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A generalization of the method of polarized orbitals is introduced to calculate the scattering of electrons
from diatomic molecules in the Born-Oppenheimer (fixed-nuclei) approximation. The molecule is described
by a single-center expansion which in lowest order is spherically symmetric and therefore an atomic-like
function. This function can be polarized in complete analogy with an atomic orbital. Furthermore, the first
approximation beyond the spherically symmetric can be included to give a permanent distortion correction.
In the s-wave results, the induced polarization effects are larger than the first-order correction. The p-wave
phase shifts are in some cases much larger than the s wave, and very complicated by virtue of the combined
effects of exchange, polarization,and first permanent distortion. The method also yields, as a by-product of the
polarizability of Hs*. The first part of the paper contains a general analysis of the partial-wave expansion
from diatomic molecules in the Born-Oppenheimer approximation. The scattered amplitude is given in
terms of phase shifts which are independent of the angles between the internuclear axis and the incident
direction. The dependence on these angles is shown to be factorable and analytically expressible independent
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of the dynamical problem.

I. INTRODUCTION

OR atoms (or atomic ions) whose polarizabilities
are not too large, one may fairly say that the chief
theoretical ideas are in hand which are necessary for
the calculation of low-energy scattering of electrons
from them. These ideas can be described as the con-
sistent incorporation of exchange and polarization. In
the case of electron scattering from diatomic molecules
(or molecular ions) one has, in addition to the above
effects, the further complications which arise from a
two-centered target and its additional degrees of free-
dom. The simplest approximation to make with regard
to these additional degrees of freedom is that they are
frozen out. This is what we shall do throughout this
paper, so that we assume the nuclei are fixed in space,
neither rotating nor vibrating; and this is what we
shall mean by the Born-Oppenheimer approximation.
Although the introduction of such an approximation
at the very outset does not allow one to see how it
develops from a theory in which the nuclear motion is
included, it is quite clear that for all but the smallest
energies such a fixed-nucleus approximation must be
realistic. Specifically, for electron velocities large com-
pared to the rotational and vibrational velocities of the
nuclei, all of the interaction takes place while the
nuclei are essentially fixed in space. In terms of energy
this condition reduces to

> (m/M) E, .,

where k2 and m are the (impacting) energy and mass of
the electron, and M, E,, the mass and (nonelectronic)

* Work done while a National Academy of Sciences—National
Research Council Resident Research Associate.
t Present address: University of Connecticut, Physics Depart-
ment, Storrs, Connecticut.
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energy of the molecule. For most diatomic molecules
this means that the fixed-nucleus approximation should
be valid in some meaningful sense for impacting energies
above as little as 1073 eV,

The natural approach to the fixed-nucleus approxi-
mation is the use of a two-centered coordinate system,!
i.e. an ellipsoidal coordinate system, in which the two
foci correspond to the equilibrium positions of the
nuclei. However, unless the effective potential in which
the scattered electron moves is separable in these
coordinates, the technical difficulties of working with
such coordinates more than offsets any apparent
geometrical advantages they may appear to contain.?
Yet it is clearly naive to expect that the effective
potential seen by the scattered electron will be separable
in these or any coordinates if accurate account is taken
of the interaction with the orbital electrons.

In addition to the disadvantages of an ellipsoidal
system one can invoke good physical arguments in
favor of a spherical coordinate description, if one
assumes that the internuclear separation is not too
large. For in that case the paths of the orbital electrons
will tend to encircle both nuclei and thereby present
the incoming electron with a charge cloud, somewhat
distorted to be sure, but not too much unlike, quali-
tatively speaking, the kind of cloud it would see if the
target were an atom. Particularly if the energy of the
incoming electron is small can we be sure that its long
wavelength will not allow it to probe the detailed
structure of the molecular core.

The chief idea of the method we shall present here
is the utilization of such a spherical coordinate system

17, F. Fisk, Phys. Rev. 49, 167 (1936) ; H. Stier, Z. Physik 76,
439 (1932).

2 H. S. W. Massey and R. O. Ridley, Proc. Phys. Soc. (London)
A69, 659 (1956).
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to describe both the target molecule and the scattered
electron so that we may exploit to the maximum extent
all the analogies of the resultant description with
electron-atom scattering. This includes both exchange
and polarization. In addition we can include, at least
for the case at hand, the main specifically molecular
permanent distortion effect of the axially symmetric
molecule and treat it in close analogy with the induced
polarization effects. For this reason we shall call our
approach ‘“‘the method of polarized single-center
orbitals.”

The application which we shall consider is electron
scattering from Hy*. This experimentally somewhat
inaccessable target is obviously motivated by its sim-
plicity, being the only one-electron homonuclear di-
atomic molecule (aside from isotopic variations) that
there is. At the price of not being able simply to com-
pare with experiment, we have the advantages of a
two-electron problem with the rather simple and well
calculated single-center expansion of the one-electron
target molecular ion available.?

