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expansion in the I channel:

C'(u, s(s)) = P fg~(u)P)+, '(cose„)
I,=O

—P fi (n)Pi r'(cosg„), (24)
2

D (u,s(s)) = g (f~ —f~+)P~(cos8„),
i=0

(25)

where f= (rl &~t:"""—1)/q, ri&~ is the inelasticity factor
with 0&g)g&1, and

1

imf(~(N) =— dsPC„r(s)P((s)+D„r(s)P(gr(s) j. (26)
2 -1

From this we see that Imf~~ vanishes along with C r

and D„»,

Imfgg(u) =0 for all /. (27)

However, Imf~~(u) are related to the modulus oi f~+(I)

by the partial-wave unitarity condition,

I f~+(I)=v-I f~+(N)I'+v-(1 —n~+/4), (»)
where q ((1—r1~~)/4) is the inelastic contribution to
Imf~~(e) in the I channel and is non-negative, so that

fg~(N) = 0 for all l (29)

Putting this back into Eqs. (24) and (25), we see that
C» and D» and hence 2» and 8», vanish in the physical
region of the I channel. By analytic continuation, they
must be identically zero and we reach the 6nal result
that there can be no scattering at all if there are no
production processes in one channel.

It is worth remarking that the result we have ob-
tained remains true even if there is a 6nite number of
subtractions in the Mandelstam representations for
A+ and 8+ in Eq. (15).This is so because the result is
based only on the crossing relations Eq. (2), the struc-
ture of the Landau curves on the real s-I plane, and the
elastic-unitarity integrals Eq. (19), and none of these is
changed by the presence of a 6nite number of subtrac-
tions in Eq. (15).
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The amplification of electromagnetic 6elds is analyzed in a quantum-mechanical context by discussing
the behavior of a simple theoretical model of the parametric amplifier. The statistical properties of the
ampli6er fields are described by means of the time-dependent density operator for the system. In doing this,
extensive use is made of the coherent states and the P representation of the density operator, which provide
a quantum-mechanical description of the fields closely resembling their classical description. Explicit
solutions are obtained for the density operator for either of the two field modes for a variety of initial states
of the modes. Initial states considered include combinations of coherent states, chaotic mixtures, and
e-quantum states. Particular attention is given the behavior of the amplifier 6elds in the limit of large
ampli6cation. The conditions are established under which the amplification process leads in this limit to the
existence of a non-negative P representation for the density operator for a single mode of oscillation.

I. INTRODUCTION

HE fundamental process which has become known
as parametric ampli6cation in electronic contexts

plays a central role in several physical phenomena of
interest. These include the coherent Raman and
Brillouin effects and the frequency splitting of light
beams in nonlinear media. The most familiar form of
the parametric ampli6er is designed to amplify an
oscillating signal by means of a particular coupling of
the mode in which it appears to a second mode of
oscillation, the idler mode. The coupling parameter is

made to oscillate with time in a way which gives rise

to a steady increase of the energy in both the signal

and idler modes.
The physical processes we have indicated as depend-

ing upon parametric ampli6cation may be described in
parallel terms. In the coherent Raman e6ect, for
example, the presence of a monochromatic light wave in
a Raman active medium gives rise to parametric coup-
ling between an optical vibrational mode and a mode of
the radiation 6eld which represents the scattered
(Stokes) wave. In the case of Brillouin scattering a
similar form of coupling holds, with the vibrational
mode oscillating at an acoustic rather than an optical
frequency. The frequency splitting of light beams is an
example of parametric amplification in which both of
the coupled modes are electromagnetic. An intense light
wave in a nonlinear dielectric medium couples pairs
of electromagnetic 6eld modes whose frequencies sum

*Supported in part by the U. S. Air Force OfEce of Scientific
Research.
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to the frequency of the original wave. It is worth noting
that in this example and. in the case of the Rarnan effect,
the modes of oscillation in which the fields are amp1i-
Ged are initially free of excitation or very nearly so.
The ampli6cation process, in other words, not only
intensi6es pre-existing 6elds, but creates 6elds as well.

It is this property which indicates most clearly that
the theory of the ampliGcation process must be con-
structed in quantum-mechanical terms. An initially
unexcited 6eld mode can receive quanta only by means
of spontaneous emission processes, which bring about
what may be described as ampliGcation of the zero-
point oscillations of the mode. The correct treatment of
such processes obviously lies outside the scope of
classical theory. Classical analysis can only be applied
to the ampliGcation of 6elds which already contain
many quanta, and that condition is met in the optical
frequency range only by fields of high intensity.

,
In the radio-frequency region of the spectrum, signals

containing few quanta are quite weak in comparison to
the noise levels of the most sensitive detectors. The
recent development of extremely low-noise amplifiers,
however, has raised the possibility that it may not be
long before such weak signals are indeed detectable at
the higher microwave frequencies. This possibility has
already inspired a lively discussion of the quantum-
mechanical theory of arnpliGcation. ' " A quantum-
mechanical model of the parametric amplifier has been
proposed within this context by Louisell, Yariv, and
Siegman. ' Their model is an elementary one which may
be applied as well to the optical phenomena we have
noted. In this paper and the one that follows we shall
adopt it as the basis of our analysis.

Previous discussions of the quantum-mechanical
parametric ampli6er have been based on the equations
of motion for the 6eld variables. The solutions to these
equations have been used to 6nd various time-de-
pendent expectation values and moments of the Geld

strengths. These data are only a part of the information

& M. W. Muller, Phys. Rev. 106, 8 (1957).
'K. Shimoda, H. Takahasi, and C. H. Townes, j. Phys. Soc.

Japan 12, 686 (1957).' R. V. Pound, Ann. Phys. (N. Y.) 1, 24 (1957).
4 M. W. P. Strandberg, Phys. Rev. 106, 617 (1957).' R. Serber and C. H. Townes, QNuntgm Electronics —A

Symposium, edited by C. H. Townes (Columbia University
Press, New York, 1960), p. 233.

' W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev.
124, 1646 (1961).' J. Schwinger, J. Math. Phys. 2, 407 (1961).

s W. H. Wells, Ann. Phys. (N. Y.) 12, 1 (1961).
i' A. E. Siegman, Proc. Inst. Radio Engrs. 49, 633, (1961).
"H. A. Haus and J. A. Mullen, Phys. Rev. 128, 2407 (1962)."I.R. Senitzky, Phys. Rev. 128, 2864 (1962).
~ J. P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.

129, 481 (1963).
"3.P. Gordon, L. R. Walker, and W. H. Louisell, Phys. Rev.

130, 806 (1963)."R.P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N. Y.)
24, 118 (1963).

"W. H. Louisell and L. R. Walker, Phys. Rev. 137, 3204
(196S)."D. Holliday and A. E. Glassgold, Phys. Rev. 139, A1717
(1965).

implicitly contained in the time-dependent density
operator for the 6elds. Since the density operator pro-
vides the most complete statistical description avail-
able for the system we shall devote most of our analysis
to the ways in which it can be found and represented.

In a sense the ampli6er we discuss is a device for
transforming quantum 6elds into classical ones. The
mathematical methods we use to discuss the ampli6ca-
tion process must be well adapted to the treatment of
both extremes. We will Gnd it particularly convenient,
in this connection, to make use of the set of coherent
states in describing the quantum state of the system.
In many of the examples we consider, the density
operator for the system may be expressed as a species
of statistical mixture of pure coherent states which we
have called the I' representation. '7 This representation,
when it is available, can be the source of a good deal of
insight, since it describes quantum states in terms not
unlike those of classical probability theory. Part of our
interest in the present work has therefore been directed
toward determining, in a dynamical context, the use-
fulness and the limitations of this way of representing
the density operator.

The kinds of observations which one may imagine
making upon the parametric ampliGer fall naturally
into two classes, those which measure the field of only
one mode, either the signal mode or the idler, and those
which measure the fields in both. In the present paper,
which is the Grst of two on the ampliGcation process,
we shall restrict ourselves to describing the time-
dependent behavior of just one of the two interacting
modes. This restriction allows us to base our analysis
on a reduced form of the density operator, which is
simpler in its structure than the full density operator
and is somewhat more easily found. In the paper which
follows we discuss the complete form of the density
operator and correlations in the behavior of the two
modes which it describes.

In the next two sections of this paper we outline some
of the basic properties of the coherent states and the I'
representation, and then describe the theoretical model
of the parametric amplifier. The expression for the
reduced density operator for a single mode of the
ampli6er system is formulated in Sec. IV, and calcula-
tions of its value for a variety of initial states of the
system are presented in Secs. V—VIII. The case in
which both modes are initially in coherent states
represents an ideally precise specification of the initial
fields and therefore is discussed in some detail in Secs. V
and VI. By superposing solutions of this form we then
discuss a broader variety of initial states. A number of
examples of the important case in which one of the two
modes is initially in a chaotic state, e.g. , a thermal state,
are discussed in Secs. VII and VIII. The remaining
three sections of the paper are devoted to more general
questions concerning the properties of the P representa-

i' R. J. Glauber, Phys. Rev. 131, 2766 (1963).



1078 B. R. MOLLOW AND R. J. GLAUBER 160

tion. In Sec. IX we discuss cases in which the mode of
interest is in an arbitrary initial state, while the other
mode is initially in a chaotic state. The arbitrary initial
state need not possess a P representation. We show that
as the field is altered by the amplification process, a
critical time is reached after which the P representation
necessarily exists for the mode of interest. We show that
the weight function for the representation must be
non-negative beginning at somewhat later times. We
thus follow the evolution of the function which, in
the classical limit of prolonged amplification, becomes
the probability distribution for the mode amplitude.
An illustration of this evolution is discussed in Sec. X,
and the arguments we have presented are extended to
the treatment of somewhat more general initial states
in Sec.XI.

La,at]=1. (2.1)

In the case of the free field, the different modes are
dynamically independent. The Hamiltonian for a freely
oscillating mode of frequency co may be written in the
form

Hp= AcoQ~Q. (2 2)

The stationary states of this Hamiltonian are the
n-quantum states

l~&= (~l) '"(~')"IO&, (2 3)

where n=O, 1, 2, and ~0) is the ground state of the

mode, which is defined to satisfy

aiO)=0. (2.4)

The n-quantum states form a complete set, but one

which is not particularly convenient to use when the
quantum numbers of the field are large or quite un-

certain, as they are in cases in which we have some

knowledge of the phase of oscillation of the field. For
such cases an alternative set of states, the coherent
states, has been found especially useful. '~ ' The co-
herent state with complex amplitude 0, is defined to

' R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).
'9 R. J. Glauber, Phys. Rev. 130, 2529 (1963).
'OR. J. Glauber, in Quantum Electronics, Proceedings of the

Third International Congress, Paris, 1963, edited by N. Sloem-
bergen and P. Grivet (Columbia University Press, New York
1964), Vol. I, p. 111.

'R. J. Glauber, Quantum Optics and Electronics, edited by
C. de Witt et al. (Gordon and Breach Science Publishers, Inc. ,
New York, 1965).

~ P. Carruthers and M. M. Nieto, Phys. Rev. Letters 14, 387
(1965).

