12), (2.1)

where Hz(1) and Hz(2) describe the free systems and
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V describes their interaction. We consider collisions in
which V causes transitions between eigenstates of
H~(1)+H~(2). The main difference between this and
earlier treatments~' is that the free Hamiltonians now
include the interaction energy associated with a uniform
external magnetic field, i.e.,

H~ =E+HDR, (2 2)

V= +Vs(rrs) &s,
8

(2 4)

where I'8 is the projection operator for states of total
electronic spin S, r~2 is the interatomic separation, and
Vs(ris) is the static potential defined in Born-Oppen-
heimer approximation.

The problem as stated above neglects all dynamic
spin-spin interactions between the two atomic systems,
and also neglects the modification of the Breit—Rabi
Hamiltonian which occurs when the atoms approach
one another and become distorted. The justification
for these approximations is the observation that the
potential V~ induced by the Coulomb interactions are
much larger than the neglected interactions over
extended regions of space. It should be pointed out,
moreover, that the neglect of these eGects, and the
resulting assumption that V has the form (2.4), does
not, represent an essential change in the previous
formulations of the scattering theory for two para-

4 E.M. Purcell and G. B.Field, Astrophys. J. 124, 1542 (1956).
5 J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956).
6 A. Dalgarno, Proc. Phys. Soc. (London) A262, 132 (1961).
7 It is very dificult to make a quantitative estimate of such

egects, but some recent work of one of the present authors is
helpful in this connection: James F. Walker, New York University
Technical Report N67-2, 1967 (unpublished) .
11

where E is the kinetic energy and H&R is the Breit—Rabi
Hamiltonian for an atom

Hnn=cs+b Js+cIs+A J E. (2.3)

Here a is the energy of the atom in the absence of the
hyperfine and Zeeman interactions, J and I are elec-
tronic and nuclear spins, b = —gJppC and q = —glp~
with gJ and gq electronic and nuclear gyromagnetic
ratios, po the Bohr magneton, X the external magnetic
field, and A the hyperfine coupling proportional to
gJgg, The interaction V is, on the other hand, the same
as used heretofore,
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magnetic atoms. The main change here is rather the
extension to the case b/0, cWO in (2.3).

For suKciently large r», Hz(1)+Hz(2) dominates
V, and the change DH&=b Jo+cIo induced by the
magnetic 6eld affects the character of the initial and
final states. Indeed, this is the only change, since
Haa(1) +Hn@(2) is, according to (2.3), independent of
r~2. Furthermore, it will be shown in the following that,
because of the simple form assumed for V in (2.4), it
is possible to take into account this alteration in
asymptotic states without recalculating any scattering
amplitudes, simply by introducing a suitable unitary
transformation.

Vfe now develop the role of the unitary transforma-
tion connecting the diferent sets of asymptotic states
for this type of scattering problem. The Hamiltonian
(2.1) is written as

H =Ho+Hi+ V,

H, =Z(1)+Z(2),
Hi =Hna(1) +Hna(2) .

We observe that
I Hi, Hoj=0 and that LHi, Vq)=0,

the latter being essential to the theory, as discussed
above. The scattering is described by the basic relation

p»c=gp|ng t, (2.8)

regardless of whether H~=O or not. In this relation p;„
is the density matrix for the initial states (before
collision), p„ is the density matrix for the final states
(after collision), and g is a scattering operator which
depends on Ho, V, and to some extent on H~. It is in the
limit that the Hi dependence of g is negligible, that a
recalculation of g is unnecessary. If both atomic sys-
tems have spin 2, for example, then

g =P,+I'.a(1) ~ a(2), (2.9)

where the d's are Pauli operators, and F~ and F, are
related to the familiar singlet- and triplet-scattering
amplitudes fo and fi by the relations

Pd= 4fo+ 4fip (2.10a)

P.= 4fo+ 4fi— (2.10b)

As we will see in the following, these amplitudes f8
may be obtained by solving the Schrodinger equation
with Hamiltonian E(1)+E(2)+VB(r»), i.e., with-
out Hi.

