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A nonvanishing production amplitude in the pion-nucleon scattering is proved to be a necessary conse-
quence of relativistic invariance, causality, crossing, and unitarity relations in quantum field theory.

I. INTRODUCTION

N potential models, elastic scattering can occur with-

out the existence of production processes. However,
in quantum field theory,! relativistic invariance,
causality, crossing symmetry, and unitarity lead to
inevitable connections between scattering and pro-
duction. Previous proofs?? of this relationship have
involved various special assumptions. In this article
we will give a general proof that in pion-nucleon
scattering, consistency between the uaitarity and
crossing relations requires the existence of a nonvanish-
ing production amplitude. This example is chosen be-
cause of its physical importance, but the method can
be generalized to other cases involving spins and isotopic
spins, so long as single-dispersion relations for these
processes can be proved.

II. s-CHANNEL ELASTIC UNITARITY CONDITION
AND THE MANDELSTAM REPRESENTATION

The T matrix for the 7V scattering has the following
spin and isospin decomposition:
T=bga — A*(s,t;u)+3iv(q+¢) B (s,t;) 1437, 7e]

X[=A+(s,tu)+3iv(g+¢) B (stw)], (1)

where «, 8 are charge indices of the incoming and
outgoing pions (Fig. 1), s=(p+¢q)?, t=(p+¢")? and
u=(p+¢)? . The scattering amplitudes A+ and B+
have the following crossing relations?:

Ai(s,t,u) = :l:Ai(u,t,s) ’
BE(s,tyu) =F B*(ut,s) , @)

and are connected with the amplitudes A7 and B!
with fixed total isospins I=%, 3 by

A+=%(A1/2+2A3/2) ,
A‘=%(A1/2——A3/2);

similar relations hold for the B’s.

®3)
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The theorem will be proved by reductio ad absurdum.
We take the premise that there are no production pro-
cesses in the s channel and will show that under this
premise, the analyticity domain obtained by Martin®
may be enlarged repeatedly by use of s-channel elastic
unitarity to the whole s-f manifold except for the usual
physical cuts, so that we can write down the Mandel-
stam representations for A% and B=. It is shown then in
the next section that consistency between crossing rela-
tions and unitarity demands that the invariant ampli-
tudes A’ and B! must be identically zero.

Martin® has combined the ¢-plane analyticity property
of Lehmann® and that of Bros, Epstein, and Glaser?
with the fixed-f dispersion relations,?

1 A1)
Ax(s,tu =—f ds'——=
™Jartwr s
1 > A E(u,'t)
- w7
T J (rw)? w'—u
g g 1 Be(s',1)
B(s,tu)= + } / ds'———
s—M? u—M? ) arepe s'—s
1 B, x(u' )
- " _1.<1<0 (4)
7)ok w—u

and showed that A%+ and B* are analytic in s and ¢
within ©, where

D=[|t| < RIR[s-cut plane with cut along the real
axis from (M+pu)? to «© and another parallel
cut from — ¢+ (M—pu)? to — 0 —iImt] (5)

and R=1.83u? is the maximum of the right extremity
of the small Lehmann ellipse in the ¢ plane.? The precise
value of R does not concern us here so long as it is a
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at the end of this article.
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Fic. 1. Kinematics of the pion-nucleon scattering.

finite constant number.!® From the Martin result and
that of Lehmann, it further follows®? that the boundary
values of the absorptive parts as one approaches the
real axis from above, 4.+ and B,*, are analytic in ¢
within the ellipse,

with foci 0 and —4¢? and right extremity at =R and
with ¢ the c.m. momentum of either particle in the
s channel, 4¢?=[s— (M +u)? [s— (M —p)*]/s. A:=(s)t)
and B*(s,t) will then be analytic for all s real, 0 > 52 50
= (M+p)? within the intersection of these ellipses!!:

N E0,—4¢*| R)=E(0,—4¢o*(s0) [R).  (7)

80< 8<0

The s and # channels’ absorptive parts are related to
each other by crossing relations similar to Eq. (2),