II. THE COHERENT STATES AND THE
P REPRESENTATION

The dynamical behavior of a single mode of the elec-
tromagnetic field may be described in terms analogous
to those used for a harmonic oscillator. Each field mode
is characterized by an annihilation operator u and its
adjoint a"; these operators obey the commutation
relation

(2.9)

where d'n—=d(Ren)d(Imn). This relation may be used
to expand arbitrary state vectors and operators in
terms of the coherent state vectors. '~

An operator we shall be particularly interested in
expanding in terms of the coherent states is the density
operator. This operator provides the most general
statistical description of the state of a system; indeed
no simpler description is useful, in general, for individual
systems which interact with others. A density operator
p must be Hermitian, must have non-negative eigen-
values, and must satisfy the trace relation

trp = i. (2.10)

The mean value of a dynamical operator F for a system
described by the density operator p is tr{pF).

There exists a considerable variety of ways of repre-
senting the density operator for oscillator systems. The
most common, perhaps, is the use of the n-quantum
state matrix elements (r/~ p~m&, which are the basis of
the expansion

p= P fe)(/s[p/m&(mf. (2.11)

23 The ground state of the oscillator is displaced in both coordi-
nate and momentum space in general. See, for example, Ref. 17,
p. 2771.

24 J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).

satisfy the eigenvalue equation

Qo. =nn. (2.5)
An explicit expression for

~
n), which is determined apart

from a phase factor by Eq. (2.5), is

(~gt) a

(2 6)
n=o n!

It should be emphasized that ~n& is not an eigenstate
of at, or of the real and imaginary parts of a considered
individually. Such properties are excluded by the com-
mutation relation (2.1).

The configuration-space wave function for a coherent
state has the form of a minimum uncertainty wave
packet; it is simply a displaced" form of the wave
function for the ground state of the oscillator, which is
a coherent state with complex eigenvalue equal to
zero. The properties of the vacuum Quctuations present
in a coherent state are such that two coherent states
with diBerent complex eigenvalues are not orthogonal;
it is easily shown that

(~ ~P&
—e

—0/S) I~is—(r/S) I//ls+~+// (2 7)

and therefore

f( fP) [s=.-l--»'. (2.8)
Although the coherent states lack orthogonality,

they do form a complete set. They may be shown to
satisfy the completeness relation'4 "
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X(g)—= tr{pe~.t-»* }. (2.13)

A particularly simple way of representing the density
operator, the P representation """""corresponds to
writing it as a statistical mixture of pure coherent
states:

This expansion is simplest when few quanta are present,
and when the off-diagonal matrix elements of p vanish,
as they do for many stationary fields. For nonstationary
fields, on the other hand, e.g., fields for which we have
some information about the phase of the complex field
strength, p is expressed more conveniently, as a rule,
by means of the expansion

1
ln)(nl p I p)(p I

d'nd'p, (2»)
~2

which holds for an arbitrary density operator, according
to the completeness relation (2.9).

We may also note that p is uniquely determined by
its characteristic function" X(ri), which is defined for
arbitrary complex g by the expression"

The nonorthogonality of the projection operators
in)(ni, which is a reflection of the noncommutation of
the real and imaginary parts of a, makes it impossible
in general to interpret the function P(n) as a proba-
bility density. In the classical limit, however, which
corresponds to fields with inl))1, we often deal with
density operators for which the function P(n) varies
slowly over unit distances in the complex o, plane. In
such cases the lack of orthogonality of the states in)
becomes unimportant and the function P may be
identified. in an asymptotic sense with the classical
probability distribution for finding the oscillator with
the complex coordinate n.

The normally ordered form of an operator expression
is obtained by writing the creation operators to the left
of the annihilation operators wherever they appear.
The mean value of a normally ordered operator is
evaluated in the P representation by an integral which
has the form of a classical statistical average, with the
function P playing the role of the classical distribution
function. By using Eqs. (2.5) and (2.14) we find, for
example,

p= P(n) in)(nid'n. (2.14) tr{pa™a}= (ni a™a"in)P(n)d'n

The P representation, when it is available, leads to
great simplifications in the calculation of statistical
averages of quantum-mechanical operators. It is
especially suitable for making comparisons between
quantum and classical theory, and for exhibiting the
classical limit of quantum mechanics. The principal
drawback of the P representation is that it cannot be
used to represent all varieties of quantum states."
We shall presently discuss this limitation in greater
detail.

The Hermiticity of p implies that the function P which
appears in the expansion (2.14) must be real. The
relation trp=1 leads to the requirement

ne nnmP (n)dsn (2.16)

We have noted that the characteristic function
uniquely determines the density operator. In order to
evaluate the function P in terms of the characteristic
function, we first introduce the normally ordered
characteristic function'r X~(ri). This function is defined

by an expression analogous to the definition (2.13) of
the ordinary characteristic function X(ri), but with the
exponential written in normally ordered form:

X~(ri) = tr{pe"' e—t&* }. — (2.17)

P(n)d'n=1. (2.15) By making use of the well-known operator identity"
~A~B eA+B+(1/2) tA, B] (2.18)

For any real non-negative function P(n) satisfying this
integral condition, the operator p defined by Eq. (2.14)
is necessarily a Hermitian positive-definite operator with
unit trace, and hence is a permissible density operator.
The physical constraints imposed on the density opera-
tor do not, however, exclude negative values P(n) for
or require that it be a very well-behaved function.

"That x determines p uniquely follows from an expansion
theorem due to H. Acyl, The Tlseory of Groups and Quantum
Mechanics (Dover Publications, Inc. , New York, 1950), p. 272.
See also Ref. 16, Sec. III.

~' For a discussion of the characteristic function with complex
argument, see R. J. Glauber, (Ref. 21); Lecture XIII.

27 R. J. Glauber, in I'hysics of Quantum E/ectronics, edited by
P. L. Kelley et al. (McGraw-Hill Book Company Inc. , New York,
1966), p. 788.

"The same kind of representation is discussed from a different
standpoint by E. C. G. Sudarshan, Phys. Rev. Letters 10, 277(1').

which holds for any two operators A and 8 satisfying

[[A,B],A] = [[A,B],B]=0, (2.19)

we find that X&(ri) and X(ii) are related by

X~(ri) = elise'X(ri). (2.20)

If the density operator p has a P representation, then
X&(ri) is given by

X„(r))= (nie"'e ~*
i ) n(P)—n'dn

egad qw aP (n)dsn— (2.21)

2' See, for example, A. Messiah, Quantum Mechanics (North-
Holland Publishing Company, Amsterdam, 1961), Vol. I, p. 442.
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If we write p and n in terms of their real and imaginary
parts, we find that Eq. (2.21) expresses Xiv(rl) as the
two-dimensional Fourier transform of P(n). The solu-
tion to Eq. (2.21) for P(rr), which follows simply from
the Fourier inversion theorem, is'~

1
P(~)=-

7r2

says —a+gX (~)ds~ (2.22)

We have shown, then, that if the I' representation
exists, the function Xiv(rl) has the Fourier transform
P(n). The converse, which follows simply from the
uniqueness of the correspondence between a density
operator and its characteristic function, is also true:
If we de/me P(n) by Eq. (2.22), where Xiv(rl) is delned
for an arbitrary density operator p by, Eq. (2.17), then
we may construct p by substituting P (a) into Eq. (2.14).
Our criterion for the existence of the I' representation
will therefore be simply the existence of a I'ourier
transform for the normally ordered characteristic
function Xs (r)).

Although the class of states for which the I'ourier
transform of Xiv(ri) exists is a broad one, there exist
many well-behaved quantum states for which the
function Xiv(ri) increases so rapidly as ~ri~ ~ ~ that
no meaning can be attached to the integral (2.22),
even as a tempered distribution. ""In such unmanage-
ably singular cases it seems most reasonable to say that
the I' representation does not exist.""The density
operator may always be expressed in terms of the
coherent states, on the other hand, by using the more
general expansion of Eq. (2.12).

III. MODEL OF THE PARAMETRIC
AMPLIFIER

The dynamical elements of the ampliGer model
proposed by Louisell, Variv, and Siegman' are two
modes of oscillation of the electromagnetic Geld. These
play a symmetrical role in the ampliGcation process;
it will be somewhat briefer to refer to them as the A and
3 modes in the work which follows, than to designate
one arbitrarily as the signal mode and the other as the
idler. It is assumed that the uncoupled A and 8 modes
have the dynamical behavior of harmonic oscillators,
which are described by the annihilation operators a(t)

30 L. Schwartz, Theori des Distributions (Hermann et Cie,
Paris, j.957), Vol. II, Chap. VII."K.E. Cahill, Phys. Rev. 138, B1566 (1965).

as An alternative approach is suggested by J. R. Klauder, J.
McKenna, and D. G. Currie, J.Math. Phys. 6, 734 (1965), C. L.
Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 3274 (1965),
and J. R. Klauder, Phys. Rev. Letters 16, 534 (1966), who repre-
sent the density operator as the limit of an in6nite sequence of
P representations. Statistical averages, they show, may be
evaluated for any density operator by carrying out an appropriate
limiting procedure in each instance. The usefulness of this
approach in physical contexts is not yet clear.

"Restriction oi the functions P(u), on the other hand, to a
narrower class than that of tempered distributions has been sug-
gested by R. Bonifacio L. M. Narducci, and E. Montaldi, Phys.
Rev. Letters 16, 1125 1966).

and b(t), respectively. These operators and their ad-
joints satisfy the canonical commutation relations

La(t), b(/)$= La(t),b (t))=0,
L (~),"(t)3=Lb(&),b'(&)3=1.

(3.1)

The A and 8 modes are assumed, to be coupled by a
parameter which oscillates harmonically at a frequency
co equal to the sum of the natural frequencies co, and
cob of the unperturbed oscillators:

re=oia+oib ~ (3 2)

The Hamiltonian for the two coupled modes is taken
to have the form'

H(t) = b .at(t)a(t)+h~, bt(t)b(&)
—hsLat(t)b" (t)e

—'"'+a(t)b(t)e'"'1, (3.3)

in which ~ is a coupling constant, and the phase of the
externally imposed oscillation of the coupling is chosen
to be zero" at 1=0. This Hamiltonian contains all of
the terms which are most essential to the description of
a number of physical realizations of the parametric
ampliGer. It is possible to construct such an ampliGer,
for example, by using a sample of a lossless nonlinear
dielectric substance to couple the modes of a resonant
cavity with reQecting walls. ' By imposing on the dielec-
tric an external Geld, the "pump" Geld, which oscillates
at a frequency equal to the sum of the frequencies of
two particular modes, those modes are made to undergo
a closely coupled forced oscillation. The Hamiltonian
(3.3) is intended only to describe the behavior of the
two modes which are resonantly coupled in this way; the
nonresonant couplings to other modes have been
omitted, and the pump Geld has been assumed strong
enough to be represented in classical terms.

