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Necessity of Production Amplitudes in Quantum Field Theory*
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A nonvanishing production amplitude in the pion-nucleon scattering is proved to be a necessary conse-
quence of relativistic invariance, causality, crossing, and unitarity relations in quantum Geld theory.

The theorem will be proved by redlctio ad absurdly.
We take the premise that there are no production pro-
cesses in the s channel and will show that under this
premise, the analyticity domain obtained by Martin'
may be enlarged repeatedly by use of s-channel elastic
unitarity to the whole s-3 manifold except for the usual

physical cuts, so that we can write down the Mandel-
stam representations for A+ and 8+. It is shown then in
the next section that consistency between crossing rela-
tions and unitarity demands that the invariant ampli-
tudes A and 8 must be identically zero.

Martin' has combined the t-plane analyticity property
of Lehmann' and that of Bros, Epstein, and Glaser~

with the fixed-t dispersion relations, 8

I. INTRODUCTION

'N potential models, elastic scattering can occur with-
- out the existence of production processes. However,

in quantum 6eld theory, relativistic invariance,
causality, crossing symmetry, and unitarity lead to
inevitable connections between scattering and pro-
duction. Previous proofs" of this relationship have
involved various special assumptions. In this article
we will give a general proof that in pion-nucleon
scattering, consistency between the ukiitarity and
crossing relations requires the existence of a nonvanish-

ing production amplitude. This example is chosen be-
cause of its physical importance, but the method can
be generalized to other cases involving spins and isotopic
spins, so long as single-dispersion relations for these
processes can be proved.

A,+(s', t)
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II. s-CHANNEL ELASTIC UNITARITY CONDITION
AND THE MA5DELSTAM REPRESENTATION

The T matrix for the ~S scattering has the following

spin and isospin decomposition:

1+-
(~+p) '

A +(u, 't)
di—

T= Spat —A+(s, t, u)+-', iy( +qq')8+(s, t, ))u+-', Lr/t, r~j
Xt A+( t,s)+u—', ip(q+q')8 -(s,t,u)j, (1)

where cr, P are charge indices of the incoming and
outgoing pions (Fig. 1), s=(p+q)', t=(p+p')', and
u=(p+q')' . The scattering amplitudes A+ and 8+
have the following crossing relations4:

8+(s,t,u) =
g2 g2 +-

s—3f' I—3f' ~ (w+„) &

1
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(M+jM) s

8,+(s', t)
ds'

s —s

A+(s, l,u) = +A+( tu, )s,

8+(s,t,u) = W 8( tu, s),
and are connected with the amplitudes A and 8
with fixed total isospins I=» —,

' by

A+ r(At/2+2As/s)

and showed that A+ and 8+ are analytic in s and t
within S.where

X)= $ ~
t

~
(R)Qx[s-cut plane with cut along the real

axis from (M+/t)' to ~ and another parallel

cut from t+ (M—tt)' to ——eo i Imt) (5)—
similar relations hold for the 8's.

(3) and E—1.83/t' is the maximum of the right extremity
of the small Lehmann ellipse in the t plane. ' The precise
value of R does not concern us here so long as it is a
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Research.' R. F. Streater and A. S. Wightman, I'CT, Spin aed Statistics
and All That (W. A. Benjamin, Inc. , New York, 1964), R. Joat,
General Theory of Qttantieed Fields (American Mathematical
Society Publication, Providence, Rhode Island, 1963).' S. Aks, J. Math. Phys. 6, 516 (1965).
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compared with E(0,—4qs~R), the initial analyticity
domain of A,+ and 8,+ for given q2. An enlargement"
has occurred if 4r(1+r/4q')&R. This condition will
be satisfied for qss&q'&qs'+3R/16 by taking r(q')
=R—4(q' —qs'), so that Eq. (7) can now be replaced
by the larger domain,

8( 0,—4q'[4[R —4(q' —qq')g
q s&qq&q al.sB/16

FIG. 1. Kinematics of the pion-nucleon scattering.