VVe apply these ideas to the problem of expressing
the cross section for a transition between states pand»
f». of the Hamiltonian Ho+Hi. The notation used here
is that

I p») and
I g») are corresponding eigenstates of

Ho and Ho+Hi, respectively, i.e.,

Ho
I A)=«(u) I 4), (211)

(Ho+Hi) I 0») =o(p) I P»), (2.12)

The transformation between these states is unitary:

U
I e.(«(p)))= I &.(o(p))»

UtU= UU ~=I.
(2.14)

(2.15)

P(g„(o) )=UP(y„(o 6„))U".— (2.20)

This implies that (2.17) may be written

~(p p)=»IP(&'(o ~'))gP(4»(o ~»))g'3
(2.21)

where
g'= U tgU. (2.22)

In other words, the scattering in the presence of the
Hamiltonian H& may be considered to occur as if H&

did not exist, but with a suitably modified scattering-
amplitude operator, i.e., Eq. (2.22) . This statement
should be modi6ed slightly by the observation that the
energy of the final state P» in the process described in
Eq. (2.21) is different from the energy of the initial
state P» when d,»Nh» . This is simply a reflection of the
fact that the channels P» and fm»ay have different
kinetic energies even though their total energies are
equal. Although the energy-nonconserving process
(2.21) is not physically realizable, it differs very little
from the actual energy-conserving scattering. This is
because the energies h„are extremely small compared
to the energies involved in the scattering process, and
probably small compared to the energy resolution of
the experiments. It is with this in mind that we say
the original process is equivalent to scattering in the
absence of Hi with amplitude g'. We can state the
result (2.21) in more general terms by rewriting (2.8) as

where
pso =g p'ingI I I /t

p; '=Utp;„U,

p.,'= U ~p..U.

(2.23)

(2.24a)

(2.24b)

Note that although the unitary transformation changes
the energy of the state, it leaves the kinetic energy
unchanged, i.e.,

(4. I Ho I 4.)= Q. I Ho
I 6) (2 16)

The cross section for the transition f» +P» i—s'

~(p~J ') = »LP(4'» (o) )gP(A(o) )g 'j (2 17)

P(p») is the projection operator

P(~.) = l~.)Q. I. (2»)
This projection operator is related by (2.14) to the
corresponding projection operator in the H& ——0 basis,

P(~.) =
I ~.)(~. I, (2 19)

by the relation

where

o(p) =«(p) +~»,
~.=(~. IH. I~.).

(2.13a)

(2.13b)

Because of the energy-shifting nature of U, the various
spin states in the new density matrices p;

' and p„'
will have energies which differ from one another by
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small amounts. These eGects may be neglected by the
same reasoning as above. Therefore, in this more general
case, the scattering in the presence of II& may still be
considered to occur in the absence of H& with amplitude
g' given by (2.22), and with the same distribution over
p of states

~ P„)as exist for
~ it„) in the original problem,

1.e.)
Q. I

p*-'
I &» )—= (6 I I '- I &'). (2 25)

The same can be said for the scattered density matrix
p„. Therefore, the result of performing an experiment
with IIr present and scattering amplitude g is a dis-
tribution of states

~ P„), which is the same distribution
one would obtain for the states ) p„) for an experiment
with IIr absent, and scattering amplitude 8' given by
(2.22) .

In the presence of strong magnetic fields, the trans-
formation U goes into the identity transformation.
Therefore, the above theory relates the scattering at
intermediate 6elds to that for strong 6elds.

It is also possible to diagonalize the zero-ield form of
K simply by vector addition, which transforms the
states

~
IMI, JMs) into states of de6nite Ii, M where

F=I+J, (2.26R)

M =Mr+Ms. (2.26b)

B=QhsR(M), (3.1)

where M ranges from —(I+sr) to +(I+sr). For
~
M

~
=I+s, hsR is one dimensional and already

diagonal; for
~
M I

&I s, hjsR is—two dimensional:

(rr(M) y(M) )
hs„(3II) =i t (3.2)

6(M) P(M))'

III. UNITARY TRANSFORMATION FOR THE
BREIT-RABI HAMILTONIAN FOR J= g~

In this section we discuss the unitary transformation
which diagonalizes the Breit—Rabi Hamiltonian for the
case J=—,'and comment brieQy on the situation for
J&~. Breit and Rabi' obtained the eigenvalues of
(2.3) in 1931; the expansion coeKcients for the eigen-
vectors in terms of the uncoupled-spins basis were
given by Torrey in 1938.' Our main objective here is to
reformulate their results in a form suitable for applica-
tion to the scattering problem discussed in the previous
section.