As stated above, the method that we shall project
assumes that the nuclei are fixed during the whole
scattering process (Born—Oppenheimer approximation).
Within this idealization we further make a partial-wave
analysis. This causes some complications on two ac-
counts. First because total angular momentum is not
conserved in the Born-Oppenheimer approximation,
there is coupling among different partial waves. Second
there is a parametric dependence of the scattering on
the angles describing the orientation of the internuclei
axis with respect to the incoming direction. This is a
general problem* in which, in our opinion, the previous
literature has been misleading in that it gives the
impression that the only correct way to solve this
problem is for the phase shifts to depend parametrically
on those angles. However, we shall show that one can
consistently set up the dynamical problem to be inde-
pendent of those angles, so that they enter the scattered
amplitude as geometrical factors which may be com-
puted independently of the phase shifts. All these
matters will be the subject Sec. IL.

In Sec. III we deal with the actual method of polar-
ized single-center orbitals and its application to e—Hs*
scattering, deriving the radial equations for s and p
partial waves. Section IV presents results in an ascend-
ing sequence of approximations which we are naturally
led to consider. The section concludes with a discussion
of further generalizations and applications of the method.

3 M. Cohen and C. A. Coulson, Proc. Cambridge Phil. Soc. 57,
96 (1961); A. Temkin, J. Chem. Phys. 39, 161 (1963). The
coupling term in Eq. (2.4) contains a typographical error. Func-
tions used in the present application were kindly computed by
I-Il.ggsa)tl:)]inovitch [&., H. Rabinovich, J. Chem. Phys. 43, 3144
( 4 Ct., fxowever, A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc.
(London) A256, 540°(1960). They have considered the scattering
problem from the complementary point of view of the target
being a rotator with angular momentum. This gives a natural
approach to the problem of rotational excitation; however, within

the framework of their method it is more difficult to include the
specific interactions between the incoming and orbital electrons.
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II. PARTIAL-WAVE DECOMPOSITION OF THE
SCATTERED WAVE IN THE BORN-
OPPENHEIMER APPROXIMATION

Let the direction of the incident electron beam define
the z axis of a laboratory-fixed coordinate system, and
let the internuclear axis of the diatomic molecule de-
scribe the z axis of a body-fixed coordinate system. In
the following we shall always use primes for coordinates
in the laboratory-fixed coordinate system and unprimed
coordinates for the body-fixed system. Let us further
remind the reader that whereas it requires only two
(spherical) angles to define the direction of a vector in
space with respect to a given coordinate system, three
(Euler) angles are needed to define one coordinate
system rotated with respect to another.

Now let us write the most general expansion of a
wave function of the scattering electron. Such a function
will depend both on its coordinates r in the body-fixed
frame and on the orientation of that frame with respect
to the laboratory frame. Thus we can write

Y(r)=r Z “limi.lfmmi’(r)

€,7,4/
X yl.'m.' (Q) gDm,m,-'(lj)*(leO; 60, 'YO) .

This expansion is general because the Y, and the
D P, the latter being the rotational harmonics® are
complete sets in their respective spaces. We have
written ¥ as a function of r rather than r’, because
the Hamiltonian, in the Born-Oppenheimer approxi-
mation, is a single (operator) function of r, which is
independent of the Euler angles ag, By, ¥o. Thus any
reasonable equations that one will derive for the func-
tions ;i (r) [=t1m;,1;m; (r)] will be independent of
the 7, 7/ indices. In particular the asymptotic forms of
the functions will give rise to phase shifts which are
independent of 7, 7/ indices:

(2.1)

lim Ui, 55 (7’) =k—1Am,~m,‘m1'(lili) sin(/er—%(vrl;) +771.-m.' )'

>0

(2.2)

(In the above we assume that we are dealing with
non-Coulomb forces so that the #;,,, are ordinary phase
shifts.®) On the other hand, the amplitudes A, m &4
can depend on 7, j/; in fact the Ammm 4 are de-
termined by the condition exp(ik-1r’) —¢(r) contain
only outgoing radial waves in #’. To evaluate the above
expression it is necessary to write the spherical angles
of rin the laboratory coordinate system. The necessary

5 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957). The
D functions unfortunately have no universally accepted name;
we here propose the name “rotational harmonics” for them. Aside
from normalization they are identical to the D functions used in
A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050 (1964).
The phase of these functions is given in an explicit form there.