AE(s,D)=x4,%(ul),
BE(s,5)=F B, (u,t). ®)

Hence A4.,*(u,t) and B,*(u,f) will also be analytic
within E(0,—4qe?|R) for all real u, uy=sy<u< o, so
that for any given & E(0,—4q,?| R), dispersion relations
as given by Eq. (4) exist and the scattering amplitudes
A* and B* are analytic within the domain,

[tE E(0,—4¢0?| R) JR®[s-cut plane]. 9

For a given s real, we may fit into E(0,—4¢¢?|R) an
ellipse of the form E(0,—4¢2|7) and then use elastic
unitarity in the s channel to find the analyticity domain
of A and B* to be E(0,—4q?|4r(1+7/4¢%)), except
possibly for cuts along the real axis starting from ¢=4,
and {=—s+ (M —u)? Hereafter, we shall use & in-
stead of E to denote an ellipse that may have been
penetrated by these physical cuts. This ellipse is to be

10 In contrast, if we have only the Lehmann ellipse at our dis-
posal, the analyticity domain of 4 and B cannot be extended
indefinitely even if elastic unitarity is assumed for all s.

11 A somewhat larger domain would be obtained had we taken
into account also the Lehmann ellipses. The g% in Eq. (7) is then
larger than zero. However, this is immaterial in our subsequent
discussion. .
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compared with E(0,—4¢?|R), the initial analyticity
domain of 4,* and B* for given ¢2. An enlargement!?
has occurred if 4r(1-+7/4¢>)>R. This condition will
be satisfied for ¢o2<¢?<g¢>+3R/16 by taking r(¢?)
=R—4(g>—q¢?), so that Eq. (7) can now be replaced
by the larger domain,

002< q2_<_rq]o?+3R/16 8(0, —4g|4LR—4(g*=ge"]

R—4(q2—q?
x[1+ (¢>—¢ )D
4q?

D8(0,—4(go*+3R/16) | R),

and by going through the argument leading to Eq. (9),
we see that 4%+ and B+ may be analytically continued
at least into

[t= 8(0,—4(ge®+3R/16)| R) JQ[s-cut plane]. (11)

The enlargement procedure above can be carried on by
steps indefinitely, insofar as the s-chanmel elastic
unitarity is applicable for all real s> so, because if we
have analytically continued 4* and B# into!?

[t 8(0,—4(go*+3(n—1)R/16)| R) ]
&Q[s-cut plane], (12)

the same argument as given above shows that we can
also enlarge the analyticity domain to

[t€ 8(0,—4(go®>+3nR/16) | R) ]RQ[s-cut plane]. (13)

The domain &(0,—4(qo*+31R/16)|R) evidently gets
bigger as # becomes larger, but it is always limited as
it has a fixed right extremity at = R. To further enlarge
the analyticity domain, we may again, for a given
?<q*+3nR/16, fit an ellipse §(0,—4¢%*|r=R) into
8(0,—4(ge>+3nR/16)| R) and use elastic unitarity to
find the analyticity domain of A+ and B+ to be
8(0,—4¢*|4R(1+R/4¢%)), which contains the ellipse
8(0,—4¢*|4R). Using these ellipses instead of
E(0,—4¢?*|R) in Eq. (6), we may now repeat the
whole enlargement process over again. It is easy to
see that in this way we can analytically continue
A% and B* into the product domain (Fig. 2):

[t€ 8(0,—4(qo?+31nR/16) | 4™ R) |Q[s-cut plane]. (14)

As z and m can be made as large as we please by re-
peated use of the above argument, we reach the con-

(10)

12§, Mandelstam, Nuovo Cimento 15, 658 (1960); A. Martin,
Ref. 5. See also the latter’s note added in proof. Here we follow
their assumption that there is no pathological difficulty in using
the elastic unitarity to enlarge the analyticity domain of the
absorptive parts even if the 7" matrix is taken as a distribution.