The basis for uncoupled spins J and I is labeled by
the eigenvalues Ms and Mr. Because LH&rt, J'3+Is]=0,
M MJ+Mr is a good quantum number, and H&R is
reducible into a direct sum

Denoting this unitary transformation by

Up =—U(X=0), (2.27)

with
n =a+-s'b+ (M——,') c+p (M——',) A, (3.3a)

the intermediate-6eld problem is related to the zero-
ield problem by the unitary transformation

P =a ,'b+ (M—+--', )c ', (M+-',—) A-, (3.3b)

y =-'AL(I+-')' —M']'". (3.3c)

since
0= UUpt, (2.28)

I it.(&) )= UUo'
I &.(o) ) (2 29)

Any 2&(2 matrix can be expanded in terms of the
identity matrix and standard Pauli matrices
dp = (o'po1, o'pisi, o'pisi) .Therefore, h+R may be written as

where
g'=F,+P.d(1)' d(2)', (2.30)

In order to apply this formalism to the collision of
paramagnetic atoms, we have to 6rst obtain the unitary
transformation U associated with the basis change
(2.14); this will be done in Sec. III. Next we must
evaluate g' and then investigate the consequences of
either (2.21) or (2.23); this will be done in Sec. IV.
The determination of g' is especially simple; from (2.9)
we 6nd that

h~R=PTI+p(opt'i sins+op&N coss)], (3.4)

T—=—,'(rr+P) =a—', A+Mc, -
P=(A/I A |)L(~—p)'/4+v']'"

=-,'(I+y) At 1+2Mx/(I+-,') +x']'Is,
x—= (b —c) A/(I+-', ),

(3.5a)

(3.5b)

(3.6)

tans =y/~r (a—P) =L(I+-') '—M']ri'/PM+x(I+-, ')].

and

d(1)'= U(1) 'd(1) U(1),
d(2)'= U'(2) d(2) U(2),

U U(i) U(2).

(2.31a)

(2.31b)

(232)

tans = sinsp/(cossp+x),

cossp=M/(I+ ',), 0&s,&~. -

(3.7a)

(3.7b)

(3.7c)

The relation (2.32) is implied by the additivity property
of Ho and H~. The fact, that Ii~ and Ii for the actual
scattering amplitude g are the same as for g', is a result
of the neglect of spin-dependent interactions —implied. ,
as previously stated, by the choice (2.4) for V. It must
be qualiied by a statement similar to that made
following (2.22), to the effect that energy shifts of the
order of h„are negligible for the processes considered.

The subscript P has been introduced in order to dis-
tinguish dp from the Pauli operator for the electronic
spin in this case (J=-',), d=2J. It may be noted, in
this connection, that d has matrix elements between
states of different M=Mg+Mr, whereas dp in (3.4)
does not. The subscript zero in (3.7) indicates the

P G. Breit and I. L Rabi, Phys. Rev. 38, 2082 (1931),' H. C. Torrey, Phys. Rev. 53, 384 (1938).
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case K=O. The parameters T, P, and s appearing in
(3.4) are determined by the physical parameters M,
K, and A, which have all been suppressed above.

From (3.4) we see that h»a may be diagonalized by a
particular rotation of the coordinate axis in the three-
dimensional space associated with the components
gp', g~', t7p(@; this is a rotation about the 2 axis
through an angle s:

ov'&'& =&rv&'& coss+op&'& sins,

op'&'& = —ov&'& sins+oi &" coss,
'() — ()

(3.8a)

(3.8b)

(3.8c)

The eigenvalues of hnn are obviously T+p, and this
yields the famous Breit—Rabi formula when (3.5) is
used for T and p. More important here is the corre-
sponding unitary transformation'

cos2$
N(s) =I

sing s

—sings

cos2$

in the notation of (3.9) .
'~ The rows and columns of I will be labeled by the integers

v, v'= ~1:u, in such a way that e11 is the upper left element in
(3.9).