6 We here concede, particularly to our British colleagues, in
calling phase shifts # rather than 8. This concession has been
necessitated by the double subscript notation in order to avoid
confusion with the Kronecker delta which is also used throughout
this paper.
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transformation is given by®

Yl-'m.' (9) = Z] Yli"h" (Q,) gDm»;’mi(li) (ao, :307 'YU) . (23&)
Substituting (2.3a) into the asymptotic form of (2.1)
and collecting the coefficient of the ingoing radial waves,
we find the condition that must be satisfied in order that
this coefficient be zero is (o=, Bo, Vo) :

Z eXP( —imim.') Amim;m,"(mi)iomi'mi a( @0)

mg,mj,mj’

X Dmjmio W% (Bo) =1 4w (20,4-1) 1281, 1,0mi0-  (2.3b)
A sufficient condition for this to hold is
Aoy V) =4[ A (21,41) T2
X exp (1M1;m;) Omim;Om;odu;1;-  (2.4)

The verification of this relies on the relationship®

ZQm;'mi(l)(go)SDOm;(l)*(@U) =60m:"' (2'5)

We can thus characterize the amplitudes Ay m m; 44
by a single superscript /=1;=1;. With this simplification
the outgoing wave has the form

lim[y—exp(ik-1') ]

=[exp(ikr)/r1{[1/2ik] ZZ,[4W(21+1)]1/2[Z exp(2i11im,)

X“Dmi 'mi ® ( @0) :DOM;' o ( @0) _67"4‘ '0:] Ylmi’ (Q,) } (2'63‘)
=Lexp(ikr) /7] 2 fini: (80) Vimir (), (2.6b)

where fi,m,(Bo) 1is, aside from ¥,.,, the quantity in
curly brackets in (2.6a). This expression can be re-
written in a more familiar form if we use the expression

(2.5) for the Kronecker delta:
Fimer(B0) ={[4m (241 J7/k} 2 exp(inim,)

X i Dmirm; P (B0) Dom, P*(B0) . (2.7)

Equation (2.7) is the desired relation for the scattered
amplitude. It expresses the amplitude in terms of
orientation-independent (but m-dependent) phase
shifts 7, the explicit dependence on the orientation
of the internuclear axis being carried in the product of
the 9 functions.

For practical purposes it is necessary to square fim,
and average over directions of the internuclear axis;
this gives the differential scattering into a laboratory
angle &'; define this quantity to be ¢(Q'):

5(@)= (57 [| T finr (B0 (@) Pty sinfidf

(2.8a)

One finds after some Racah-algebra manipulation from
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(2.6b) and (2.7):

o — 1 S~ 2D D)
B =(1/8) L0

X (I | L) 2 cos (im—1r,) SiNN1, sinmy, P (cosd’)
(2.8b)

where the (I\mu | LM) are Clebsch-Gordan coefficients’
and the sum goes over all indices. In practice the sum
will be finite and will be determined by the number of
partial waves (max=MAmax) that one will include in a
calculation. The index L will assume all values con-
sistent with vector coupling and parity, the latter
implying by virtue of the (IN0O | L0) coefficient that

I+\+L=even integer. (2.9)

Some simplification in (2.8b) will also ensue from the
relation

(IN0O | LO)?

(2.10)

which holds for scattering from a homonuclear diatomic
molecule.

Finally, the total integrated cross section integrated
over € reduces to

0= f 5@ = (4r/B) T siciyu. (211)

All the above formulas can easily be shown to reduce to
the well-known results of ordinary atomic scattering
theory when the phase shifts 7, become independent
on m.

In the application we shall be concerned with here,
the target (Hyt) has a net charge, so that the total
cross section is infinite and the angular distribution
contains a contribution from the pure Coulomb field
and a cross term. The modification is well known® and
the angular distribution formula for e—Hj* is scattering
is
Go(Q) =[4k* sin*(36") I 4-[A2 sin?(30) I 2 sinmyn

1,m>0
X cos[ (1/k) In(sin?(36") )+2(oco—01) —1im |
X (2—8mo) Pi(cost’) +5(Q), (2.12)

where 6(Q') is the same as ¢(Q') of Eq. (2.8b) except
that the argument of the cosine function becomes
(fim—1nu), Where

Nim =N1,—my

ﬁlm=20l+nlm (2.13)
and

or=arg[T(I4+1—ik) ]

III. THE METHOD OF POLARIZED SINGLE-
CENTER ORBITALS: APPLICATION TO
e—H;* SCATTERING

Up to this point we have not as yet presented a
method for actually calculating scattering, that is,

7E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1935).

8 L. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1949).

(2.14)
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Tasre I. Radial functions® involving Hy* (R4p=2).