13 For simplicity we have neglected possible singularities
generated by the ellipse &(0,—4¢?|7) with the physical cuts,
t>4u? and %> (M-+u)2 When they are taken into account,
we should replace the ellipse &(0,—4(go*+3#R/16)|4™R) by
8(0,—4(qo2+3nR/16) | R16) | R+4m); the result after Eq. (14),
however, is independent of these complications.
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Fic. 2. The diagram shows several stages of enlargements of
the analyticity domain in ¢ of A and Bj; the circle is the original
Martin domain, the indented ellipse corresponds to »=7, and the
parabola #= «, when both %, m — «, we are left only with the
physical cuts.

clusion that A* and B* are analytic in the whole s—1
manifold except for the usual physical cuts. As a result,
we can write down the Mandelstam representations
for A+ and B+

1 w0 A )
Y )
72 St S (T—=8)(—1)

1 = o QYA )
+— a f S e
w2 J (=) —u)
1 r 0 A E(s"u)
+— ds’ / w7
72 ) arw? Joegwr (W —u)(s'—s)

g2 g2
:F
s—M?* u—M?

B:E(s)t’u) =

1
+—

o © Bui(s',t/)
ds'/ dff'—————
) o e (—9)(—0)

1 > o B £ (1 w')
+— / o / T
2 J () ? wr (=0 —u)
1 e B (s ')
4+ / ds’ / "
w2 J (Mu)? arrw? (W —u)(s'—s)

where subtractions are neglected but will be discussed
at the end of the article.

(15)

III. PROOF THAT PRODUCTION AMPLITUDES
ARE NECESSARY

In terms of the double-density functions, the crossing
relations Eq. (5) become

AT (su) =2 A 5 (n,5) ,
Bt (s,u)=F Bs, = (u,s).
14§, Mandelstam, Phys. Rev. 112, 1344 (1958).

(16)
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These double-density functions are analytic in the
real s-u plane except for possible singularities along the
Landau curves #,%(s).’® These Landau curves lie
entirely in the first quadrant of the s-u plane and do not
cross one another, so that starting from the origin,
#n17(s) can be reached only by traversing the curve
u.t(s). uat(s) has asymptote = (M-+nu)? along the
s direction, but because of our premise that there are no
production processes in the s channel, they are all
asymptotic to s= (M )2 Furthermore, 4 ,,%(s,u) and
B, =(s,u) vanish before the first Landau curve is
reached. Referring to Fig. 3, 4,,*=B,*=0 in the
shaded region. Now supposing P (s1,%1) is a point in re-
gion II, we will get its image point Q (#1,51) with respect
to s=u by interchanging the coordinates (s1,%1).
Q(u1,51) is a point in region I where A4,,%(s,#) and
B, =(s,u) are zero. By the crossing relations Eq. (16),
A= (s,u) and By, (s,u) also vanish at P(s1,u1),

A wi(sl,ul) = :EA W(ul,sl) = 0 y

By (s1,81) = F By (t41,51) =0. (17)

However, region II contains part of every Landau curve
#,1(s), so that by analytically continuing out from
region II, we see that the double density functions
must vanish identically everywhere in the real s-u
plane. From Eq. (3), the double-density functions

A4, f and B! with fixed isotopic spins will also vanish,
AsulzBsulzo- (18)

On the other hand, these double-density functions are
related to the absorptive parts 4/, 4.1, Bf, B, by

(M+4pR AN A === e oo T -

{ 1
(M+2u1f / .....

(M+AY (M+2i0)*

Fic. 3. The Landau curves #,"(s) in the real s-x plane. The
dashed curve us=(s) is the image of u2™(s) reflected with respect
to the line s=u. Regions I and II refer to those portions of the
s-u plane which are bounded between us™(s) and us™(s).