"M. E. Rose, Efemegtary

Thorny

of Aaglfar Moraeetlrw (John
bailey R Sos, Inc. , ¹wYork. , 1957), p. 71.

with the property It&a'&'&N=ov&s&. Of course, N(s) is the
signer rotation matrix &f'Is(s) =D'Is(0, s, 0) for spin-
—,'." To diagonalize the complete Breit—Rabi Hamil-
tonian (3.1), the direct product must be used:

U(X) = else(M, K) . (3.10)
M

For
I
M

I =l+s, I is the one-dimensional identity;
for

I
M

I
&I——',, I is given by (3.9), which describes

the rotation of a pseudospin about the 2 axis through
the angle s(M, K). A physical interpretation may be
given to the angle s by calculation of the expectation
value of the real-spin vector in an eigenstate of l'si&a (M):

(d) = & coss(M, K) es, (3.11)

where the ~ sign refers to the two eigenvalues in the
Breit—Rabi formula.

In the particular case X=0, the unitary transforma-
tion (3.10) must reduce to that familiar from the vector
addition of two angular momenta. Indeed, the phases
in (3.9) have been selected to be in accord with the
Clebsch-Gordan coefBcients of Ref. 11.The pseudospin
rotation angles appropriate to zero field ss (M) —=s (M, 0)
are given by (3.7c), and a,re independent of the hyper-
fine-coupling parameter A. As discussed in Sec. II,
the unitary transformation from "weak" fields (3&0,
K=O) to arbitraryfields (AWO, XAO) is U(K) Ut(0).
Applying the results of this section, this transformation
may be written

U(X) U t (0) = lire(s(M, X) s(M, 0) ), (3.12)—

It would probably not prove fruitful to attempt to
extend this simple description of the unitary trans-
formation to electronic spin J&-,'. For the case J=~
one depends essentially on the connection between the
three-dimensional rotation group and the two-dimen-
sional unitary group, i.e., on the equivalence of (3.8)
and (3.9). For J&is this correspondence no longer
holds, and it becomes necessary to diagonalize matrices
with dimension as large as (25+1). More generally,
hi&it (M) is a matrix of order g(M), where

g(M) =21+1 for
I M

I
+I—J

for
I M

I
&I—J

IV. CROSS SECTIONS FOR SPIN EXCHANGE

The cross section for any collision between para-
magnetic atoms may now be calculated since the
unitary transformation required to obtain the scat-
tering-amplitude operator b of (2.30) is available in
(3.10). In particular, the transformed Pauli spin
operators (2.31) are given by

(v'M
I &rs

I vM) =4r.&&e g Nt(M), ."v N(M) „-„,

and
(4.1a)

(v'M'
I (~,'+s~, ')/VZ I,M)

=~&4r,sr+i Q se t (M+1). .."+su(M),- „, (4.1b)
v/I

where N(M) „„ is the matrix given in (3.9) for v, v'= &1,
and zero otherwise. The representation used in (4.1)
and throughout the remainder of this section is that
appropriate to two uncoupled spins, i.e., I vM) is the
eigenfunction of J3 and I3 with eigenvalues —,'v and
3f——,'v, respectively. "

"The quantum numbers v and 3I may still be used when the
spins interact according to the Breit—Rabi Hamiltonian because
the eigenvalues of (2.3) are continuous functions of the parameters
A and K. Although M retains its meaning as the eigenvalue of
Js+I3, v will generally distinguish the two signs of the radical in
the Breit —Rabi formulap i.e.,

Ena(M) = T(M)+vP(M), (v=+1, i M (AI+-,')
in the notation of (3.5).Therefore we may define a state ~v, M; X)
for arbitrary X, which (a) for X=O, is an eigenfunction of &
with eigenvalue given by

] M &v-I+
=I+-'„

i M
i
=I+-'„.

(b) for 3!= c, J3 and I3 are separately diagonal and s = +23fg
for x—+&, i.e.,

i v, M; X)-+i v, M ), x—++ ~
-+) —v, M), x~ —~.