The frequency-splitting of light beams may be de-
scribed by essentially the same Hamiltonian as is given
in Eq. (3.3). The pump field in this case is the incident
light beam, which excites, by means of a nonlinear
dielectric, the emission of light in each of two modes
which meet appropriate resonance conditions. Coherent
Raman and Brillouin scattering may be described in
a similar way. In these cases one of the two harmonic
oscillators described by the Hamiltonian (3.3) repre-
sents a vibrational mode of the medium (an optical mode
for the Raman effect and an acoustic mode for Brillouin
scattering). The coupling of the vibrational mode with
the scattered light wave is provided by the presence of
the intense incident light wave of frequency co. While
these familiar phenomena are all described by the
Hamiltonian (3.3), we should emphasize that we are
discussing a model of an ampliGer rather than an oscil-
lator. Raman and Brillouin scattering have typically
been observed under conditions in which the leakage of
scattered light from the medium has tended to quench

3' Any other initial phase for the coupling may be treated either
by redefining the initial time or by performing a canonical trans-
formation which appropriately readjusts the phases of the
operators u and b.
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the amplification process. The scattering medium has
functioned as an amplifier only for a brief interval after
the appearance of the incident field, and then has
continued to function as an oscillator. The eGects of
leakage and dissipation, on the other hand, are omitted
from the Hamiltonian (3.3), and the amplification
process it describes therefore continues indefinitely
without quenching.

The Heisenberg equations of motion which follow
from the Hamiltonian H(t) are

ih—a(t) =
I a(t),H(t)7,

ih—b(t) = Lb(t),H(t)7.
dt

(3 4)

Before discussing these equations further, let us
note that the Hamiltonian. (3.3) possesses a simple
invariance property. It remains unchanged under the
transformation a(t) —+a(t)e", b(t) bb(t)e 's (8 real),
which is generated by the unitary operator

V(0 t) —e~()(~t(&)~(&)—bt(Ob(O] (3 3)

via the relations

I
)—= It=0&. (3.11)

The time dependence of the Schrodinger state vector is
given by

ih—
I t) =He(t)

I t),
dt

(3.12)

in which the Schrodinger Hamiltonian He(t) may be
obtained from the Heisenberg Hamiltonian H(t) by
making the substitutions a(t) -+a, b(t) bb in Eq.
(3.3). The Hamiltonian remains time-dependent in the
Schrodinger picture because of the explicit time de-
pendence of the coupling.

The significance of the conservation law (3.9) in the
Schrodinger picture may be expressed as follows: If a
Schrodinger state vector

I t) is initially an eigenstate of
ata —b~b with eigenvalue m, then it remains so at all
times; if

I t) is expanded in the tb-quantum representa-
tion, only those terms appear for which the difference
in the number of quanta in the A and 8 modes is equal
to ns.

The Heisenberg equations of motion for the operators
a(t) and b(t) are obtained by substituting Eq. (3.3) for
H(t) into Eq. (3.4), and making use of the commutation
relations (3.1);we find

V-'((I,t)a(t) V(e, t) =a(t)e",
V '(H, t)b(t)V(8, t)=b(t)e—". (3.6)

Since H(t) is invariant under the group of transforma-
tions defined by V (tt, t), i.e.,

V-'(e, t)H(t) V(e,t) =H(t), (3.7)

i—a(t) =o).a (t)—«bt (t)e-'"'
dt

i—b(t) =o)bb(t) —((at(t)e '".
dt

(3.13)

it follows that H(t) commutes with the generator of the
gr'up::

(3.8)I (a (t)a(t) —b (t)b(t)),H(t)7=0.

This equation may also be deduced directly from the
explicit form for H(t) and the commutation relations
(3.1). It implies, according to the equations of inotion
(3.4), that the generator is a constant of the motion:

at (t)a (t)—bt (t)b (t) =at (0)a (0)—bt (0)b (0) . (3.9)

a(0)—=a,
b(0)=—b,

(3.10)

This relation expresses a conservation law for the dif-
ference in the number of quanta in the A and 8 modes;
the law follows directly from the form of the coupling
between the modes.

The foregoing equations have been formulated in the
Heisenberg picture, which is characterized by the time-
dependent operators a(t) and b(t), and by a tiine-
independent state vector

I ) for the system. The
Schrodinger picture, on the other hand, is character-
ized by a time-dependent state vector

I t), and by the
time-independ, ent operators a and b. We take the two
representations to coincide at t=0 by writing

c.(t)=e '"' cosh((t, —

s, (t)—= ie-'" ' sinh«t,

cb(t) =e'""cosh«t, —
sb(t) —= ie—' b' sinh«t.

(3.15)

A direct insight into the way the number of quanta
present changes with time may be gained, by noting
that the equations of motion (3.13) lead to a second-
order rate equation involving only the occupation
numbers of the 2 and 8 modes sb By using Eqs. (3.13)

"T. Von Foerster (private co~munication).

Although these are operator equations their linear
character means that they are no more dificult to solve
than the corresponding linear equations for c numbers.
The solutions to the coupled equations (3.13) may be
written in the form

a(t) =ac.(t)+b's. (t), (3.14a)

b(t) =bcb(t)+atsb(t), (3.14b)

in which the abbreviations c (t), s, (t), cb(t), and sb(t)
have been introduced for the c-number functions
defined by
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to evaluate the second derivative of at (t)a(t) we find

d2—{a (t)a(t)) =2 '(a (t)a(t)+b(t)b (t)) . (3.16)

where we have written

n(0) =—rrp

P(0)=—Po.
(3.24)

If we now introduce the notation

1V.(t)—=at(t) a(t),
1V, (t) —=bt(t)b(t)

(3.17)

for the occupation number operators for the two modes,
and use the commutation relations (3.1) for the b

operators, we may write Eq. (3.16) as

d2—X.(t) = 2"Pr.(t)yX, (t)+1j.
dt

(3.18)

We now make use of the conservation law (3.9) to write
the difference ¹(t)—Xs(t) as a time-independent
operator:

X.(t) X,(t)=—M— (3.19)

By using this equation to eliminate 1t1'b(t) from Eq.
(3.18) we obtain a rate equation for the operator¹(t):

It is possible to calculate the expectation values and
variances of numbers of quanta and complex field
strengths for a variety of initial states in a straight-
forward manner with the aid of the solutions (3.14) and
the corrunutation relations (3.1). Let us assume for
example that both the A and 8 modes are initially in
pure coherent states. We may write this initial state of
the system as ~mrs, Ps&, where ns and Ps are the complex
amplitudes of the 3 and 8 modes, respectively. For
certain types of couplings of harmonic oscillator systems
it has been shown that an initially coherent Schrodinger
state retains its coherent character at later times. "The
state vectors for the parametric amplifier modes behave
quite differently, however. A simple indication of their
behavior may be obtained by evaluating the variance
of the complex field strength for the A mode. We easily
deduce with the aid of Eq. (2.5), the commutation
relations (3.1), and Eq. (3.14a), that

(-.,p. l
(at(t)-=*(t))(a(t)-=(t)) I-.,p.&

=
~

s, (t)
~

'= sinh'xt. (3.25)
d2—Ã. (t) = 2x'L2¹(t)+1—M$.
dt2

' (3.20) In the Schrodinger picture this equation takes the
form

The solution of this equation for 1V,(t) in terms of its
initial value E,(0) and the initial value of its time
derivative ¹(0)is

X.(0)
E,(t) = sinh2xt

+L1V,(0)+-,' (1—M)) cosh2xt ——,
' (1—M) . (3.21)

A similar result, with the sign of 3f reversed, holds for
the operator Es(t). It is clear, therefore, that the
number of quanta in both modes tends, at large enough
times, to increase exponentially with time.

The operator solutions (3.14) to the equations of
motion may be used to calculate the mean values of
products of arbitrary numbers of creation and annihila-
tion operators as a function of time. As the simplest
example, we consider first the mean values of a(t) and

b(t), which are defined in terms of the Heisenberg
density operator p by

~(t) = tr(pa(t) j,
p(t) =—tr(Pb(t) &.

(3.22)

The solutions for n(t) and p(t) as a function of time
take the same form as those for the complex mode
amplitudes in the corresponding classical problem:

cx(t) =Qpc (t)+Po*s,'(t), (3.23a)

P(t) =Pscs(t)+«*ss(t), (3.23b)

It=0)= l«,Po&, (3.27)

and satisfies the Schrodinger Eq. (3.12).
In either of the two pictures it is evident that the

variance of the complex field amplitude grows expo-
nentially with time, much as the average occupation
number of the field does. It is clear from this behavior
of the variance that the state which evolves from an
initially coherent state does not retain its coherent
character. The uncertainty of the field, which is ini-
tially minimal, grows rapidly with time. "The amplifi-
cation process amplifies the vacuum fluctuations along
with the expectation value of the field strength, and
the minimum uncertainty character of the initial state
is quickly lost.

IV. REDUCED DENSITY OPERATOR FOR
THE A MODE

To evaluate statistical averages of time-dependent
operators in the Heisenberg picture we must make
explicit use of the solutions to the operator equations
of motion for the system. The operators a(t) and b(t),
for example, must be expressed in terms of their initial
values before the statistical average of a function which

"See, for example, R. J. Glagber, Phys. Letters 21, 650 (1966&.

(t
~

(at —a*(t))(a—rx(t))
~
t) = sinh'xt, (3.26)

in which the Schrodinger state vector ~t) is initially
coherent:



QUANTUM THEORY OF PARAMETRIC AMPLIFICATION. I i083

depends on them can be evaluated in the initial state
of the system. The Schrodinger picture, on the other
hand, offers a more compact way of evaluating such
averages; it combines the dynamical part of the calcula-
tion with the statistical part by describing the system
in terms of a time-dependent density operator p(t).
We shall con6ne our attention in the present paper
to discussing the statistical behavior of either one of the
two modes of the amplifier system. For this purpose we
are led to consider a reduced form of the Schrodinger
density operator which is de6ned in terms of the varia-
bles for the mode of interest.

The Heisenberg and Schrodinger pictures of the
motion of the system are related by the unitary time
translation operator U(t), which is defined by the
equations

and

i'—U(t) =H&(t) U(t)
dt

U(0) =1.

(4.1)

(4 2)

p&(t) = tr&p(t) (4.5)

where tre means trace with respect to the (initial or
time-independent) states of the 8 mode. The mean
value of an operator r~ which refers to the variables of
the A mode only is given by

tr(p(t) T~}= tr~tre (p(t) T~}
= try(pg(t) T~}. (4.6)

The time-dependent form of the normally ordered
characteristic function X~ (it, t) for the A mode is given by

X~(q, t) =trfp(t)e& te—&* } (4 7)

The Heisenberg operators u(t) and b(t), for example,
are given formally in terms of their initial values a
and b by

a(t) = U-'(t) aU(t), (4.3a)

b(t) = U-'(t)bU(t). (4.3b)

In the Schrodinger picture the density operator, like
the state vector, is a time-dependent quantity. The
Schrodinger density operator p(t) is given in terms of
the time-independent Heisenberg density operator p by
the relation

p(t) = U(t) PU-i(t). (4.4)

The reduced, Schrodinger density operator for the A
mode is dined by

We shall say that a P representation for the A mode
exists at time t if the reduced Schrodinger density
operator p~(t) can be written in the form

p (t) = P(n, t) in)(nod'n. (4.9)

From the discussion of Sec. II it is evident that p~(t)
has a P representation if X~(q, t) possesses a Fourier
transform,

1
P(n&t) = e—~~* ~*~X~(q t)d'q (4.10)

The function X~(g,t), which has been defined as the
trace of a Schrodinger operator, is invariant under
transformation to the Heisenberg picture. By substitu-
ting Eq. (4.4) for p(t) into Eq. (4.7), and making use of
the cyclical symmetry of the traces of products, we
obtain

X~(it, t) = troupe& t&'&e—&* "&}. (4.12)

This equation expresses X&(iI,t) in terms of the initial
density operator p for the joint system of A and 8
modes, and the time-dependent operator a(t) and its
adjoint. A formal solution for x~(g, t) may thus be con-
structed by substituting the solution (3.14a) for u(t)
into Eq. (4.12). If the function X~(g, t) obtained in
this way has the Fourier transform P(n, t), then the
reduced density operator p&(t) is given by Eq. (4.9).