6nite constant number. ' From the Martin result and
that of I.ehmann, it further follows' ' that the boundary
values of the absorptive parts as one approaches the
real axis from above, A,+ and 8,+, are analytic in t
within the ellipse,

E(0,—4q'~ R), (6)

with foci 0 and —4q' and right extremity at t=E and
with q the c.m. momentum of either particle in the
s channel, 4q'= [s—(M+p)'J[s —(M—p)'$/s. A,+(s,f)
and B,+(s,t) will then be analytic for all s real, oo & s~) sp

=(M+p)', within the intersection of these ellipses":

E(0 4q ~R) =E—(0 —4qp (sp) ~R) ~ (7)
epg e(co

The s and I channels' absorptive parts are related to
each other by crossing relations similar to Eq. (2),

A,+(s,t) =&A „+(N,f),
B,+(s,f) = wB„+(N,t) .

Hence A +(N, f) and B +(N, f) will also be analytic
within E(0,—4qs'~R) for all real I, Ns ——ss&N& qo, so
that for any given I+E(0,—4qs'~ R), dispersion relations
as given by Etl. (4) exist and the scattering amplitudes
A+ and 8+ are analytic within the domain,

[t+E(0,—4qss
~
R)jQx[s-cut plane j. (9)

For a given s real, we may fit into E(0,—4qs'~ R) an
ellipse of the form E(0,—4q'~r) and then use elastic
unitarity in the s channel to find the analyticity domain
of A,+ and. B,+ to be E(0 —4q'~4r(1+r/4q')), except
possibly for cuts along the real axis starting from t=4,
and I= —s+(M—p)'. Hereafter, we shall use 8 in-
stead of E to denote an ellipse that may have been
penetrated by these physical cuts. This ellipse is to be

' In contrast, if we have only the Lehmann ellipse at our dis-
posal, the analyticity domain of A. and 8 cannot be extended
indefinitely even if elastic unitarity is, assumed for all s."A somewhat larger domain would be obtained had we taken
into account also the Lehmann ellipses. The gos in Eq. (7) is then
larger than zero. However, this is immaterial in our subsequent
drscussron.

R—4(q' —qps)-)

4q'

QB(0 —4(qp'+3R/16)
i R), (10)

and by going through the argument leading to Ecl. (9),
we see that A+ and 8+ may be analytically continued
at least into

[fg 8(0 —4(qs +3R/16) ( R))QX[$-cut plaIle j, (11)

The enlargement procedure above can be carried on by
steps indefinitely, insofar as the s-channel elastic
unitarity is applicable for all real s&so, because if we
have analytically continued A+ and 8+ into"

[tg h(0, —4(qs'+3(qs —1)R/16)
~
R)$
Qx[s-cut plane), (12)

the same argument as given above shows that we can
also enlarge the analyticity domain to

[1+8(0,—4(qs'+3qsR/16)
~
R))Qx[s-cut plane). (13)

The domain 8(0,—4(qqs+3nR/16) ~R) evidently gets
bigger as e becomes larger, but it is always limited as
it has a Axed right extremity at t= R. To further enlarge
the analyticity domain, we may again, for a given
q'(qss+3eR/16, fit an elliPse h(0, —4q'~r=R) into
h(0, —4(qs'+3'/16) ~R) and use elastic unitarity to
find the analyticity domain of A,+ and 8,+ to be
$(0,—4q' 4R(1+R/4q')), which contains the ellipse
h (0,—4q' 4R). Using these ellipses instead of
E(0,—4qs R) in Eq. (6), we may now repeat the
whole enlargement process over again. It is easy to
see that in this way we can analytically continue
A+ and B+ into the product domain (Fig. 2):

ftEB(0, 4(qp +3 qs/R1—)6~4 R))Qx[s-cut plane). (14)

As m and m can be made as large as we please by re-
peated use of the above argument, we reach the con-