15 W. Zimmermann, Nuovo Cimento 21, 249 (1961); L. D.
Landau, Nucl. Phys. 13, 181 (1959).
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the s-channel unitarity integrals!4

2>z129+ (212-1)1/2 (222-1)1/2

I N
A’ (55(00) 4dn(w+E)

1+t0/2q%
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dzs K (2,51,%2)

X{ ful A8 (5,204 (5,29) F AT (5,20) AT (5,20) 14 f1s[ A8 (5,20) B (5,20) + A7 (5,21) BT (5,22) ]
+f21[BtI*(S,Zl>A gI(S,Zg) +Bul*(s’2'1)A uI(S,Zz)]+fzz[BgI*(S,Zl)Bgr(S,Zg) +Bu’*(s,z1)BuI(s,zz)]} ) (193‘)

2>zy29+ (212—1)1/2(292—1)1/2
q 122 1 2

Bsu’(S,Z(%))=m

1+40/24*

dZ],/
- luo—[ (g™ M%) 2~ (g 4+u®) /%1 2) 24

dzs K (3,31,22)

X {gul 4 5 (5,81) A £(s5,20) + AT (5,81) Ao (5,82) 1+ g1o[ A (5,20) B (5,22) + AT (5,2.) Bl (5,29) ]
+g21[BtI*(s;zl)A tI(S:ZZ) +BUI*(S’ZI)A ul(s:z‘b’)]+g22[Btr*(s7zl)BtI(S;ZZ) +Bul*(s;21)BuI(s’22)]} ’ (lgb)

where E and w are the c.m. energy of the incoming nu-
cleon and pion, respectively, s=(E+w)? and z is the
cosine of the c.m. scattering angle with t=—2¢%(1+3).
K(z,21,%2) is the elastic unitarity kernel; (K(2,21,%2)
= (824 212+222— 1—222125)"V/2. The f’s and g’s depend
linearly on 2; and 2, and are given explicitly by

w 1—z1—29F2
f11=M(1— ))
2(E+w) 142
E2— FEw—M?1+21—3,—3
Jfiz=
2 1—2
} M>w 1—z1—z+2
T2wtE) 14z
E4Ew—M?1—2z1+2.—2
f21=
2 1—2
M>w 1—z1—20+3
T , (202)
2(w+E) 14z
Mw (Bt M2)1+z—zl—22
= w)ei— —,
e et ) 143
E /1+Z—Zl—22
g11= >7
wtE\ 14z
M 1—Z+Z1—22 EM 1+Z—Z1—Zz
T 2wtE) 1tz
M1—z—z1423 EM 143—31—2
B T 2wtE) it+s
E 14-2—21—22
go= (B4 Ew—M?)— (20b)
2(w+E) 142

16 R. Courant, Differential and Integral Calculus (Nordemann
Publishing Company, Inc., New York, 1938).

We will also need to use later another set of amplitudes
defined by

M AT (Ew—M)B!

2(E+w)\ 4r ’ ”
E-M /—AI+(E+w+M)BI> @)
Di= :
2(E+w)\ 4

The absorptive parts Cd, D! and C,J, D! are similarly
related to 4/, B and 4.1, B/, respectively. Within
the integration range of Eq. (19), K(3,21,22) is a positive
function. By the mean-value theorem,¢ this factor may
be taken out of the integral and evaluated at some
intermediate point (210,220) within the integration range.
Disregarding K (2,210,2%), it is then easy to see that for
the left-hand side of Eq. (19) to vanish for all z, the
quantities within the brackets of the integrands must
be identically zero. In particular, for z;=2,, we have

0= f11(A4 I (22) A I (29)+ A T*(22) A 1 (22))
+ f12(A4 7*(22) B (22)+ A T *(22) B 1 (22))
+ fa1(Bd *(22) A £ (22) + BT *(22) A 1 (22))
+ faa(Bd*(22) B (32)+ BuT*(22) B} (22))
0= gu(A tI*(ZZ)A Pl (22)+A uI*(Z2>A uI(Zz))
+ gu(A & *(22)3 P (22) +A41 *(zz)BuI (Zz))
-+ g21(BtI*(Zz)A tl(22)+BuI*(z2)A uI(Z2))
+g22(BtI*(z2)BtI(z2>+Bu1*(z2)BuI(zﬁ)) .