V. INITIALLY COHERENT STATE: P REPRE-
SENTATION' FOR THE A MODE

In Sec. III we considered the case in which the joint
system of A and 8 modes is initially described by the
pure coherent state vector ~«,PO). We showed, by
evaluating the variance of the complex 6eld strength
for the A mode, that such a state does not remain
coherent at later times. In this section we shall consider
the case of an initially coherent state in greater detail,
and solve for the function P (n, t), which provides a full

description of the behavior of the A mode.
Let us assume, then, that the density operator for

the joint system of A and 8 modes is initially given by

X~(g, t) = tr(PU —'(t)e& te—&*'U(t)}. (4.11)

By making use of Eq. (4.3a) and its adjoint we then
And

= tr~(p~(t)e& te—&* }. (4 8)
p= lao t1o)(«AoI . (5.1)

The time-dependent function X~(g, t), according to
Eq. (4.8), is defined in terms of the reduced density
operator pz(t) by an expression identical to the defini-
tion (2.17) for the normally ordered characteristic
function corresponding to an arbitrary (single mode)
density operator.

gn+& (&)e n++(&) —gs I 0 I gn+1' (&) 0++ (&) (5.2)

By substituting this relation into Eq. (4.12), using and

To evaluate the time-d. ependent normally ordered
characteristic function for the A mode, we 6rst use the
operator identity (2.18) to write
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Eq. (5.1) for p and Eq. (3.14a) for u(t), we obtain

xiv(ri, t) =el~&~'(crp, Ppi expi rt(utc. *(t)+bs.*(t))
—n*(«.(t)+b's. (t))7I apA) (5.3)

We denote by s(t) and c(t) the moduli of the complex
functions s, , s(t) and c,, &(t), respectively:

p(a, t)

s(t) =—sinhst,

c(t)=—coshld.
(5.4)

By using Eq. (2.18) to write the exponential operator
in Eq. (5.3) in normally ordered form, we find

x (.,t) =-pLI I'(-:—:"(t)—:"(t))7
X (np, ppi exp[afric, *(t)—btrt*s, (t)7

XexpL —ag*c.(t)+brts. *(t)7 I np, Pp)
= emI —

I n I's'(t)+ o*nc.*(t) Po*n*—s.(t)
—nprt*c, (t)+pets *(t)7 (5.5)

= expi —
I

rt I's'(t)+rta*(t) —rl~n(t)7, (5.6)

in which cr(t), the mean value of u(t), is defined by
Eq. (3.23a).

Substituting Eq. (5.6) for Xiv(rt, t) into Eq. (4.10),
we find that P(n, t) is given by the complex Fourier
integral

1
P (a, t) =— expi —

I rt I
's'(t)+rt (rr*(t) —n*)

X2
—rt*(a(t) —n) 7d'g. (5.7)

This integral is easily evaluated with the aid of the
useful identity

1 1 Xv
dsif e P[gJ +lb'(+@Pe — exp

p ti 1

P(n, t) = exp
mrs'(t)

in —n(t) i'-

s'(t)
(5.9)

The function P(n, t) for the A inode at time t is thus
a Gaussian function about the complex mean value
a(t). The variance of the distribution is s'(t)=sinh'at,
a result which was obtained in Sec. III from the solution
to the equations of motion.

In Ref. 17 it is shown that the P representation
provides a natural means of extending to the quantum-
mechanical domain the classical concept of the super-
position of two independent fields: The I' function for
the superposition of two fields is the convolution of the
I' functions for each 6eld considered individually. Since
the function P(n) for a coherent state with com-
plex amplitude n is the delta function b&@(cr—cr)

which holds for Rep&0, and for arbitrary complex
numbers ) and v. By making the appropriate identi6ca-
tions of these parameters we find from Eq. (5.7) that
P(rr, t) takes the form

FIG. 1. Schematic picture of the way in which the function
P(n, t) varies with time when the system is initially in a pure
coherent state. At the initial time t =0 the function E(n, t) is the
delta function 8&'&(n np) —The .amplification process leads to a
function E(o.,t) which is Gaussian in form at later times and has a
variance which increases monotonically with time. The mean
value of the complex amplitude n describes a spiral trajectory in
the complex Ot plane.

p= P( oA) I oA)(,t3old' pd'0o, (5 1o)

then the function I' for the A mode at time t is ob-
tained by averaging the right-hand side of Eq. (5.9)
with respect to the weight function P(harp, Pp):

P(n, t) = P(npA)
mrs'(t)

Xexp—I
a—a(aoA, t) I'-

d'rrpd'A(4, (5.11)
s'(t)

in which the function u(np, Pp, t) is defined by Eq. (3.23a).
The initial state specified by np=Pp=0 in Eq. (5.1)

corresponds to the absence of any initial excitation in
the system. A Geld is generated nonetheless; it may be

=—8(Re(rr —a))8(Im(n —a)), we may say that Eq. (5.9)
describes the superposition of a coherent state with
coinplex amplitude a(t), and a chaotic or Gaussian
mixture with variance sinh'~t.

In Fig. 1 we have plotted the function P(n, t) at
several points along the curve rr(t), for the case Pp ——0,
and therefore a(t) =e '" 'crp cosh~t The va. riance of the
distribution, which is initially zero, grows rapidly with
time; for large amplification (at))1), both the variance
and the square of the mean field strength are propor-
tional to e'"

The result (5.9) has been derived for the initially
coherent state inp, Pp). If the joint system of A and 8
modes is initially described by a I' representation,
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& ~St"f«(»«) a™a")—
I

&agi 4 ay*i

thought of as an amplified form of the zero-point Eq. (6.2), we find
fluctuations of the vacuum. The function P(n, t) for
this case is obtained by setting u(t) =0 in Eq. (5.9):

E(n, t) = exp
+s'(t) s'(t)

(5.12)

expCitu*(t) —
rt*n (t) —gati!*s'(t) $ (6.3)

C( (t)&3"
p~(t)= E

C1+( (t)&j""'

- C"(t)3"

-~ Cc'(t)j"" (5.14)

where le& represents the m-quantum state of the A
mode. The probability of ending e quanta in the A
mode after time t is given by the coefficient of

I e&(el
in this expansion,

This function describes a chaotic mixture with variance
s'(t); since u(t) =0 the variance is equal to the mean
number of quanta present in the mode,

(e (t) &
=s'(t) = sinh'~t. (5.13)

In Ref. 17 it is shown that a density operator with a
Gaussian P' function may be written in the m-quantum
representation in the form characteristic of thermal
equilibrium. The density operator pz (t) is then given by

We show in the Appendix that an expression of this
form may be reduced, apart from some simple factors,
to an associated Laguerre polynomial. By making use of
Eqs. (A6) and (A7) of the Appendix we obtain for the
average in Eq. (6.3) the two equivalent expressions

tr(p~ (t)a™a")

( ln(t)l')=~.Cs2(t))"C (t)3" "L.'='I —
I

(64)
s'(t) i

( I (t)I'i=~!Cs'(t) j"C-*(t)j"-"L-'""'I—
s'(t) i

It follows from the easily proved identity

at "a"=a'a(a'a 1) . . (a'a —m+—1)

(ata)!

(ata-N)!
Cs'(t) j"

-(t) =
Cc'(t)]"+'

(5.15) that the factorial moments of the quantum distribution
in the mode, which are obtained by evaluating Eq.
(6.4) or Eq. (6.5) at e=nz, are given by

VI. INITIALLY COHERENT STATE; MOMENTS,
MATRIX ELEMENTS, AND EXPLICIT

REPRESENTATION FOR Ii~(t)

We have shown that the reduced density operator
for the A mode at time t, corresponding to an initially
coherent state for the joint system, has the E
representation

p~(t) =
ms'(t)

in —u(t) i'-
exp iu&(ni d'u. (6.1)

s'(t)

In this section we shall derive a number of statistical
properties of the mode which follow from this descrip-
tion, and exhibit an explicit form for the density
operator in terms of the operators a and at.

Let us 6nd the mean value of the normally ordered
product of an arbitrary number of factors of ut and a.
We may express this average in terms of the function
X&(iI,t), by means of the formula

(a'a)! ( Iu(t) I'&
tr p (t) =s!Cs'(t)j"L„i — i. (6.6)

(ata —e)! k s'(t) i
For the case of vacuum ampli6cation, i.e., when no
quanta are initially present in either mode, the quantity
tr(ipse(t)at"a ) is evaluated by letting n(t) ~0, in
either of the relations (6.4) or (6.5). By making use of
the identity L (0)= 1 we find

tr(pg (t)at"a")=b„„e!Cs'(t) $". (6.7)

These expectation values vanish for m&m since the
phase of the field is completely uncertain.

The matrix elements of pz(t) in the ii-quantum
representation are easily evaluated. By multiplying
Eq. (4.9) on the left by (ml and on the right by IN&,

we obtain the relation

(~l p (t) l~)= (~ln&(nI~P'(n, t)&'n

(c! %( (j $L

tr(p/ (t)at "a™}=
I

—
I

— X~ (it, t)
hag 4 ay*

(6.2)
E(n, t)e ~ ~'d'u. (6.8)

(m!N!)'~'
which may be deduced by differentiating Eq. (4.8)
directly. If we substitute Eq. (5.6) for xz(q, t) into If we define a generating function R(w, z,t) by the
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equation' ~

R(ie st)= P(n t)e ~ ~ +"*d'n)

The probability of ending e quanta in the A mode at
time t, which is obtained by evaluating Eq. (6.13) or
Eq. (6.14) for N=m, is

I
-(t) I'~

I
"(t)7"

c'(t) —
I c'(t)7""

I
-(t) I'&

XI. — I. (6.16)
s'(t) c'(t)J(ml p/(t) IN) = (m!B!) '"

c) ) t'c) )"
X

I I

—
I

R(ic, s, t)
aw) (as)

(6.10) For the case of vacuum amplidcation, the matrix
elements of pz(t) in the e-quantum representation are
given by Eq. (6.13) or Eq. (6.14) evaluated at n(t) =0:

If we substitute Eq. (5.9) for P (n, t) into Eq. (6.9), we
6nd that the desired generating function is given by Ls'(t) ]"

(ml p~(t) le&=b„„
I-c'(t) 7""'

(6.17)
In —n(t) I'