"S.Mandelstam, Nuovo Cimento 15, 658 (1960); A. Martin,
Ref. 5. See also the latter's note added in proof. Here we follow
their assumption that there is no pathological difhculty in using
the elastic unitarity to enlarge the analyticity domain of the
absorptive parts even if the T matrix is taken as a distribution."For simplicity we have neglected possible singularities
generated by the elli se 8(0,—4q'~r) with the physical cuts,
1)4p' and u) (M++ '. When they are taken into account,
we should replace the ellipse 8(0,—4(go'+3eR/16) ~4 R) by
s(0,—4(qqq+3nR/16) ~R16) ~R+4m); the result after Eq. (14),
however, is independent of these complications.
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h bo th lf o l 'hthparabola n= ~, when both n, m —+ ~, we are e on
physical cuts.

at A+ and 8+ are analytic in the whole s—telusion that an
rnanifo p

'f ld exce t for the usua p ysica c
andelstam representationswe can write down the an e s am

for A+ and 8+, '4
A, „+(st,ut) = aA, „(ut,st) =0,
B,~+(st)ut) = ~B,„(ut,st) =0. (17)

These double-density functions are yanal tic in the
real s-I plane excep or pt f r possible singularities a ong the

I + s ." These Landau curves heLandau curves N„s .
entirely in the first quadrant of the s-I plane an o no

that starting from the origin,
+p ~ be reached only by traversing t e curveQ~y s cail e

+(s). u„+(s) has asymptote u=(JI+nts a ongQ+s. I s as
that there are nobut because of our premise thas direction, u

annel the are allpro uc ion pp u t' rocesses in the s c anne, e

)
+ SN aild= qM+ )'. Furthermore, A, (s,u)as m totic to s= p,

f the erst Landau curve isB, +(s,u) vanish be ore e
hed. Referring to Fig. 3, A,„+=8,„+=0 in t ereac e. e

I sy Ny is a point in re-sae reh ded region. Now supposing I' sy Ny is

gion, we w'

U interchanging the coordinate
int in region I w ere,„s,lu~, s~ is a poin

16. B the crossing relations q.B,„+(s,u) are zero. y e

A +(s u) and B, +(s,u) also vanish at E(st,u&),8th
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dQ

1
+— ds'
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dt'-
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" dt'A( +(t',u')
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tsar+&) ~ (u —u) (s s)

II contains part of every Landau curveHowever, region con

I + sz, so that by analytically continuing ou rom

we see that t e ou

must vanish identically everywhere in the re

~3 the double-density functions
A and 8 with fixed isotopic spins will also vanis,

A z=8 z 0

B+(s,t,u) = g g

s—3f' I—3f'

h nd these double-density functions areOn the other an, es

related to the absorptive parts A&, A„,

1
+— ds

(M+&) s

00

+— du
(M+e) '

B,g+(s', t')
cA

(s' —s) (t' —t)

B,„+(t',u')
cQ

(t' —t) (u' —u)

1
+— ds

(M+@,) M+y)

B,„+(s',u')
dQ , (»)I —Q S —S

d but will be discussedwhere subtractions are neglected u
at the end of the article.

III. PROOF THAT PRODUCTION AMPLITUDES
ARE NECESSARY

(M+pc)*

(M+p)* (M+2j)*

Intermso t e ouf h d ble-density functions, the crossing
relations Eq. (5) become

A,„+(s,u) =aA, +(u,s),
B,„+(s,u) =NB. +(u,s).

"S. Mandelstam, Phys. Rev.. 112 1344 (1958).

es u„+(s) in the real s-u plane. The
+ ii td 'h

dIj f totho otio ofth
s-I plane which are boun e e w

o Cimento 21, 249 (1961); L. D.'5 W. Zimmermann, Nuovo imen o
Landau, Nucl. Phys. 13, 181 (1959).
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the s-channel unitarity integrals'

Z)Z1Z2+ (g12—1)1/2 (Z22—1)1/2
g

A,„r($,s(N)) = dzy
4gr(w+E) 2+tpt22g 1+A+0—[(q2+M2) 1/2 (q2+/g2) I/2J 2j/t2q2

ds2 E(s,st, s2)