o (r) @ (r) @o® (r) @ (r)
r Eo=—1.037 Ry Ey=—1.167 Ry
0.2 6.28X 107 2.21¢10 2.20X 10 2.57X107
0.4 2.62X10 4.25 4.24 1.91X10~
0.6 5.52 5.96 5.97 5.69
0.8 8.92 7.20 7.25 1.10X 10
1.0 1.23X10° 7.88 7.94 1.57
1.2 1.51 7.98 8.01 1.7
1.4 1.72 7.67 7.625 1.63
1.6 1.86 7.10 6.98 1.47
1.8 1.93 6.40 6.215 1.27
2.0 1.94 5.65 5.42 1.08
2.2 1.91 4.90 4.64 8.98X 10
2.4 1.83 4.20 3.93 7.40
2.6 1.73 3.55 3.29 6.035
2.8 1.61 2.98 2.72 4.89
3.0 1.48 2.48 2.24 3.93
3.2 1.34 2.05 1.83 3.15
3.4 1.21 1.69 1.485 2.51
3.6 1.07 1.38 1.20 2.00
3.8 9.49% 101 1.12 9.65X 107 1.58
4.0 8.32 9.07X107 7.73 1.25
4.5 5.81 5.27 4.37 6.82X 1073
5.0 3.93 3.01 2.42 3.69
5.5 2.58 1.69 1.33 1.97
6.0 1.66 9.39X107 7.17X1073 1.04
6.5 1.04 5.16 3.84 5.49X 10~
7.0 6.44X 10~ 2.81 2.04 2.87
7.5 3.92 1.52 1.07 1.49
8.0 2.36 8.16X 10 5.62X107 7.71X10°
9.0 8.24X 107 2.32 1.52X 10 2.04
10.0 2.77 6.455X 10 4.025X10%  4.64X10°
15.0 8.24% 107 9.13X107 4.46X 107 5.57X 107
20.0 1.69X 1078 1.09X 1010 4.20X 1071t 5.10X 107
30.0 4.13% 1071 1.22X10-18 2.95X 107 3.01X107

3 Any entry not explicitly multiplied by a power of 10 is understood to be multiplied by the same power of 10 as the last explicitly given one above it.

specifically for calculating the phase shifts #z,. The
development of the previous section does imply that
the scattered electron will ultimately be described in a
spherical coordinate system, but clearly there is no
unique way of doing this. The essential idea that we
present for deriving such equations is the use of a
single-center expansion of the target molecule. In the
case of Hyt the target wave function with spherical
coordinates 7, Q centered the midpoint of its inter-
nuclear axis (z-axis) can be expanded in the form?

y 7 <Pn(N) (72)

&y M (1,) = Z

n=0 [§)

Vo (D). (3.1)
The double prime in (3.1) signifies every second value
of summation index, and M =0, 1, 2, +++ corresponds
to Z, IL, A, --- states (for further details, cf. Ref. 3).
In principle the #» summation is infinite, but in practice
it must be truncated at some point #=N which defines
the order of approximation to which one is treating the
target. At N=0 (zeroth order) it can be seen that the
wave function is an eigenfunction of the total angular
momentum of the target electron, and thus it is in
complete analogy with an atomic orbital. It is the
central point of the present method to suggest that
this approximation is a suitable starting point for
calculating scattering. In particular corrections to this

approximation will be treated as small in the sense
that quadratic terms involving such corrections will
never be included. In the sequel we shall be concerned
only with the ground (Z,) state of the target (M =0).

What are these corrections? Clearly the induced
polarization of the orbital electron by the incoming
one is a major perturbation. The solution of this problem
that was proposed in the method of polarized orbitals®
was the use of Sternheimer’s method to calculate a
polarized increment to the orbital. This in turn is
based on the adiabatic approximation in terms of which
such distortion is calculated in an approximate form of
perturbation theory corresponding to the incident elec-
tron being fixed at an arbitrary point r;. In the zeroth-
order approximation for the target electron, the equa-
tion for the polarized orbital can readily be derived in
analogy with the polarization of H.1!

a 2 2

[d—r?—.;ﬁ_ Vo(r) _E,;;_I_EO] 0oV (7) = — 270y (7).
(3.2)

Eo—2/Ryg is the electronic part of the Hyt energy in

9 A. Temkin, Phys. Rev. 107, 1004 (1957).
10 R, M. Sternheimer, Phys. Rev. 96,§9514(1954).
1t A, Temkin, Phys. Rev. 116, 358 (1959).
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its ground (Z,) state in zeroth order and

Vi(r) =4g.(r, 3Ra4n), (3.3a)
gim, y) =at/yt,  a<ly
=yl /xtH x>9. (3.3b)

The solution of this equation together with other
important radial functions is given in Table I. As a
byproduct one obtains the (dipole) polarizability of
the Hy* ion:

ag= %/ ¢0(0) (7) r¢0(P° D (7) dr. (34)
0

Numerically this turns out to be
ad=3.078003,

where we have displayed the units a¢® (Bohr radii-cubed)
explicitly. This is to be compared to the mean (of
perpendicular and parallel) dipole polarizability agz=
(2.881£0.095) a¢® deduced by Dalgarno and Lewis,?
the errors bars representing the uncertainty in the value
of the perpendicular polarizability.

