Levels in Er¹⁶⁸[†]

R. A. HARLAN* AND R. K. SHELINE The Florida State University, Tallahassee, Florida (Received 19 September 1966; revised manuscript received 26 April 1967)

12.0-MeV deuterons were used to study the levels in Er^{168} using the reaction $Er^{167}(d, p) Er^{168}$. The groundstate Q value for the reaction has been determined as 5541 ± 6 keV. The ground-state rotational band has been observed up to the 8+ state. Members of the γ vibrational band have been observed from the 2+state at 823 keV to the 6+ state. In addition, ten states of the $K\pi = 4$ and 3 - bands of the two-neutron configuration $[633\uparrow\pm521\downarrow]$ have been observed. Absolute differential cross sections for the population of these states by the (d,p) reaction are in agreement with theoretical predictions.

I. INTRODUCTION

`HE levels in even-even deformed nuclei, of which L Er¹⁶⁸ should be a typical example, are expected¹ to involve a ground-state rotational band with spins and parities, $I\pi=0+$, 2+, 4+, 6+, \cdots , and a γ vibrational band with K=2, which typically lies near 1 MeV of excitation with spins and parities 2+, 3+, 4+, \cdots . Additionally, a β vibrational band and a pairing-vibrational band² with $K\pi = 0+$ and spins the same as the ground-state band are expected. Indeed, previous decay-scheme³⁻⁵ and neutron-capture⁶ studies have indicated the existence of well-developed ground state and γ vibrational rotational bands. Finally, one expects to observe two-quasiparticle states⁷ beginning at an energy approximately 1.2 MeV above the ground state. Isoya⁸ has studied Er¹⁶⁸ levels via low-resolution (d,p) experiments on natural Er targets. He observed some members of the ground-state band, the γ vibrational band, and identified some of the two-quasiparticle states. However, his experimental conditions did not allow a very thorough analysis of the higher excitations in Er^{168} . In the (d,p) experiment undertaken in this research, it is difficult to populate two-quasiparticle proton states or any four-quasiparticle states. Excitation of two-quasiproton states would involve excitation of protons in the (d,p) reaction, which is basically a neutron-capturing process. An upper limit of one part in 10³ has been set for this type of proton excitation in the $Y^{89}(d,p)Y^{90}$ reaction.⁹ With these exceptions, it should be possible to observe most of the low-lying states in the nucleus Er¹⁶⁸ utilizing the reaction $\mathrm{Er}^{167}(d,p)\mathrm{Er}^{168}$. After this experiment was completed, research on the levels in Er¹⁶⁸ using the reaction $\mathrm{Er}^{167}(n,\gamma)\mathrm{Er}^{168}$ was communicated to us by Koch.¹⁰ The interpretation of the high-resolution, bent-crystal spectra of Koch¹⁰ has been a great aid to our analysis.

II. EXPERIMENTAL PROCEDURE AND RESULTS

Three targets were prepared by evaporating approximately 700 μ g/cm² of Er₂O₃ enriched to 58.8% in Er¹⁶⁷ onto approximately 30 $\mu g/cm^2$ self-supporting carbon backings. Energy spectra of Er¹⁶⁸ were obtained from the reaction $Er^{167}(d,p)Er^{168}$ using the Florida State University tandem Van de Graaff accelerator at laboratory angles of 45° and 60° (first target) and of 65° (second target) with respect to the incident 12.0-MeV deuteron beam. In addition, 12.0-MeV runs at 25° and 65° and a 12.5-MeV run at 45° (all on the third target) were used to determine the ground-state Q value, but were not used to determine the energy-level spectrum. The 60cm, Browne-Buechner-type¹¹ spectrograph entrance slits were set to subtend a solid angle of 1.75×10^{-4} sr for all exposures. Lengths of exposures were 7500 μ C at 45°, 6350 μ C at 60°, and 10 000 μ C at 65° for the runs used in determining energy levels. The beam energy was defined by a 90° magnet and slit system. The fields of the 90° magnet and of the spectrograph were set and monitored with nuclear-magnetic-resonance probes. The basic calibration of plate-distance versus particle-trajectory radius for the spectrograph was performed with $Po^{210} \alpha$ particles. For each run, the spectrograph field measured with an NMR probe and the $O^{16}(d,p)O^{17}$

[†] Taken in part from the thesis submitted to The Florida State University by R. A. Harlan in April 1963, in partial fulfill-ment of the requirements for the Ph.D. Degree. Supported at The Florida State University under contract No. AT-(40-1)-2434 with the U.S. Atomic Energy Commission. The Florida State University Tandem Van de Graaff research program was supported by the U. S. Air Force Office of Scientific Research under contract No. AFOSR-62-423, and by the Nuclear Program of the State of Florida.