&&(f LA'*(, )A '( )+A "( )A '( )3+f LA'*( )B'( )+A '*( )B '( )3

+f»LBt' (»»)A t'(»Z2)+Ba' (»Zr)Aa'($gs2) j+f22L&t' (»Zr)Bt'(»Z2)+B '*(»Zt)B.'(»Z2) j) g (19a)
Z)SlZ2+ (Z12—1)1/2 (Z22—1)1/2

g
B,„r($,Z(N)) =

47I (w+E) 2+gpt22g &+~&0—[(q'+~ ) ' —(q +/z ) ' '] ~ /2q'
gEZ2 E(s,st, s2)

X(g„LA '*(...)A;(...)+A.'*(...)A.'(.,")g+g LA '*(...)B '*(.,")+A.'*( ...)B.'(.,:.)j
+g21! Bt ($gst)At ($gs2)+Bgg (Sgzl)Agg (Sgz2) j+g22LBg ($gst)Bg (Sgs2)+Bgg (Sgsl)Bgg (Sgs2)g) g (19b)

( w
rt=3E 1—

2(E+w)

1—.,—z,+zq

1+s
E2—Ew —3II2 1+sr —s2 —s

M2w 1—zt —s2+s

2(w+E) 1+s

E'+Ew —3P 1—zt+S2 —z

1—z

where E and m are the c.m. energy of the incoming nu-
cleon and pion, respectively, $= (E+w)2, and s is the
cosine of the c.m. scattering angle with t= —2q2(1+z).
E(z,z&,Z2) is the elastic unitarity kernel; (K(z,z&,Z2)
= (z'+Z22+Z22 —1—2zstz2) 't2. The f's and g's depend
linearly on z~ and z2 and are given explicitly by

We will also need to use later another set of amplitudes
dehned by

CI=
E+M /Ar+(E+w M)Br)—

2(E+w) k 4gr
! !

E JgrI / A+—(E+w+—3f)B )
2(E+w) 4 42r )! !

(21)

The absorptive parts C&, D& and C„,D are similarly
related to A&~, B&~ and A„», B„~, respectively. Within
the integration range of Eq. (19),E(z,zt,z2) is a positive
function. By the mean-value theorem, "this factor may
be taken out of the integral and evaluated at some
intermediate point (zrp, z22) within the integration range.
Disregarding E(z,zrp, z22), it is then easy to see that for
the left-hand side of Kq. (19) to vanish for all z, the
quantities within the brackets of the integrands must
be identically zero. In particular, for z~ ——z2, we have

2(w+E)

Mm 1+z zt s2
f,2

—— ((E+w) '—M2)
2(w+E) 1+z

E (I+z—zt —S2)

wyEE 1+z

0= frr(At'(Z2)At'(Z2)+A *(s2)A '(Z2))20a
1+s +f12(Ag (S2)Bt (S2)+Au'*(S2)BJ(S2))

+f21(Bt (S2)At (Z2)+Bgg (Z2)Agg (S2))

+f22(Bt (Z2)Bt (Z2)+Bgt (Z2)Bgg (Z2)) g

0= gtt(A g'*(s2)A, '(s2)+A J*(Z2)A „'(s2))
+g12(At (S2)Bg (Z2)+Agg (Z2)Bgg (S2))

+g21(Bt (S2)A t (Z2)+Bgg (Z2)Agg (S2))

+g»(Bt'*(Z2)Bg'(Z2)+B-'*(Z2)B-'(Z2)) (22)
M 1—z+zt —s2

g&2=—
2 1—z

3I 1—s—zr+S2
g2Z=—

2 1—z

EM 1+z—zt —S2

2(w+E) 1+z

E3II 1+s—zt —s2

2(w+E) 1+z

E 1+s—zt —s2
g22 ——(E'+Ew —M2)—

2(w+E) 1+z
(20b)

't R. Courant, Digereggtial artd Integral Calculus (Nordemann
Publishing Company, Inc. , New York, 1938).