The complete polarized part of the wave function is!t

—e(r1, 72) oD (75) P1(cosbi)
712 8 (47[') vz ”

The step function e(ry, 72) provides not only a natural
cutoff to the polarized part of the wave function but,
understood as the limit of a smooth function which
varies between 0 and 1 (as 7, goes from being less than
73 to being greater than 7,), it gives rise to well-defined
terms in the radial equations we shall derive below.
The second major correction to the zeroth-order
approximation comes from the fact that the molecular
wave function is not an eigenfunction of total angular
momentum, but rather is a superposition of angular
momentum states corresponding to a permanent dis-
tortion of the charge cloud coming in turn from the two
nuclei which define the target as a diatomic molecule.
Here the very expansion (3.1) makes it clear what has
to be done—we must go to higher order in N. In
practice we shall go only to first order (N=2), our
main concern being to test whether the first permanent
distortion moment is in fact comparable to the induced
polarizability in its effect on the phase shifts. The
zeroth- and first-order wave functions of Hy* are also
given® in Table I. The total wave functions which are

P, (poD) ( Ii; r2) =

(3.5)

S wave:
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to be used, then, are defined in two categories:
I. No polarization:
V3™ =[t1n (1) /71]Y 1m (Q) o™ (1) = (122).  (3.6a)
II. Polarization:
V™) = [t (1) /11 ]V 1m (1)
X[ (12) +Po®°P (115 13) ]+ (122).  (3.6b)

Within each category we have zeroth-order (N =0)
and first-order (V=2) approximations. The = sign in
(3.6) refer to singlet (upper sign) and triplet (lower)
state scattering.

With regard to the derivation of radial equations it
has been our consistent philosophy to treat all correc-
tions beyond the zeroth order as first-order corrections.

Specifically this means that the radial equations are
derived from®

(N)
J A () Vi (@) [~ By T, =0,
2

(3.7a)
where (in units of rydbergs)
2 2 2 2 2 2
H=—-V?—V@———— —t— . (3.7b)
7A1 7as ¥B1 T2 T2 Ruap

As can be seen from Eq. (3.7), the projection is made
on only the first term (3.1), so that neither ¢, (> 0)
nor ¢oP°Y appears quadratically in any of the equations.
To repeat the particular cogency of this procedure:
the exchange symmetry of the total wave function
(3.6) being known, one in fact has some information
about short-range correlations which will be retained
in the complete problem providing the integral in (3.7)
is carried out with no further approximations. Clearly
the validity of this argument also extends to the in-
clusion of the first-order permanent distortion moment
0@ as well as the inclusion of gy®°D.

The carrying out of the integrations in (3.7) to obtain
the explicit form of the radial equations for the #;, is,
aside from the Sloan!* terms, a straightforward albeit
tedious affair. Use is made in several places of the
equations which the various radial functions satisfy.
Since we confine our calculations to s- and p-wave
scattering (beyond that, the various partial waves
will become coupled), we shall give the equations for
each partial wave separately in order to avoid the
implication that they hold uncoupled for arbitrary .

[di} Vo—2 f " golr, %) oo (2) ]2dx+k2] oo (7) o™ () f “ 0o (%) [k — Ex+2/Ran—2g0(r, %) Juoo (%) dv
r 0 0

Uoo

7t

¢% «oo(z)(r)/;m s (@) V(@) oo () die= —

D3 [ o (oo () sFrgoo (% [
0 r

© oo™ (&) oo (%) &
xt ’

(3.8a)

12 A, Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A240, 284 (1957).

B A, Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
“T. H. Sloan, Proc. Roy. Soc. (London) A281, 151 (1964).
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P wave:
@ 2 T 1 2 Ow 1 2 @,,.(2) 2
d—;——Z—Z go[<p0 ]dx—l— Vo—g<37n 2) V2+ (3m —'2) gg(po ©2 dx+k ulm( )
7t 7 o V5
o 3m2—2 o i (7 §
Fiea® / g™ )Mlmdx:i:%< VG ) w22 ® / e gundr=—3 '—1—5—) o MT @Dy
0 0 r

F {30V (Exy—k2—2/R4p) +1(3m2—

T2y 00D / dx¢o<N>[go+5g2] {

The terms on the right-hand side of these equations
arc the polarization terms; they therefore correspond to
the ansatz (3.6b) for the complete wave function. In
the no-polarization approximations, corresponding to
(3.6a), the right-hand side of Eqs. (3.8) are to be set
equal to zero. Note that in the first curly bracket on
the right-hand side of (3.8b) the function is @@ inde-
pendent of the order approximation NV for the target
wave function. This comes about because we assume
ooV satisfies (3.2) in all cases. The final curly bracket
in (3.8b) contains the Sloan terms'" which arise when
proper account is take of the step function in (3.6b)
[cf. tke discussion after Eq. (3.5)].

Since we compare the %, with unperturbed Coulomb
waves of unit charge

lim Fi(r) =sin[kr+(1/k) In2kr—iwi+a],

r->00

(3.9)

to find the residual phase shift 7y, it is essential from
Eqgs. (3.8) the o™ be normalized to unity. This is
automatically the case in zeroth order (¢o@), but in
first order this has necessitated a slight renormalization
of the functions given in Table I. Accordingly we
utilize functions ¢,®,

2n®(r) =1.017¢,2(7), n=0,2 (3.10)
in place of ¢,® in the radial Egs. (3.8) corresponding
to the first-order approximations. Finally we mention
agair’® that the formally divergent integrals in (3.8)
give rise to well defined terms in the radial equations.
For calculational convenience they have been regular-
ized by the inclusion of a parameter A in the denomi-
nators of those terms and selected runs were tested
to make sure that the phase shifts were satisfactorily
independent of A.