The connection with the notation of Sec. II is that II,, for exam le,
in (2.21), has been exphcitly written as v(1), 3II(1), v(2), M 2),

(3.13)

f» I& ~ F&&r
(
M

I
=I+J—1 one may still follow the

spin-2 approach, since g=2 in this case for arbitrary J
and I.
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As an illustration of this theory we consider a situa-
tion similar to that studied in Ref. 3, in which polarized
atomic beams are scattered from unpolarized target
atoms. For simplicity the atoms will be assumed not
to be identical. Upon averaging over the initial and
summing over the final target states, (2.21) becomes an
equation relating the (transformed) initial and final
density matrices for only the incident atoms:

(4.2)

Equivalently, the cross section for the transition
vM—+v'3f' for the incident beam is

fo«ith«
I
M

I
» (

M'
)
=I+-,', and

F(1M; —1M)

= sin's(M),

F(1,M+1; 1, M)

(4.10)

=2 cossPs(M+1) j sin'L-', s(M) j, (4.11a)

F(—1, M+1; —1, M)

=2 sin'$-,'s(M+1) $ cos'L-', s(M) $, (4.11b)

F(1,M+1; —1, M)

=2 cos'L.",s(M+» j coss(-,'s(M)], (4.11c)

I'( —1, M+1; 1, M)

a(vM, v'M') =a„„"arrr ir ) Fg )'+6(vM, v'M')
~

F ~',

(4.3)
where"

=2 sin'Lsrs(M+1) j sinsLsrs(M) j
for

(
M ) & [

M'
[ &I—',.

(4.11d)

6(vM, v'M') =—Q TrLa. F(vM) a, 'F(v'M') ), (4.4)

~(vM, v'M') = g )
(v'M'

)
~„'

[ vM) P. (4.5)

All that remains before obtaining the final form for
a (vM, v'M') is to substitute (4.1) into (4.5). We will
omit these calculational details and only give the final
result. Taking advantage of the symmetry property
apparent from (4.5),

6(vM, v'M') =4(v'M', vM),

a(vM, v'M') =L) Fd ~'+ c»'s(M)
) F.~'j&„4ria

(4.6)

+F(v, M; v', M')
) F, )', (4.7)

and F (vM) is a projection operator for the uncoupled
basis. By evaluating the trace in this basis and intro-
ducing the spherical components" a '(m=1, 0, —1),
(4.4) becomes

It is not dificult to verify that (4.7) reduces in the
appropriate way to the previously given strong- and
weak. -field limits. ' For strong fields x=& , v = &2MJ,
and s =0, rr. Then (4.7) reduces to

a„(MrMr, Mr Mr ) =
(~ Fd, ( + )

F. )') 4r, sr, arrr, jr;
+24tsr r'('firjrz', ~z—i+~is'z', ia'z+t) I Fv I ~ (4 12)

where a (MrMr, Mr'Mr') is a.(+vM, &v'M') for
g= + oo. For weak Acids,

~
M

~

WI+-'„
F=I+srv and s=sp, using (3.7c) for sp we can easily
demonstrate that (4.7) is equivalent to

ap(FM, F M') =bvv 4rM 1F~ I

+(I+a) 'L(F+s) (F'+s)+s( —)' "+'I(I+1)]
&& (FM, F' M'

~

1 M —M—') '
~

Fg (' (4.13)

where ap(FM, F'M') is a (vM, v'M') for X=0. Finally,
the coefficient A(vM, v'M') of (4.3) satisfies the sum
rule

where the dependence of s on 3C and A has been sup-
pressed and I', which has no diagonal elements, is
given in terms of simple trigonometric functions:

L2(2I+1)$ ' Q Q 6(vM; v'M) =3. (4.14)
v3f vI3fI

F(1,I+,'; 1, I—sr) =2 sin'L-,'s(I ———,') j,

F(1, I+2, —1, I—s) =2 c»'Ls~(I —p) j
(4.8b) a =L2 (2I+1)]—' Q Q a (vM, v'M')

vM vf'MI

This implies that the cross section for completely
unpolarized scattering (unpolarized incident beam as

(4.8a) well as unpolarized. target) is independent of all spin
couplings:

F(—1, —I—-'„1, I+-,') =2 cos'L-', s( —I+—-', ) j,
(4.9a)

F(—1, —I——', ; —1, —I+-,') =2 sinsLsrs( —I+-,') j,
(4.9b)

13 Equations (4.2) and (4.3) above are the analogs of Eqs.
i2.14} and (2.13) of Ref. 3. No detailed derivation of these
equations is given here because the general development of Sec.
II of Ref. 3 applies.