^{*} Present address: Idaho Nuclear Corporation, Box 1845, Idaho Falls, Idaho.

¹O. Nathan and S. G. Nilsson, in Alpha-, Beta- and Gamma-Ray Spectroscopy, edited by Kai Siegbahn (North-Holland Publishing Company, Amsterdam, 1965), p. 601.

² D. R. Bes and R. A. Broglia, Nucl. Phys. **80**, 289 (1966). ⁸ K. P. Jacob, J. W. Mihelich, B. Harmatz, and T. H. Handley, Phys. Rev. **117**, 1102 (1960).

⁴ R. G. Wilson and M. L. Pool, Bull. Am. Phys. Soc. 5, 255 (1960).

⁵ J. J. Reidy, E. G. Funk, and J. W. Mihelich, Phys. Rev. 133,

⁶ L. V. Groshev, A. M. Demidov, V. A. Ivanov, V. N. Lutsenko,
V. Groshev, and N. Shadiev, Izv. Acad. Nauk SSSR Ser.

Y. H. Felckilov, and N. Shadiev, 127. Acad. Nauk Sosik Sci. Fiz. 29, 772 (1965).
 ⁷ C. J. Gallagher, Jr., and V. G. Soloviev, Kgl. Danske Videnskab. Selskab, Mat. Fys. Skrifter 2, No. 2 (1962).
 ⁸ A. Isoya, Phys. Rev. 130, 234 (1963).

⁹ C. W. Watson, C. F. Moore, and R. K. Sheline, Nucl. Phys. 54, 519 (1964). ¹⁰ H. R. Koch, Z. Physik **192**, 142 (1966); (private com-

munication). ¹¹ C. P. Browne and W. W. Buechner, Rev. Sci. Instr. 27, 899

^{(1956).}

PROTON ENERGY (MeV)

FIG. 1. Protons observed from the reaction $\operatorname{Er}^{167}(d,p)\operatorname{Er}^{168}$. Energy levels in Er^{168} are labeled consecutively, with the ground state labeled 0. Proton groups due to isotopic Er impurities are labeled A (Er^{167} states), C (Er^{169} states), and D (Er^{171} states). Extremely weak and uncertain proton groups are not numbered. (See text.)

ground-state proton group were used to calculate O values for the Er groups. In these experiments the $C^{13}(d,p)C^{14}$ ground-state proton group, being well removed from the $O^{16}(d,p)O^{17}$ ground-state group, furnished a convenient second reference point to check the consistency of energy determinations. The Q values for these two reference groups were obtained from the mass compilation by König et al.12

The proton-energy spectrum observed at 45° is shown in Fig. 1. The energy levels deduced from all the runs are listed in Table I.

It should be noted that the relatively large amount of other Er isotopic impurities created a severe problem in analyzing the proton spectra in the region of higher excited states. This was reflected in the fact that energy reproducibility for the higher excited states between different runs was less than that for the 1094-keV state (group 8), and for other groups on the plates above the beginning of intense odd-mass Er groups. The first strong $\mathrm{Er}^{166}(d,p)\mathrm{Er}^{167}$ group¹³ occurs on the plates at a position corresponding to a Q value of 4001 keV, unresolved from Er¹⁶⁸ group number 17. On the basis of the consistency observed in these experiments and general knowledge of the effect of impurities in determining level energies, we believe that our excitation energies are usually accurate to ± 3 keV.