5 The p-wave phase shifts given by the method of polarized
orbitals for e—H scattering should therefore be amended from
those of Ref. 13 to those calculated by Sloan, Ref. 14. As such
they agree remarkably well with more accurately, subsequently
calculated lower-bound p-wave phase shifts. Cf., for example,
M. Gailitis, in A bstracts of Papers of the 4th International Conference
on the Physm of Electronic and Atomic Collisions (Science Book-
crafters, Inc., Hastings-on-Hudson, New York, 1965), p. 10.

Vz:]+ 7’(p0(0) /. dx

<Po( 1h1m
72

RO

M1 3m2
9 ™3 5

22

(A)
>€00<”°D / do 20T VQulm

i[‘o___._"(m(’)”lm(’)“. (3.8b)

ar 72

d )
|: <P0(p°1) '\7’) ]"*‘%(po“wl)
dr

IV. RESULTS AND DISCUSSION

The s-wave shifts are given in Table II and p-wave
phase shifts are given in Table III (singlet) and Table
IV (triplet). The dominant modification of the s-wave
zeroth-order exchange approximate results comes from
the induced polarization effects rather than the first-
order permanent distortion moment. We believe that
this dominance will be qualitatively true of scattering
from most diatomic molecules of not too small polariza-
bility and not too large internuclear separation.

The p-wave results are perhaps the most interesting
and most unexpecte!. They are given in Tables IIT
and IV. It can be seen from Table IV that the m=0
triplet phase shifts are considerably larger than the
s-wave phase shifts; their magnitude can be attributed
to two causes which are not present for s waves. First
we note from (3.8b) that the p-wave equations contain
a quadrupole term, Ve(r), which goes like = for r
large'® and arises directly as a result of the elongation
in the z direction of Hst. Aside from the Coulomb
interaction itself, this is the longest range potential,
and in the m=0 case it is attractive and accounts for
about half of the calculated magnitude. The remainder
arises from a rather subtle exchange effect. Because
the orbital electron in Hgt is at a much larger distance
from the origin than its atomic counterpart* (the
electron in Het) it can, in the appropriate spin state,
resonate very strongly with the incoming p-wave elec-
tron (which can be associated with a nonzero impact
parameter) to cause a large probability of exchange.
It will be of considerable interest to see if an analogous
situation could cause the feature which has been
interpreted as a broad resonance? in low-energy ¢e—Hos
scattering. Equation (3.8b) also shows that there are
also quadrupole potentials which can arise only in first
order. Again because of the dominant effect of exchange

6 Such a potential can alter the form of effective range ex-
pansions. Cf., B. R. Levy and J. B. Keller, J. Math. Phys. 4, 54
(1962); T. ¥ OMal]ey, Phys. Rev. 134, A1188 (1964); H. B.
Snodgrass, 7bid., 148, 5 (1966); A. Dalgarno and N. F. Lane in
the abstracts cited in Ref. 15, p. 49; N. F. Lane, zbid., p. 214.

17 G. J. Schulz and R. K. Asundi, Phys. Rev. Letters 15, 946
(1965) ; Phys. Rev. 158, 25 (1967).
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TaBLE II. S-wave phase shifts (in radians).