"M. E. Rose, Ref. 11,p. 71.

=
/
F, /+3[ F.[. (4.15)

In conclusion, we see from (4.7) that the measure-
ment of spin-exchange cross sections in the presence
of a magnetic field can not yield any additional informa-
tion over that available from measurements in either
weak or strong Gelds. Thus, if one scatters polarized
beams from unpolarized targets, only ) Fa (

and
)
F

can be determined. The presence of the magnetic Geld
does not afford an opportunity to obtain the relative
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phase of Iiz and Ii„ for example, simply because the
colliding systems have negligible interaction with the
Geld during the scattering process. "On the other hand,
the dependence on magnetic Geld of various cross

'~ The "complete" determination of the scattering amplitudes
at a particular angle requires measuring the scattering of polarized
beams by ]&olarized targets, since the unpolarized scattering (4.15)
gives ( Fe "+3

( F ~' and the depolarization (or spin exchange) of
a polarized beam by an unpolarized target is proportional to

~
F,

~
. For example, the scattering amplitude in the triplet spin

state is, according to (2.10), f~= Fs+F„and thus contains the
interference between Ilq and Il,.

sections, such as (4.7), can be used by experimentalists
to check the consistency of measured cross sections and
the assumptions of the present theory. By varying X,
the relative importance of the spin-exchange process
Las compared with the 8„8srsr term in (4.7)j can also
be changed.
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Large-Z (nuclear charge) expansion theory is applied to the nonrelativistic ground state of a one-electron
ion which is perturbed by a repulsive central Geld potential which goes as the Eth power of the radial dis-
tance oi the electron from the nucleus where N is an integer (N = —1;N 2 1) . The energy-expansion parame-
ters for these problems are determined self-consistently within the asymptotic method itself. General
recursive relations for the wave-function expansion coefficients in the basic asymptotic expansion and the
stretched solution are obtained. For the case of X=1, the wave function and the energy expansion are
obtained explicitly through third order. For E= —1, the basic asymptotic solution is the exact solution. For
r large, a few terms of the conventional large-Z perturbation-theory expansion for the S=—1 case give an
inaccurate representation for the exact wave function. The relative error associated with Grst-order per-
turbation-theory expectation-value results is shown to increase as the operator probes the outer part of the
atom to a greater extent.

I. DISCUSSION OF THE PROBLEM

N a previous paper' (I), the large-Z asymptotic
. , method (Z is the nuclear charge) was applied to the
many-electron atom or ion. It was pointed out that
differences exist between conventional perturbation
theory' 4 and the asymptotic method. It was also
suggested that the energy-expansion parameters, which
were considered in I as input quantities determined
either by perturbation-variation theory or from experi-
mental data, should be determined self-consistently
within the asymptotic method itself. In order to clarify
some of the above ideas and to see how the asymptotic
method works for a simpler more transparent problem,
we have applied it to the nonrelativistic ground state
of a one-electron ion of large Z which is perturbed by a
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repulsive central field potential which goes as s~ (s is
the distance in Bohr radii of the electron from the
nucleus; E is any positive integer or —1).

The Schrodinger equation for an S state of a one-
electron ion with a nucleus of charge Z which is per-
turbed by a repulsive central Geld potential of the form
Xs~ with E an integer and X the coupling constant, can
be written in dimensionless form,

,'(dQ/ds') s '—(d-P/ds) —(Z—/s)
—P+),st= Ef, (1)

where Z is the energy of the system in atomic units
(approximately 27.2 eV) . In the limit X~O, P~e z', and
E—+——,'Z' for the ground state. In the conventional
large-Z perturbation theory, we make a transformation
of variables $=Zs and Eq. (1) becomes for 4'($)

1d2% 1 d%
I P+ = —+ (2)

dP g d] P Z&+sl Zs

Thus from the $ form of the equation, it is observed
that the natural perturbation-theory parameter for a
perturbation s~ is e=X/Z~+'. Therefore we look for