R(w, s,t) =
7rs'(t)

exp
s'(t) which is equivalent to the result already noted in

Eq. (5.14).
We need not confine our discussion of the density

operator p~(t) to the form it takes in the P representa-
tion or to its matrix elements in terms of e-quantum
states. It is a simple matter to give an explicit construc-
tion of the operator itself. For the case of vacuum
amplification, for example, pz(t) may be obtained by
expressing Eq. (5.14) formally as follows:

—Inl'+icn+sn* d'n. (6.11)

This integral may be evaluated straightforwardly with
the aid of the identity (5.8). We lnd then

I
p)I' (p)+w

c'(t) c'(t)

n*(t) t's'(t)q
+s +icsI

I
(6»)

c'(t) kc'(t)P

R(ie, s,t) = exp
c'(t)

Sp(t) ntn

(6.18)p~(t) =
c'(t) ~c'(t)

s'(t)
exp a~a ln

c'(t) c'(t)
(6.19)The derivatives of this expression, which according to

Eq. (6.10) correspond to the matrix elements of pz(t),
may be expressed in terms of associated Laguerre
polynomials much as in the case of the derivatives we
discussed in Eq. (6.3). By using Eqs. (A6) and (A7) we
find for the matrix elements of p~(t) the two equivalent
expressions

If the initial state of the system is an arbitrary co-
herent state, it is easy to show that pz(t) is given by
Eq. (6.19), with a replaced by a n(t) and —at by
at —n*(t):

we 6nd, on differentiating this expression and comparing (zl p„(t) I z& exp
the result to Eq. (6.8), that the matrix elements of
pz(t) are given by

(ml p~(t) I
e&= exp

p&(t) = exp La' —*(t)]La—n(t)7
c'(t)

s'(t)
Xln . (6.20)

c'(t)

I
-(t) I' L"(t)7-

I
n*(t)]n m-

c'(t) I c'(t) 7n+'

= exp
(t) I

' Ls'(t) 7"
I n(t)]m —n

c'(t)
I
c'(t) ]"+'

In(t) IJ (m n)— (6.14)
km! s'(t) c'(t)

The right-hand side of Eq. (6.14) may be obtained from
the right-hand side of Eq. (6.13) by taking the complex
conjugate of the latter and interchanging e and m; this
relation is a reflection of the Hermiticity requirement

p~(t) =
c'(t)

exp I
at —n*(np, Pp, t)]

s'(t) ) -~

XI a—n(np, Pp, t)] ln
I P(np, Pp)d npd Pp, (6.21)

c'(t))

This result applies to the initial density operator (5.1).
If the initial density operator for the system has the P
representation (5.10), then the linearity of the depend-
ence of p~(t) on p enables us to see that p~(t) is given
more generally by

(ml»(t) Iran)
= (&ril»(t) lm&)* (6.15) where n(np Pp t) is defined by Eq. (3.23a).
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where

p = P («Pp) l«Pp)(«, Pold' p(t'Pp, (7 1)

P («,Po)= exp
'(22) (2)2) (I) (222)

(7 2)

One way of finding the function P (n, t) is to substitute
this Gaussian expression into the formula given by
Eq. (5.11) and evaluate the resulting integral. An
equivalent and somewhat simpler procedure is to find

P(n, t) by beginning once again with the normally
ordered characteristic function. That function, it is
clear, may be obtained by averaging the result in
Eq. (5.5) with respect to the weight function P, («,pp)
Ke have then

VII. SOLUTIONS FOR AN I5'ITIALLY
CHAOTIC B MODE

Cases in which one of the modes is in a chaotically
mixed state (e.g. , a thermal equilibrium distribution)
are important from a practical standpoint and relatively
simple to treat. In this section we shall consider the
behavior of the A mode of the ampli6er when the initial
state of the 8 mode is chaotic in character. The simplest
such case is the one in which both the A and 8 modes
are initially in chaotic states. Other cases we shall
discuss are those in which the A mode is initially in the
vacuum state or a coherent state, and cases in which its
initial state is speci6ed more generally by a P
representation.

If the initial states of the A and 8 modes are inde-
pendent chaotic mixtures with mean quantum numbers
(n,) and (2)t), respectively, we may write the initial
density operator in the form

[&(t)j'
P(t, ti (22), (2)2)) =

[1+/(t) j'+'
(7.7)

The choice (22) =0 in Eq. (7.2) implies that the initial
state of the A mode is the ground state

i
0)~. The initial

density operator for the joint system in this case may
be written in the form

The reduced Schrodinger density operator t)z, (t) for
the A mode thus corresponds to a chaotic mixture with
mean quantum number cV(t). For (I)= (2)2) =0 the
joint system is initially in the vacuum state; for this
case 1V(t) =s'(t), and Eq. (7.6) becomes identical to the
result (5.12) found earlier for the case of vacuum
ampli6cation. The eGect of the chaotic 6elds initially
present in both the A and 8 modes is to increase the
fluctuations in the 6eld strength of the A mode at time
t, from s'(t) to X(t).

Holliday and Glassgold" have discussed an approxi-
mate model of laser ampli6cation described by equa-
tions which may be cast in a form similar to those for
the parametric amplifier. The 8 mode of oscillation in
their model represents formally the eGect of the pump-
ing molecules; its state is taken to be a chaotic mixture.
They show that if the initial state of the field mode in
their model is also taken to be chaotic, then the function
P(c(,t) which describes it takes the form of Eq. (7.6).

An explicit expression for the density operator
pz, (t) may be obtained by replacing s'(t) in Eq. (6.19)
by $(t) (and c'(t) by tY(t)+1). Formulas for the
moments and n-quantum state matrix elements of
pz, (t) are obtained by making the same substitutions
in Eqs. (6.7) and (6.17), respectively. The probability
of 6nding l quanta in the A mode at time t, for the
initially chaotic mixture (7.1), is

X))(,(2),t) = exp[—i 2t i
2s2(t)+« 'gc *(t)—pp*2t*s, (t) p —

i 0)g g(0i p)),&m&, (7.8)

in which the chaotic density operator p~,( ) for the 8
c2p2t*c, (t)+Ports—,*(t)]P,(«,Pp)dpc2p(12P p. (7.3) mode is defined by

By substituting the Gaussian form for P, (n Pp)pgiven

by Eq. (7.2) into this expression and performing the
integration with the aid of Eq. (5.8), we obtain

X~, (2) t) —c—I |)I')[((O

IP.)(P.ld'Po (79).
(2)2)

expPa, gm) =
2r(2)2)

where

X(t) = (2p)c2(t)+ (1+(2)z))s2(t) .

(7.4) To obtain the function P((2,t) which corresponds to the
initial state (7.8), we substitute (22)=0 in Eqs. (7.5)

(7.5) and (7.6). We thereby find

The function P for the A mode at time t is evaluated
as the Fourier transform of XN, ()t,t): P(u, t) = exp

pr (1+(222))s'(t) (1+(2)z))s'(t)
(7.10)

If we begin with the A mode in the coherent state
i(2') and the 8 mode in the chaotic mixture p)) & &,

then the initial density operator for the system is[n[2-
exp

~E(t) E(t)
(7.6)

[
= l~')(~'lt~, &-&, (7.11)

P (~ t) —~—2 c—[g[2%(t)+aok a@2d2—
C
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which has the P representation

P(np, Pp) = tt'&'i (np —n') exp—
~(m) (m)

(7.12)

The normally ordered characteristic function for the 2
mode at time t Inay be obtained by evaluating the
integral in Eq. (7.3), with P.(np, Pp) replaced by
P(npA) as defined by Eq. (7.12). We find

large times would be

P(n t) 4e 2—xtp(2net(o~t xt—) (7.17)

if the ampli6cation process were noiseless. By com-
paring this equation with Eq. (7.16) for ttt»1 we see
that the output of the quantum-mechanical parametric
ampli6er may be represented by thinking of the classical
linear ampli6er as having an input amplitude
distribution

x„(tt,t) = expi ttn"c.*(t)—g*n'c. (t)
—

I t'ai'(1+(m))s'(t)j. (7.13) p(n) =
~(1+(m))

CX Q
P(n' 0)d'n'. (7.18)

1+(m)
By substituting this relation into Eq. (4.10) and
performing the integration with the aid of the integral
identity (5.8) we find that the function P for the A mode
at time t is given by"

P(n, t) = in —n'c. (t) i'
exp

n.(1+(m)) s'(t) (1+(m)) s'(t)
(7.14)

P(n', 0) In' )(n'I d'n' t a,&.&, (7.15)

where P(n, 0) is the initial P function for the A mode.
The value of this function at time t may be obtained by
averaging Eq. (7.14) with respect to the weight func-
tion P(n', 0). We thus have

P(n, t) =
tr(1+ (m)) s'(t)

X
in —n'c. (t) I'-

P(n' 0)d'n'. (7.16)
(1+(m))s'(t)

The eBect of amplification upon the function P(n, t)
Inay thus be expressed quite generally by means of a
convolution transform with a Gaussian kernel.

It is interesting to compare the asymptotic form of
P(n, t) for large times, «t»1, with the probability dis-
tribution for the amplitude of the Geld which would
emerge from a purely classical linear amplifier taken
to have the same amplitude gain factor, c,(t) —',e "t '" '.
If the probability distribution for the input amplitude
n in the classical linear amplifier were p(n), then the
probability distribution for the output amplitude at

Thus the effect of choosing the initial state of the A
mode to be the coherent state In') rather than the
ground-state IO)~ is to shift the mean complex ampli-
tude of the distribution from zero to n'c, (t); the variance
of the distribution remains unchanged.

The result (7.14) may be immediately generalized to
the case in which the A mode initially has an arbitrary
P representation. If we assume that the initial state of
the 8 mode is the chaotic mixture p~,( &, then the
initial density operator for the system takes the form

The distribution represented by this convolution
integral corresponds to the superposition of two fields.
One of these 6elds is the true input or signal field
represented by P(n', 0), and the other is a chaotic
field with mean quantum number 1+(m). The effect
of noise in the quantum amplifier is thus equivalent to
the addition at the input of the classical ampli6er of an
intensity of Gaussian noise corresponding to 1+(m)
quanta. The (m) quanta of noise are contributed by the
chaotic nature of the excitation of the 8 mode. The
single quantum of input noise which remains when
(m)=0 represents the unavoidable quantum noise'
intrinsic to the amplification process.