Singlet Triplet

k¥ (Ry) zeroth first zeroth first
zeroth first + pol. + pol. zeroth first -+ pol. + pol.
0.01 —0.601 —0.597 —0.429 —0.430 —0.012 -+0.021 +0.062 +0.117
0.1 —0.610 —0.609 —0.439 —0.440 —0.034 0.000 0.040 0.094
0.2 —0.618 —0.618 —0.446 —0.449 —0.055 —0.023 0.018 0.071
0.3 —0.623 —0.625 —0.452 —0.456 —0.076 —0.045 —0.003 0.049
0.4 —0.627 —0.629 —0.455 —0.461 —0.095 —0.065 —0.022 0.028
0.5 —0.628 —0.632 —0.458 —0.464 —0.112 —0.084 —0.039 0.009
0.6 —0.629 —0.634 —0.460 —0.467 —0.128 —0.101 —0.056 —0.009
0.7 —0.629 —0.635 —0.460 —0.469 —0.144 —0.118 —0.071 —0.076
0.8 —0.628 —0.635 —0.461 —0.470 —0.158 —0.133 —0.085 —0.041
0.9 —0.626 —0.635 —0.461 —0.471 —0.171 —0.148 —0.098 —0.056
1.0 —0.624 —0.632 —0.461 —0.471 —0.184 —0.161 —0.110 —0.070
2.0 —0.595 —0.609 —0.451 —0.464 —0.273 —0.262 —0.200 —0.176
3.0 —0.567 —0.581 —0.441 —0.453 —0.323 —0.321 —0.253 —0.243
4.0 —0.543 —0.557 —0.431 —0.442 —0.352 —0.355 —0.286 —0.286
5.0 —0.522 —0.537 —0.422 —0.432 —0.368 —0.374 —0.307 —0.315
Tasre III. Singlet P-wave phase shifts (in radians).
m=0 |m|=1
zeroth first zeroth first
B (Ry) zeroth first -+ pol. =+ pol. zeroth first + pol. + pol.
0.01 0.447 0.318 0.586 0.493 —0.474 —0.433 —0.326 —0.308
0.1 0.450 0.325 0.584 0.489 —0.469 —0.430 —0.321 —0.304
0.2 0.456 0.335 0.585 0.489 —0.464 —0.426 —0.314 —0.298
0.3 0.462 0.345 0.585 0.492 —0.457 —0.422 —0.306 —0.292
0.4 0.467 0.354 0.586 0.495 —0.450 —0.417 —0.297 —0.286
0.5 0.470 0.363 0.586 0.498 —0.443 —0.412 —0.288 —0.279
0.6 0.473 0.370 0.586 0.501 —0.435 —0.406 —0.279 —0.272
0.7 0.474 0.375 0.584 0.503 —0.427 —0.400 —0.269 —0.264
0.8 0.474 0.380 0.582 0.504 —0.420 —0.394 —0.261 —0.257
0.9 0.474 0.384 0.579 0.504 —0.412 —0.388 —0.252 —0.250
1.0 0.472 0.386 0.576 0.504 —0.404 —0.382 —0.244 —0.243
2.0 0.433 0.375 0.522 0.475 —0.340 —0.330 —0.183 —0.191
3.0 0.378 0.335 0.458 0.425 —0.301 —0.297 —0.155 —0.165
4.0 0.323 0.288 0.398 0.373 —0.278 —0.277 —0.144 —0.154
5.0 0.273 0.243 0.343 0.323 —0.264 —0.264 —0.141 —0.150
TaBre IV. Triplet P-wave phase shifts (in radians).
m=0 |m|=1
zeroth first zeroth first

& (Ry) zeroth first + pol. + pol. zeroth first + pol. + pol.
0.01 1.202 1.210 1.329 1.377 0.153 0.114 0.265 0.220
0.1 1.143 1.150 1.263 1.308 0.144 0.109 0.244 0.224
0.2 1.089 1.095 1.203 1.246 0.133 0.101 0.222 0.186
0.3 1.043 1.048 1.152 1.193 0.121 0.093 0.202 0.169
0.4 1.003 1.007 1.108 1.146 0.110 0.083 0.183 0.154
0.5 0.967 0.970 1.069 1.105 0.098 0.074 0.166 0.139
0.6 0.934 0.937 1.033 1.067 0.087 0.065 0.150 0.125
0.7 0.905 0.907 1.002 1.033 0.077 0.056 0.135 0.112
0.8 0.878 0.879 0.972 1.002 0.066 0.048 0.122 0.100
0.9 0.853 0.854 0.944 0.974 0.057 0.039 0.109 0.089
1.0 0.830 0.830 0.919 0.947 0.048 0.031 0.097 0.078
2.0 0.655 0.651 0.730 0.748 —0.023 —0.032 +0.010 —0.003
3.0 0.537 0.530 0.602 0.615 —0.068 —0.075 —0.042 —0.052
4.0 0.446 0.438 0.506 0.515 —0.099 —0.104 —0.077 —0.086
5.0 0.373 0.364 0.427 0.434 —0.121 —0.126 —0.101 —0.109
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Fic. 1. Angular distribution £2=0.5 (6.8 €V) in the following
approximations: first-polarization (heavy solid), zeroth-+
polarization (dot-dash), first (dot), zeroth (dash), pure Coulomb
(light solid).

in the triplet case, the large effect of the first-order
terms compared to the polarization effects (relative to
the s-wave results) only show up clearly in the singlet
phase shifts (Table IIT).

Figures 1 and 2 give some angular distributions.
They are designed to show the effects of the various
approximations and spin states compared to each other
as well as compared to pure Coulomb scattering.
Qualitatively all approximations are of course indis-
tinguishable from pure Coulomb scattering in the for-
ward directions, dip below it at around 100°, and are
substantially larger in the backward directions. In view
of the size of the p-wave shifts, it will be necessary to
include at least d waves in order to be sure that the
qualitative features are not altered. In the d wave we
encounter the first problem of coupling to different
partial waves (the s wave in this case), so that such a
calculation is sufficiently complex to be deferred to a
later time.