If we write out the real and imaginary parts of the
above equations, we get a set of four homogeneous
equations which has only the solution

| A4 (s,22) [ 24| A (5,22) | 2= | B (22) | >+ | B (22) | 2
= | A T*(s,22) B (s5,22) + A L ¥(5,22) B (5,22) | = 0. (23)

Since this remains true as z; and s are varied, we see
that 4/1(zs), B (22), 4.1 (22), and B,X(zs) are identically
zero; and by Eq. (21) so are C{, D/, C, 1, and D,X. To
see the further consequences, let us take for instance,

=D, =0 and consider the following partial-wave

(22)
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expansion in the # channel:
Cl(u,3(5))= 2. fir-(u)Prya'(cosby)
=0

—i Jfi(u)P1—y/(cosby), (24)

=2

Df(u,z<s>)=l§0 (fi— fu) Pa(cost), (25)

where f= (9;16?%%—1)/qu, 114 is the inelasticity factor
with 0<9;.<1, and

1

@[ CL(E)Pi(z)+ D1 (z)Piia(2)]. (26)

1
Imfiu)= f

-1

From this we see that Imf;. vanishes along with C,f
and D,J,

Imfi (#)=0 f{or alll. 27)

However, Imf;, () are related to the modulus of f1.(x)
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by the partial-wave unitarity condition,
Im foi ()= qu| fre(®) |*+qul—n2/4),  (28)

where qu((1—7:)/4) is the inelastic contribution to
Imfi, (%) in the # channel and is non-negative, so that

fie(w)=0 forall L. (29)

Putting this back into Egs. (24) and (25), we see that
CT and D7, and hence A7 and BZ, vanish in the physical
region of the # channel. By analytic continuation, they
must be identically zero and we reach the final result
that there can be no scattering at all if there are no
production processes in one channel.

It is worth remarking that the result we have ob-
tained remains true even if there is a finite number of
subtractions in the Mandelstam representations for
A% and B* in Eq. (15). This is so because the result is
based only on the crossing relations Eq. (2), the struc-
ture of the Landau curves on the real s-% plane, and the
elastic-unitarity integrals Eq. (19), and none of these is
changed by the presence of a finite number of subtrac-
tions in Eq. (15).
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The amplification of electromagnetic fields is analyzed in a quantum-mechanical context by discussing
the behavior of a simple theoretical model of the parametric amplifier. The statistical properties of the
amplifier fields are described by means of the time-dependent density operator for the system. In doing this,
extensive use is made of the coherent states and the P representation of the density operator, which provide
a quantum-mechanical description of the fields closely resembling their classical description. Explicit
solutions are obtained for the density operator for either of the two field modes for a variety of initial states
of the modes. Initial states considered include combinations of coherent states, chaotic mixtures, and
n-quantum states. Particular attention is given the behavior of the amplifier fields in the limit of large
amplification. The conditions are established under which the amplification process leads in this limit to the
existence of a non-negative P representation for the density operator for a single mode of oscillation.

I. INTRODUCTION

HE fundamental process which has become known
as parametric amplification in electronic contexts
plays a central role in several physical phenomena of
interest. These include the coherent Raman and
Brillouin effects and the frequency splitting of light
beams in nonlinear media. The most familiar form of
the parametric amplifier is designed to amplify an
oscillating signal by means of a particular coupling of
the mode in which it appears to a second mode of
oscillation, the idler mode. The coupling parameter is
made to oscillate with time in a way which gives rise
to a steady increase of the energy in both the signal
and idler modes.
The physical processes we have indicated as depend-

ing upon parametric amplification may be described in
parallel terms. In the coherent Raman effect, for
example, the presence of a monochromatic light wave in
a Raman active medium gives rise to parametric coup-
ling between an optical vibrational mode and a mode of
the radiation field which represents the scattered
(Stokes) wave. In the case of Brillouin scattering a
similar form of coupling holds, with the vibrational
mode oscillating at an acoustic rather than an optical
frequency. The frequency splitting of light beams is an
example of parametric amplification in which both of
the coupled modes are electromagnetic. An intense light
wave in a nonlinear dielectric medium couples pairs
of electromagnetic field modes whose frequencies sum

* Supported in part by the U. S. Air Force Office of Scientific
Research.