1+(I)
(8.4)

VIII. SOLUTION FOR DTITIAL n-QUANTUM STATE
OF A MODE; B MODE CHAOTIC

The density operator for the case in which both modes
are initially in chaotic mixtures can be used to generate
the density operators for cases in which the initial
quantum states of the modes are specified more closely.
Let us assume, for example, that the A mode is initially
in the tt-quantum state

I
tt)z. Then if we again assume

that the 8 mode is initially in a chaotic mixture with
mean quantum number (m), the system is described at
t=0 by the density operator

tt-, .= I
tp)»(tp

I ttit, &.&, (8.1)

where pit, & & is defined by Eq. (7.9).
Let us now recall that the initial density operator

p, is the product of density operators representing
individual chaotic mixtures for each of the two modes:

pc =pA, gn&pa, &~& ~ (82)
The operator p& &„& is defined by an expression similar
to Eq. (7.9) but involving the variables of the A mode.
In the e-quantum representation p~,~„& takes the form

1 (I)
I
tp)»(tp I (8.3)

1+(n) -~ 1+(n)
It is convenient at this point to introduce a parameter

x defined as
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which permits us to write the density operator p&,~„&
in the more compact form

related to the familiar generating function for the
Laguerre polynomials. We.may transform it into this
generating function by separating from it the factor

p,(„)——(1—x) P x" ltd)g (tel.
nM

(8.5) mt(n, t) = Lz.(1+(m))s'(t))—'
Xexp( —

l
n

l
'/(1+ (te))s'(t) }, (8.11)

H we now construct the operator p, by substituting the
form for pz, &„& given by Eq. (8.5) into Eq. (8.2), and
make use of the definition stated in Eq. (8.1), we find
the identity s=ti(t)x, (8.12)

and introducing the parameter s through the scale
transformation

p, = (1—x) g x p„,
nM

(8.6)

where
(m)s'(t) —1

ti(t) =
(1+(m)) s'(t)

(8.13)

exp
zX(x,t) N(x, t)

= (1—x) Q x"P„,(n, t), (8.8)
75M

in which E(x,t) is obtained by substituting Eq. (8.7)
for (ts) into Eq. (7.5):

E(x,t) = Lx/(1 —x) jc'(t)+ (1+(m))s'(t) (8 9)

If we insert this expression in Eq. (8.8) and divide by
1—x, we obtain

7r '(xL1—(m)s'(t)$+ (1+(m))s (t))

l
n l'(1—x)

~ exp
xl I—(m)ss(t)]+ (I+(m)) ss(t)

= P x"P„,(n, t). (8.10)

This equation expresses the relationship between the
initial density operators p, and p„,„ in terms of the
parameter x. Since the time-dependent density operator
is linearly related to its initial value, it follows that the
density operators at time t corresponding to the initial
values p, and p„,„respectively, satisfy a relation iden-
tical to Eq. (8.6); the symbol x is just a constant
parameter. Quantities linearly related to the density
operator, such as the weight function I' or the mean
values of dynamical operators, obey similar identities.
If we know these quantities for the initially chaotic
state, we can find them for the state in which the A
mode begins with a speci6ed number of quanta by
substituting

(e)=x/(1 —x) (8 7)

into the known solutions, and identifying the coefB-
cients in the expansion of these solutions in powers of x.

Let us consider, as an example of some interest, the I'
function for the A mode at time 3, corresponding to the
initial density operator p „we shall denote this func-
tion by P„,(n, t). It follows from Eqs. (7.6) and (8.6)
that P„,(n, t) satisfies the relation

We may then make use of the generating expansion'~

c—yz/o —I) —Q seL (y)
1—s

(8.14)

by letting the parameter y be

ln l'c'(t)
y(n, t) =

(1+(m))s'(t)l I (tis) '(t)]
(8.15)

If we express Eq. (8.10) in terms of the variable s
rather than x, then on equating coeScients of s" in

Eqs. (8.10) and (8.14) we find"

P-.(,t)=~( t)l p(t)j"L-Ly( t)3, (816)

where the functions 9R(n, t), p(t), and y(n, t) are defined

by Eqs. (8.11), (8.13), and (8.15), respectively.
One of the senses in which the function P, (n, t)

divers from a probability density is immediately
evident. The Laguerre polynomial L„(y) has e real
roots which are simple and positive. As long as the
function y(n, t) is positive, the function P, (n, t) must
take on negative values in concentric rings of the n

plane which lie between pairs of zeros. As t approaches
zero, P„,(n, t) becomes a highly singular, rapidly
oscillating function which vanishes everywhere except
within an in6nitesimal neighborhood of a=0.

Although the function P, (n, t) is not a probability
density, we may expect it, in general, to approximate
one when the fields we are dealing with are strong enough
to be described in classical terms. The linear ampli6ca-
tion process we are considering leads by its very nature
to 6elds of arbitrarily great strength when it continues
for a suKciently long time. It is reasonable, therefore,
to expect the functions I' to approach classical prob-
ability densities in the limit of large times.

As far as the sign of P, (n, t) is concerned this expecta-
tion is easily shown to be justified. For (ns)QO the
function y(n, t) defined by Eq. (8.15) is positive for

The function P„,(n, t) is thus the coefficient of x" in
the power series expansion of the left-hand side of
Eq. (8.10). This expression is in fact very closely

3' Handbook of Mathematical Factions, edited by M. Abramo-
vitz and Irene A. Steguu (National Bureau of Standards Applied
Mathematics Series 55, U. S. Government Printing and Publish-
ing Once, Washington, D. C., 1964), p. 784.
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times smaller than the root of the equation s(t)
=((m))—'I'. For all larger times y(n, t) is negative-
valued and tJ, (t) is positive-valued; since L„(y)&0 for
y&0, it follows from Eq. (8.16) that P„,(n, t) &0 Th. us
for (m)&0 the amplification process does lead before
too long a time to a non-negative function P.

In the particular case (m) =0, which corresponds to
the 8 mode beginning in its ground state, the behavior
of the function P is somewhat diferent. In this case
Eq. (8.16) reduces to

P„,(a,t) = exp
s.s'(t) s'(t)

n c2(t)
xl —

I L-I I-I'
I (8»)

s'(t)) 4 s'(t))

As the time t increases the annular regions of the o.
plane in which P is negative do not shrink to zero radius
as they do for (m)&0. Instead they become asympto-
tically fixed in radius and the function P„,(n, t) always
takes on negative values as well as positive ones. It
is clear, however, from the nature of the o. dependence
of the factor multiplying the Laguerre polynomial in
Eq. (8.17), that for large times, i.e., when s'(t) greatly
exceeds the largest root of 1. (y), the negative values of
P will be small in magnitude compared with the positive
values which occur for lnl s(t).

The answer to the question whether the function P
approaches a classical probability density in the limit
of large times depends in this case on the physical
nature of the quantities we are investigating. If we wish
to 6nd the mean value of an operator Ii for which the
expectation value (n I

F ln) assumes its most significant
values for

I
n

I

' smaller than the largest root of L, then
the nonclassical character of the function P given by
Eq. (8.17) will in general be quite significant. If on the
other hand we seek the average of an operator F for
which (n IF ln) assumes its most significant values for
large

I
n I, e.g. , F= uta, and hen. ce (n I

F
I n) =

I
n

I
', then

P„,(n, t) can be accurately approximated for large t

by the positive function

these probabilities must by virtue of Eq. (8.6) satisfy
the identity

p(t, tl(N), (m)) = (1—*) 2 x"p(t,tl~, (m)) (8 19)
eM

The probability p(l, tl(e), (m)) may be expressed as a
function of x by replacing the quantity E(t) in Eq.
(7.7) by the function X(x,t) defined by Eq (8. .9), so
that we have

[X(x t)]'
(tt e, m)=

[1+X(xt)j'+'
(8.20)

We next substitute the expression (8.9) for 1V(x,t)
into Eq. (8.20), and equate the result to the summation
in Eq. (8.19). To express the identity derived in this
way more compactly it is convenient to introduce the
functions

and

h(t) =1—(m)s'(t),

&(t)=(1+( )) '(t),

S(t) = —(m)s'(t),

(8.21)

(8.22)

(8.23)

[x+s'(t)]'
= p x-p(t, tl~, o)

[~'(t)]'"
(8.26)

By equating coeKcients of x", we find

S(t)= c'(t)+(m)s'(t) . (8.24)

Then the identity found by equating the expressions
in Eqs. (8.19) and (8.20) may be written in the form

[8(t)x+S(t)$' = p x"p(l, tie, (m)). (8.25)
[8(t)x+&(t)3'+'

The probability p(t, tie, (m)) may be solved for by
evaluating the coeKcient of x" in the power series
expansion of the rational fraction on the left side of
Eq. (8.25).

As a simple illustration, let us consider the case
(m) =0, for which Eq. (8.25) takes the form

P.,(n, t) =
m!mrs'(t) s'(t)

(8.18)
s'(t)

which is obtained by approximating the Laguerre
polynomial by its dominant term.

As a further example of the use of the generating
function technique let us now calculate the probability
of ending l quanta in the A mode at time t, given that
the system is initially described by the density operator
p, defined by Eq. (8.1). If we write this probability
as p(t, tl e, (m)), and recall that p(l, t

I (e),(m)) represents
the probability of finding l quanta in the A mode at time
t when the two modes are initially described by p„ then

[s2(t)ji—e

p(t, tl~, o)= for l&e
pa (t)]i+i

=0 for l&m.

(8.27)

(8.28)

It is interesting to note that for this case the A mode
can never have fewer than e quanta. The reason for
this behavior is indicated by the conservation law stated
in Eq. (3.9). For the case (m) = 0 the modes are initially
in quantum-number eigenstates, and the operator
a~a —b~b has the eigenvalue e. The state of the system
must retain this eigenvalue for the quantum-number
diEerence at all later times, even though the two modes
are no longer in states with well determined quantum
numbers. The 3 mode cannot hg,ve fewer than g
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e(t)s(t)—
yp (t—no) for e& l. (8.30)

h(t) v'(t)

IX; GENERAL DISCUSSION OF AMPLIFICATION
WITH 8 MODE IN'ITIALLY CHAOTIC

Let us now generalize some of the considerations of
the preceding sections. We continue to assume that
the 8 mode is initially in the mixed state p&,& & defined
by Eq. (7.9); the A mode, on the other hand, we take
to be described initially by an arbitrary density opera-
tor p~. Since the two modes are assumed to be initially
independent, the Heisenberg density operator for the
joint system is

P =P~P~,&m& ~ (9 1)

We have remarked that the amplification process
leads to arbitrarily strong fields, and that it is therefore
reasonable to expect a classical description of the fields
to be valid in the limit of large times. As far as the
behavior of the A mode is concerned, then, we may
expect that the reduced density operator p&(t) will

eventually be described by a P representation, and that
this P representation will eventually become non-
negative. We shall show that for the initial density
operator defined by Eq. (9.1), a P representation for
the A mode does indeed exist after a certain character-
istic time, and. does eventually become non-negative,
unless (m)=0.

We begin by considering the time-dependent form
of the ordinary characteristic function for the A mode,
which is defined by

X(rt, t) = tr~{p~(t)e& t—&* }. (9 2)

The function X(rt, t) like X~(rt, t), may be expressed in

terms of the Heisenberg density operator p and the
Heisenberg operators a(t) and at(t). By steps precisely

"See Ref. 37, p. 775.

quanta because in that case the 8 mode would have
to have fewer than zero.

In the general case ((m)WO) the left-hand side of
Eq. (8.25) can be expanded in powers of x without
great difFiculty. We find that the coeKcient of x"
in this expansion may be expressed in terms of the
associated Jacobi" polynomials P, O ~&(x) as follows:

Lh(t) j'I —8(t)3" '

p(l, tIe, (m)) =
L&(t)3"+'

e(t)s(t)—
yp (~—l,o) for e) l (8.29)

h(t) &(t)-

slnh Ktp=
2(m)+ 1

(9.8)

We have shown, then, that a P representation for the
A mode must exist for t& to. For many initial states, of
course, it will begin to exist at a time prior to t=tp,
and for some it will exist at all times t& 0.