If we write out the real and imaginary parts of the
above equations, we get a set of four homogeneous
equations which has only the solution

I
A r($,22) I + I

A r($,Z2)
I

=
I
B (s2) I + I

B (s2)

=!At'*(»Z2)Bt'($, Z2)+A J*($,Z2)B„r(»Z2) I
=0. (23)

Since this remains true as z2 and s are varied, we see
that At (z2), Bg (s2), A„(s2), and B„(s2) are identically
zero; and by Eq. (21) so are Cgr, Dtr, C„r, and D„r To.
see the further consequences, let us take for instance,
C„~=D„=O and consider the following partial-wave
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expansion in the I channel:

C'(u, s(s)) = P fg~(u)P)+, '(cose„)
I,=O

—P fi (n)Pi r'(cosg„), (24)
2

D (u,s(s)) = g (f~ —f~+)P~(cos8„),
i=0

(25)

where f= (rl &~t:"""—1)/q, ri&~ is the inelasticity factor
with 0&g)g&1, and

1

imf(~(N) =— dsPC„r(s)P((s)+D„r(s)P(gr(s) j. (26)
2 -1

From this we see that Imf~~ vanishes along with C r

and D„»,

Imfgg(u) =0 for all /. (27)

However, Imf~~(u) are related to the modulus oi f~+(I)

by the partial-wave unitarity condition,

I f~+(I)=v-I f~+(N)I'+v-(1 —n~+/4), (»)
where q ((1—r1~~)/4) is the inelastic contribution to
Imf~~(e) in the I channel and is non-negative, so that

fg~(N) = 0 for all l (29)

Putting this back into Eqs. (24) and (25), we see that
C» and D» and hence 2» and 8», vanish in the physical
region of the I channel. By analytic continuation, they
must be identically zero and we reach the 6nal result
that there can be no scattering at all if there are no
production processes in one channel.

It is worth remarking that the result we have ob-
tained remains true even if there is a 6nite number of
subtractions in the Mandelstam representations for
A+ and 8+ in Eq. (15).This is so because the result is
based only on the crossing relations Eq. (2), the struc-
ture of the Landau curves on the real s-I plane, and the
elastic-unitarity integrals Eq. (19), and none of these is
changed by the presence of a 6nite number of subtrac-
tions in Eq. (15).
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The amplification of electromagnetic 6elds is analyzed in a quantum-mechanical context by discussing
the behavior of a simple theoretical model of the parametric amplifier. The statistical properties of the
ampli6er fields are described by means of the time-dependent density operator for the system. In doing this,
extensive use is made of the coherent states and the P representation of the density operator, which provide
a quantum-mechanical description of the fields closely resembling their classical description. Explicit
solutions are obtained for the density operator for either of the two field modes for a variety of initial states
of the modes. Initial states considered include combinations of coherent states, chaotic mixtures, and
e-quantum states. Particular attention is given the behavior of the amplifier 6elds in the limit of large
ampli6cation. The conditions are established under which the amplification process leads in this limit to the
existence of a non-negative P representation for the density operator for a single mode of oscillation.

I. INTRODUCTION

HE fundamental process which has become known
as parametric ampli6cation in electronic contexts

plays a central role in several physical phenomena of
interest. These include the coherent Raman and
Brillouin effects and the frequency splitting of light
beams in nonlinear media. The most familiar form of
the parametric ampli6er is designed to amplify an
oscillating signal by means of a particular coupling of
the mode in which it appears to a second mode of
oscillation, the idler mode. The coupling parameter is

made to oscillate with time in a way which gives rise

to a steady increase of the energy in both the signal

and idler modes.
The physical processes we have indicated as depend-

ing upon parametric ampli6cation may be described in
parallel terms. In the coherent Raman e6ect, for
example, the presence of a monochromatic light wave in
a Raman active medium gives rise to parametric coup-
ling between an optical vibrational mode and a mode of
the radiation 6eld which represents the scattered
(Stokes) wave. In the case of Brillouin scattering a
similar form of coupling holds, with the vibrational
mode oscillating at an acoustic rather than an optical
frequency. The frequency splitting of light beams is an
example of parametric amplification in which both of
the coupled modes are electromagnetic. An intense light
wave in a nonlinear dielectric medium couples pairs
of electromagnetic 6eld modes whose frequencies sum

*Supported in part by the U. S. Air Force OfEce of Scientific
Research.