One could also in the context of the present method
readily include higher electronic states. In the zeroth-
order-no-polarization approximation this would be an
exact counterpart of the close-coupling expansions for
electron-hydrogen scattering.® In addition to providing
an alternate description of polarization, such states
will allow for a direct calculation of inelastic scattering.
Very likely they will also yield the molecular (electronic)

18 Cf.,, P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458
(1962).
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counterpart of the resonances that have been calculated
in electron-atom scattering.

Our aim in this investigation has been to develop
the essential ideas for calculating the electronic part of
low-energy electron-diatomic molecule generally. The
next step in such applications is clearly e—Hp scattering.
It may seem that carrying through this calculation will
be very straightforward, since the single-center (partial
wave) theory for H, has been developed® and calcu-
lations including the ground 2 ;+ performed.”? However,
these wave functions are in terms of the coordinates 7y,
73, 712; thus they pose nontrivial integration problems.
Nevertheless we? can report that these integrations
problems have been overcome, so that phase shifts
corresponding at least to the zeroth-order-no-polari-
zation approximation should be calculable in the not
too far distant future. Carter, March, and Vincent?
have in effect attempted to calculate in a similar
approximation to this one using a single-center form
of the Hy wave depending only on #; and 7. Also they
have only estimated the effects of exchange, neverthe-
less the qualitative agreement of their results with
Massey and Ridley? gives some confidence that when
the present approach is accurately carried through, it
will give very satisfactory phase shifts.
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F16. 2. Angular distributions in different spin states in first+
polarization approximation for energies given: singlet (dash),
triplet (dot), average (heavy solid), pure Coulomb (light solid).

1 A, Temkin and A. K. Bhatia, J. Chem. Phys. 42, 644 (1965).
( 2 A, K. Bhatia and A. Temkin, J. Chem. Phys. 44, 3656
1966).

21 The work in question is being carried out by one of us
(A.T.) in collaborat on with A. K. Bhatia.

2 C, Carter, N. March, and D. Vincent, Proc. Phys. Soc.
(London) 71, 2 (1)58).
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For many electron-diatomic molecules it is clear that
a single-center Slater determinant provides the practical
counterpart of the zeroth-order wave function. This
also allows polarization to be handled in analogy with
electron-atom scattering.?® This approximation will
also automatically yield at least part of the quadrupole
potential.

With regard to the further applicability of single-
center wave functions to collision problems, Khare
has found that single-center wave functions yield sur-
prisingly good results for excitation of H, by electron
impact when used within the confines of the Born-

(12936]6)). G. Thompson, Proc. Roy. Soc. (London) A294, 160
%S, P, Khare, Phys. Rev. 149, 33 (1966); 152, 74 (1966);
157, 107 (1967).
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Ochkur approximation. More recently® he has extended
his calculations to the photoionization of H, using
final-state wave functions of the present method suit-
ably modified to the equilibrium separation R4p=1.4
of H,. His results thus far are very encouraging.
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Inelastic collisions between the hydrogen molecule ion (Hs*) and the hydrogen molecule are investigated
theoretically within the framework of the first Born approximation. The possibility that Hs™ may be in an
excited vibrational state before the collision takes place is given special consideration. Appropriate sums of
the theoretical cross sections are identified with the experimental measurements of the cross section oy, for the
dissociation of Hy" into a proton and hydrogen atom, and of o102, where o3 is the ionization cross section
of He*. Agreement is good between theory and o1 for collision energies greater than 50 keV and between
theory and o102 for collision energies greater than 1 MeV. Any discrepancies between experiment and
theory can be identified as either the expected failure of the Born approximation at low energies or the
omission of certain inelastic processes in the theoretical results.

I. INTRODUCTION

SERIES of recent papers™ has treated the elec-

tronic excitation of the hydrogen molecule ion
(Hy*) when scattered by a structureless charged parti-
cle. One of these publications® also included a treat-
ment of Hyt collisions with hydrogen atoms and a
recommendation that the approach developed in this
paper could be used for complicated neutral targets.
A study of this nature for the Hy*—H, scattering sys-
tem is the object of the present paper.

1 This work was supported by the U.S. Atomic Energy Com-
mission.

* 1965 Summer employee of Sandia Laboratory.
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691 (1965).

3J. M. Peek, Phys. Rev. 140, A11 (1965).
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The collision of interest is

H;*(0) +Hz(0) = Hy* () +Hy(N). (1)
The electronic states are indicated in parentheses; the
zeros stand for the ground electronic states and it is
stipulated that #340 but N may be equal to 0. If it is
assumed that (1) all # lead to the dissociation of Hy*
and (2) no other mechanism, such as direct vibra-
tional dissociation, contributes in an important way
to dissociation, the experimental results on Hy* disso-
ciation can be identified with the theoretical data pro-
vided here. Experimental studies detect fast protons
and/or hydrogen atoms from the dissociation of Hy*™
and the final state of the target is usually not specified.
The cross section for proton—plus-hydrogen-atom pro-
duction is designated o; and the total proton produc-
tion is called o1+202, where o2 is the cross section for