In order to discuss the sign of the function P, we

"See, for example, J. E. Moyal, Proc. Cambridge Phil. Soc.
45, 99 (1948), or Ref. 21, Lecture XIII.

analogous to those leading to Eq. (4.12) for Xz(rt, t), we
find,

(rt t) tr{pcgat(t)-pea(t) } (9.3)

If we substitute Eq. (3.14a) for a(t) into Eq. (9.3), we
find

X(rt, t) = tr{p expLrt(atc. *(t)+bs.*(t))
—rI*(ac.(t)+b ts. (t))$}, (9.4)

and if we then substitute Eq. (9.1) for p into this
relation, we obtain the separated expression for the
characteristic function

X(rt, t) = tr~{pg expI rtc.*(t)at—rt*c.(t)aj}
trs{p~,& & exp[ res, (—t)bt+rts, *(t)bj}

=X(rtc. (t),0)
~ tr~{p~,& & expL —rt*s, (t)bt+rts, *(t)bf}. (9.5)

The factor multiplying X(rtc *(t),0) in the latter equa-
tion is just the ordinary characteristic function, eval-
uated at the complex argument —rt*s, (t), for the
chaotic density operator p& & &. This function may be
evaluated by using the expression (7.9) for ps & & and
employing the integral identity (5.8); we then find

try{ps, & & expI —rt*s, (t)bt+ps, *(t)bj}
= emI: —I ~ I's'(I) ((m)+ l)7 (9 6)

By substituting this relation into Eq. (9.5) and making
use of Eq. (2.20), we find that the normally ordered
characteristic function for the A mode at time t is

x&(rt, t) = exp{—
I I I

'I s'(t) ((m)+ l)—l3}
X(n .*(t) 0) (9 7)

In Sec. IV it was shown that a P representation for
the A mode exists at time t if X~(rt, t) has a Fourier
transform. It can be shown, on the other hand, that
the ordinary characteristic function corresponding to
an arbitrary density operator necessarily has a well-
d,efined Fourier transform. That transform is in fact the
Wigner function" written with complex argument. It
follows that when the coefficient in square brackets in
the exponent of Eq. (9.7) is non-negative, a P represen-
tation for the A mode exists. We may define a character-
istic time to by the relation

'(to)(( )+-') —-'=0,
so that
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introduce the antinormally ordered characteristic
function, which is defined by

n/c, (t&), and then comparing the result to Eq. (9.18)
we deduce that

X, t. (rt, t)=trg{p~(t)e &* e& t)

= e—'*~~~'x(q, t).
(9.9)

(9.10)

P(,t)=L1l "(t)j
X ( L..(t,)j- I, (O)l L..(t,)3- &. (9.19)

If we insert the expression for the unit operator given
by the completeness relation (2.9) between the exponen-
tials in Eq. (9.9) and make use of Eq. (2.5), we find

x, t,.(g,t)= e& * &*
Lm '(nip~(t)ln}$d'n. (9.11)

By evaluating Eq. (9.10) at t=0 and with q replaced
by qc,*(t), we find,

x(etc.*(t),0)= e
'
*~ & ~'"&'&x-, (qc *(t),0), (9.13)

and if we substitute this relation into Eq. (9.7), we
obtain

x„(g,t) = exp{—
lq l'L(m)s'(t) —1j)

.x,„& (gc,*(t),0) . (9.14)

We now de6ne a second characteristic time t~ by
the relation

which implies that

sinh'~tg=
(nz)

ty) tp )

(9.15)

and hence that a P representation for the A mode exists
at tizne ti. By evaluating Eq. (9.14) at t= ti, we find

x~(it, ti) =x,„,.(etc.*(ti),0) . (9.16)

If we substitute this expression for x&(g, ti) into Eq.
(4.10), we obtain

P(n)ti) =s ' e~&* ~*&x„,(gc,*(t,),0)d'r. t (9.17)

It is convenient, before performing the integration in
this equation, to change the variable of integration from
it to gc *(ti), so that we have

P(a, ti) =
s'c'(ti)

0!g A 'g

X exp — x, , (it,0)d'g. (9.18)
C~ (tl) C~ (tl)

By evaluating Eq. (9.12) at t =0 and with n replaced by

The function X,„,.(g, t) is thus the Fourier transform of
the non-negative function ~ '(nip~(t) ln). The inverse
of Eq. (9.11) is

~ '(alp&(t) ln)=s- ' e "* *&x, , (q, t)d2rt (9..12)

Since the function (nl pin} is intrinsically positive for
an arbitrary density operator, it follows that the P
function for the A mode is positive-definite at t=t~.

It is not difFicult to see that the P furiction for the A
mode remains positive-dehnite for t) t&. The proof may
be outlined briefly as follows: For t) t& the coeflicient
in square brackets in the exponent in Eq. (9.14) is
positive, and hence the exponential function in which
it appears is the Fourier transform of a Gaussian func-
tion which is always real and positive. The Fourier
transform of the right-hand side of Eq. (9.14) is there-
fore the convolution of this Gaussian function with the
Fourier transform of x,„,(gc,*(t),0). We have shown
that Fourier transform to be a diagonal matrix element
of the density operator and hence to be positive-
definite. It follows that for t& ti, or s'(t)) ((m}) ', the
function P(e, t) is positive-definite. It is worth noting
that if the initial chaotic distribution in the 8 mode
corresponds to thermal equilibrium, then in the high-
temperature limit. (or equivalently in the classical
limit) the existence and positive-definiteness of the P
representation for the A mode are guaranteed after an
in6nitesimally small time interval.

For the case (ns) =0, no conclusion about the sign of
P (a, t) can be drawn. In Sec. VIII it was shown that for
pa= le}g g(el and (m}=0, the function P for the 2
mode continues to take on negative values at all times.

*=2-'I'(~*+ ~),
y =~2

—'i'(it~ —q) . (10.1)

A simple example of a characteristic function which
takes a more general Gaussian form than those con-

X. DISCUSSIOH OF P REPRESENT'TATION:
CHARACTERISTIC FUN CTION'S

I5'ITIALLY GAUSSIAN

The cases we examined in Sec. VII in which the
characteristic functions were initially Gaussian in form
were ones in which the P representation for the A mode
exists at t=0 and at all later times. It is worth noting,
therefore, that when the amplifier system begins in
states which are described by somewhat more general
Gaussian forms for the characteristic functions, the P
representation only comes into existence at times t)0.
These cases provide simple illustrations of some of the
results derived in the preceding section.

Let us begin by discussing some of the properties of a
single mode which is described by a Gaussian character-
istic function. We define the real variables x and y which
are proportional to the real and imaginary parts of
g as



160 QUANTUM THEORY OF PARAMETRIC AMPLIFICATION. I 1093

sidered earlier is

X(1/) = expL —12(y2$2+x2/P2)g (10.2)

where g and /P are a pair of real numbers which may be
taken to be positive.

If we define the pair of Hermitian operators q and p
via the relations

In the limit in which &2~ 2 this function reduces to
the one-dimensional 8 function

/2

Xexp —2, (10.11)
(p2

q= 2 '/2(at+/2),

p=i2 '/2(/2& —/2),
(10.3) and a corresponding result holds for /P2 ~ —,'. When both

g2 and /P2 approach 2, the function P(n) reduces to

82

tr(pq'} = — X(2/)
Qy2

82

tr(pp2} =— X(2/)
Bx

—Q2

—(p2

(1o.s)

Since q and p satisfy the canonical commutation relation

Lq,pj = i, the second moznents of these operators must
satisfy the inequality

g2/p2) 1 (10.6)

which corresponds to the Heisenberg uncertainty
relation.

The normally ordered characteristic function, when
it is expressed in terms of the real variables x and y,
takes the form

X2/(2/) = e I21'X(2/)

=exp( —lLy'(Z' —l)+x'(/P' —l)3} (» 7)

This function becomes indnite with great rapidity as

i2/t
—+ ~ unless the coefficients of x' and y' in the

exponential are both negative, i.e., unless

g2) 1

(p2+ 1 (10.8)

If these inequalities are satisfied, the function X&(1/)

possesses a two-dimensional Fourier transform which is
the function P(n). If we introduce the real variables
q' and p' via the relations

then according to Eq. (2.13), the general expression
for the characteristic function X(2/) may be written as

X (2/) = tr (pe/(2 2 *2/) }— (10.4)

It is evident that when this function takes the form
given in Eq. (10.2), the mean values of q' and p' are
given by

(10.12)

which represents the ground state of the mode.
If either of the inequalities (10.8) fails to be satisfied,

on the other hand, the function X~(2/) increases so

rapidly as i&i ~ ~ that no P representation exists.
It is not difficult, of course, to find states for which

either g'=tr(pq2} or /p2=tr{pp2} is less than —',, and
there is nothing unphysical about them. Indeed the
condition g2/P2= ~1 leads uniquely to a family of mini-

mum uncertainty states, one member of which corre-
sponds to any positive value for p2. The only case
among these for which the I' representation exists
corresponds to g2=/P2=-'„which specifies the ground
state of the mode. In all other cases either g2 or /P2

is smaller than 2, and the normally ordered character-
istic function has no Fourier transform.

The arguments we have given regarding the existence
of the I' representation are not materially altered if the
characteristic function specified by Eq. (10.2) is

replaced by more general types of Gaussian functions.
If, for example, we have

X(1/) =expL 21 (y2$2—+x2/P2)+i(yq xp)j —(10.13)

8
tr(pq} = —i—x(1/)

By

8
tr(pp} = i—x(2/)

8$

(1O.14)

The variances of q and p are given by

Aq'= tr(p(q' —q') }

for some pair of real numbers g and p, then we see
from Eq. (10.4) that the mean values of q and p are just

n= 2 '/'(q'+ip'),
2—1/2 (q/ 2p/)

(10.9)
gy2

lnx(1/) —Q2 (1O.15a)

then we may write the function P (n) which corresponds
to the Fourier integral (2.22) as

P(~) —~—1(g2 1)—1/2((p2 1)—1/2

AP'= tr(p (P' —11')}

lnx(1/) —(p2 (10.15b)

q/2 p/2

Xexp —
21+

2 ~ 2-
(10.10) The condition that a Fourier transform exist for the

normally ordered characteristic function is once again
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that both the inequalities (10.8) hold. When they do
hold the function P(n) is given by a displaced form of
the Gaussian function in Eq. (10.10) obtained by
letting q' —+ q' —q and p'~ p' —7i. Let us define the
complex number o. as

u= tr(pa} = 2 '~2(q+if) . (10.16)

Then in the limit Aq' ~ —i2, Ap' ~ ~i, the function P(n)
reduces to

h, p

Qq2) 1 Ap') —,'. (10.18)

Indeed, if we calculate the variance hq' in the I'
representation we find

~q'= tr(p(q q)'}-
= i~tr{p(a&+a—n*—8)'}
=2+2 J'P(~) )~*+~—~*—~~'d'n, (10.19)

where the commutation relation has been used to reach
the latter expression. We similarly find

&p'=-', +-,' P(n)
~

(n*—n —i7.*+u) ~'d'n. (10.20)

(10.17)

which represents the pure coherent state
~
n). This state

is but one member of an infinite family of minimum
uncertainty states for which hq'Ap'= g'(p'= i and
tr(pa} =a. The fact that the other rneinbers of the set,
for which g'W(P', have no P representations in the
basis we are using, simply expresses the fact that there
is no way of mixing coherent states, which have ~q'
=Ap'=-', , to form states with smaller values of either
hq' or hp' and minimum uncertainty Dq'hp'= ~.

A theorem which holds for all quantum states is
perhaps worth noting at this point: A non-negative I'
representation can only exist for states for which the
variances hq' and Ap' obey the inequalities

2

I

1

2

FIG. 2. Characterization of quantum states according to their
coordinate and momentum uncertainties, The variables hq' and
Ap' represent the variances of the coordinate and the momentum,
respectively, for an arbitrary state of a one-mode system. The
hyperbola is defined by the equation Aq'Ap'= 4. Points within the
shaded region represent states allowed by the uncertainty rela-
tion, but for which no function I' can exist which takes on only
positive values.

initially in the chaotic mixture p&,& & defined by Eq.
(7.9). Let us also assume that g'&-', (and therefore
p~) ~), so that no P representation exists initially for
the A mode. We may use Eq. (9.7) to evaluate the

normally ordered characteristic function at times t)0.
When the characteristic function is not circularly sym-

metric in the complex g plane, its behavior is most

simply described in a frame of reference which rotates
uniformly with angular velocity —co,. If we therefore

write the argument of X~ as ge '"",we find

It is clear from these expressions that the variances
obey the inequalities (10.18) as long as the function
P(ai) exists and takes on no negative values.

Quantum states of the field exist for all values of
Dq' and Dp' for which Dq'hp') xi. These states are indi-

cated by the points in the hq2 —8 p' plane lying within
the hyperbola shown in Fig. 2. The states which corre-
spond to points lying within the shaded regions between
the hyperbola and the bounds Aq'=-,' and Dp'=-', are
the ones for which no positive-valued function P(n)
can exist. In the examples we have considered, which
correspond to Gaussian characteristic functions, no
function P(n) exists at all in the sense discussed in
Sec. II for the states lying within the shaded regions.

To illustrate the foregoing arguments in a dynamical
context let us assume that the A mode of the parametric
amplifier is initially in the state specified by the
characteristic function (10.2) and that the J3 mode is

where

Z'(i)= 0' '(i)+(( )+-) '(i)
6'"(&)= 5"~'(&)+((~)+l)"(i)

(10.22)

and x and y are defined by Eqs. (10.1).
Let us define the Hermitian operators q(i) and p(t)

appropriate to a rotating coordinate system by the
relation

a= 2—' '[q(i)+ip(i)$e —'"', (10.23)

so that we have

q(i) 2—1/2/atg —is&at+agin& )ai
p(t) =i2 '~')ate '~' ae'"a'$— (10.24)

Then it is easily shown that the functions g"(t) and
(p"(t) are just the mean-squared values of q(t) and p(t),



160 QUANTUM THEORY OF PARAMETRIC AMPLIFICATION. I 1095

i.e., we have

tr(p(t)q'(t)} =
2 tr(pL~'(t)e '"'+a(t)e'"")'}

= Z"(t)
and

(1O.25)

by the equation

xQ (i/, t) =x(//c. *(t), —i/*s. (t), O) . (11.2)

The normally ordered characteristic function Xb/ z(p, t)
is therefore given by

tr fp(t) p'(t) }=-', tr{—payat(t)e
—'"'—a(t)e'"")'}.

=o "(t). (10.26)

1—29'
sinh2g))

1+2(m)+ 2g'
(10.27)

For g'&0, then, a P representation comes into exis-
tence for the A mode at. a time prior to the time 30

defined by Eq. (9.8).
For times which satisfy the condition (10.27) the

function I' is given by

P(ae—~aa& t) =7/—iLg'2(t) —i)—i/~L)y'2(t) —i)—i/&

$12 p~2

Xexp —
2 +, (10.28)

g"(t)—-', /P" (t)——',

where q' and p' are the variables defined by the Eqs.
(10.9). At the instant at which the inequality (10.27)
is initially satisfied the function I' is a one-dimensional
8 function similar to that in Eq. (10.11).

XI. SOME GENERAL PROPERTIES OF P(n, t)

The results we have derived, in the previous sections
have corresponded to the choice of particular initial
states for the 8 mode. We shall now derive a general
expression for the function P(n, t) which corresponds to
the choice of an arbitrary initial density operator for
the two-mode system. We illustrate the use of this
expression by proving a simple theorem about the
existence of the I' representation for the case in which
the two modes are statistically independent of each
other in the initial state.

To treat arbitrary initial states we first introduce the
ordinary characteristic function for the joint system of
A and 8 modes, which is defined at t= 0 by

X(~ i. 0) tr(pegat+rbt qua r4b}— —

where i/ and f are complex variables. By comparing this
expression with Eq. (9.4) we find that the time-de-
pendent characteristic function for the A mode, which
we now designate by X„(p,t), is related to the initial
value of the characteristic function for the joint system

It is clear from Eq. (10.22) that these mean-squared
values increase monotonically with time.

The function Xb/ given by Eq. (10.21) will possess a
two-dimensional Fourier transform only if g"(t))-',
and /P" (t)) i2. The latter condition is satisfied at all
times, since we have assumed that the initial value
(P') —',. The condition on g'(t) implies that a P represen-
tation for the A mode only exists for times t satisfying
the inequality

X~ ~(g, t) = e'*)"/)'X(yea*(t), —g*sa(t), 0) . (11.3)

If a I' representation for the A mode exists at time t,
the function P (n, t) is the Fourier transform of
Xb/, ~(i/, t), so that we have

P (~ t) —~—2 eagw

aors—

+I ) g) &

)

p= papa (11.5)

We shall allow p& to represent an arbitrary initial state
of the 8 mode. The density operator p&, on the other
hand, is assumed to have the I' representation

p~= P(n, O) ~n)(u)d ~. (11.6)

It follows from Eq. (11.5) that the ordinary character-
istic function for the joint system of A and 8 modes is
given at time t=0 by

X(i/ f 0)=tr~(p~e" t }Xtr//fp//er ~ r*'}
= X~ (i/, 0)xe(i,o)
= e I)")'-,.(n,o-)"(0,0). (».7)

Since p~ possesses the P representation (11.6), the
function Xb/ ~(r/, 0) has the Fourier transform

P(n, o) =ir ' e"&* *'/X/)/ ~(g,o)d'r/. (11.8)

If we use the relation (11.7) for X(i/, |,0) in Eq. (11.3),
we obtain

Xb/ ~ (g, t) = e—l) &)"'")Xb/ ~(gc,*(t),0)
XXeL—~*s.(t), O). (11.9)

The absolute magnitude of an ordinary character-
istic function such as X~(|,0) possesses a simple upper
bound. Since the operator exp(fbt —i*b) is unitary,
its expectation value can not exceed unity in modulus.
Hence we have

I Xe(t ) I
&1. (11.10)

XX(r/c, *(t), —g*s.(t), 0)d'r/. (11.4)

The forms of this function derived in the earlier sections
correspond to appropriately specialized forms of the
characteristic function X.

Let us now assume that the initial state of the two-
rnod, e system is separable, i.e., that the Heisenberg
density operator factors into a direct product of density
operators for each of the two modes,
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It follows then from Eq. (11.9) that

(X~,g(rt t) ~s&e ~
"~'"(')

~XN, g(s)c,*(t),0) [' (11.11)

It is easily seen that this inequality implies the con-
tinued existence of the I' representation for the A mode.

Let us suppose, for example, that the furiction P(n, 0)
which describes the initial state of the A mode is
quadratically integrable. Then its Fourier transform
Xz,z(&,0) must be quadratically integrable, and it
follows froin the inequality (11.11) that Xs(„()),t) is
quadratically integrable at all times t. The quadratic
integrability of X~,~ (rt, t) implies that its Fourier
transform P(n, t) must exist and remain quadratically
integrable at all times.

If, for the sake of greater generality, we take P(n, 0)
to be a tempered distribution, '0 then its Fourier trans-
form Xtt,~ (r),0) must also be a tempered distribution and
so too is the expression for X» (s),t) given by Eq. (11.9).
It follows then that P(n, t) must remain a tempered
distribution at all times t.

The general formula (11.4) enables us to discuss the
asymptotic form of P(n, t) at large times for a much
wider class of initial states than we assumed in deriving
the asymptotic relation (7.17).By changing the variable
of integration in Eq. (11.4) from rt to ))c,*(t), we find

QJ SztS
ekw+zz+vwz= g D ()( + v)

grmf
"

Alternatively, we may write

(A1)

)w (j)m
D„(X,tt, v)

—=
~

—
~

e""+z*+""z . (A2)
awJ as) m, z=0

The function D„(),tt, v) clearly obeys the symmetry
relation

D„(),tt, v) =D„„(ts,k, v). (A3)

By expanding the exponential erst in powers of z,
we find

ztR
eiw+zz+rwz —Q (@+vie)meow

mM m!

s" ( vw)"
p

~
1+

~
eiw.

-~m! & t ) (A4)

We now make use of the identity

APPENDIX

In Sec. VI use was made of a theorem involving the
associated Laguerre polynomials, which we shall now
prove. Let us define the set of functions D„(),p, ,v)
as the coefB.cients in the double power-series expansion

P(n, t) =
or'c'(t)

exp
c,(t) c.*(t) (m—w) (x)yw —(1+y)me—zv

nM
(AS)

&& exp —,
'

X(z), —irt* tanht(t, 0) d'z). (11.12)
c'(t)

The function P(n, t) is thus the Fourier transform,
evaluated at the complex argument n/c, (t), of the
time-dependent function in curly brackets in Eq.
(11.12). As long as the asymptotic value of the Fourier
transform is equal to the Fourier transform of the
asymptotic value of the function in curly brackets, the
function P(n, t) takes the form given by Eq. (7.17) in
the limit of large times. The effective input amplitude
distribution p(n) is then given by the integral

P(n) =s. ' e«~"a&X(s), —i))*,0)d')). (11.13)

The function given by Eq. (7.18) corresponds to the

special case in which the 8 mode is initially in a chaotic
state and the A mode is described by means of a P
representation.

I'lt )tS

J (n,—m) ( t) j (m n) ( t)—
e! m!

(AS)

where t=Xtt/v. This identity also follows for arbitrary
t directly from the explicit expression for the associated
Laguerre polynomials.

40W. Magnus and F. Oberhettinger, FormuLas and Theorems
for the Special Functions of Mathematicat Physics (Chelsea
Publishing Company, New Y'ork, 1949), p. 85.

If we write y= vt()/tt and x= —) tt/v, and substitute the
resulting form of Eq. (AS) into Eq. (A4), we deduce,
by referring to the definition (A1),

D (y ~ v)
—st lvwpm nL (m —a) ( y&—/v) (A6)

By making use of the synnnetry relation (A3) we
obtain the alternative expression

D„m(h, tt, v)=tttlv )i" Lm" "'(—Xtt/v). (A7)

If we equate the expressions (A6) and (A7), we
obtain