The $Er^{167}(d,p)Er^{168}$ ground-state Q value was determined to be 5541 ± 6 keV using the Q value (4447 ± 6 keV) of the strong proton group numbered "8" in Fig. 1 and the known excitation energy $(1094.05 \pm 0.03 \text{ keV})^{10}$ of the corresponding Er^{168} state. The $C^{13}(d,p)C^{14}$ groundstate group lies within 1.5 cm of group 8 at 60° and 65°. Because of this proximity, the error in determining the group-8 Q value is small, consisting of approximately ± 2 keV in the position determined for group 8 and of ± 4 keV in the position determined for the smaller C¹⁴ ground-state proton group. The value 5541 ± 6 keV seems preferable to the ground-state Q value of 5538 ± 12 keV directly determined from data for the group labeled "0" in Fig. 1. The few counts contained in group 0 prevent as accurate a determination of its position as is possible with the many counts in group 8.

It is valuable for interpretation of the levels to determine absolute differential cross sections for populating the lower excited states in Er^{168} via the (d, p)reaction. For this purpose, it is also necessary to know the contributions of isotopic Er-impurity groups, whenever they are unresolved from $Er^{167}(d,p)Er^{168}$ groups. To accomplish these objectives, runs at 45° leading to levels in Er¹⁶⁸, Er¹⁶⁹, and Er¹⁷¹ were normalized to an $\mathrm{Er}^{166}(d,p)\mathrm{Er}^{167}$ run at 45° made on a thin, very uniform target of enriched Er¹⁶⁶. The amount of erbium in this target was estimated by scattering 4-MeV deuterons from it, and assuming that the intensity of the elastically

1006

¹² L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Nucl. Phys. 31, 18 (1962).
¹³ R. A. Harlan and R. K. Sheline (to be published).

Level No.	Q value (keV)	Energy level (keV)	Comments, other isotopes contributing	Level No.	Q value (keV)	Energy level (keV)	Comments, other isotopes contributing
0	5538	3±3	Ground state of Er ¹⁶⁸ ; because of weak population, the ground-state Q value was determined using group No. 8 as 5541+6 keV (see text)	$ \begin{array}{r} 40 \\ 41 \\ 42 \\ 43 \end{array} $	2890 2843 2825 2806	2651 2698 2716 2735	Er ¹⁶⁷
1	5462	79		44	2755	2786	
$\overline{2}$	5277	264		45	2715	2826	Er ¹⁷¹
3	4991	550		46	2662	2879	Er ¹⁶⁷
4	4718	823		47	2632	2909	Er ¹⁶⁹
5	4642	899		48	2592	2949	
6	4608	933	Si impurity affects energy	49	2565	2976	
_			determination	50	2525	3016	Er^{167}
7	4543	998		51	2491	3050	$\mathrm{Er^{167}}$
8	4447	1094	First strong proton group	52	2461	3080	Er^{167}
9	4431	≈1110	Weak state, unresolved, energy	53	2439	3102	
10	1318	1103	uncertain	54	2414	3127	T7 169
11	4346	~ 1265	Very weak energy uncertain	55	2303	31/6	E1
12	4229	~ 1203 1312	very weak, energy uncertain	57	2343	3742	Large Er169
13	4184	1357		58	2265	3276	Darge Di
14	4148	1393		59	2246	3295	
15	4114	1427		60	2221	3320	
16	4089	1452	Very weak; energy uncertain	61	2207	3334	
17	3999	1542	Second strong proton group	62	2156	3385	
18	3936	1605	See high-energy side of level 19	63	2124	3417	Er^{169}
19	3926	1615		64	2084	3457	Large Er ¹⁶⁹ and Er ¹⁷¹
20	3832	1709		65	2052	3489	Large Er ¹⁷¹
21	(3773)	(1768)	isotopic impurity	66	2025	3516	<i>Note:</i> No particular effort made after this point to separate the 168 in-
22	3715	1826					tensity from other Er isotopes be-
23	3044	1897	0207 E-169 :	17	1000	2552	cause of high level density
24	3397	2052	95% Eres impunity	60	1988	3333	
25	3452	2032	Light impurities possible: therefore	60	1930	3615	
20	0102	2007	level not certain	70	1920	3630	
27	3439	2102	Light impurities possible; therefore level not certain	71 72	1770 1728	3771 3813	
28	3405	2136		73	1702	3839	
29	3286	2255		74	1668	3873	
30	3242	2299		75	1649	3892	
31	3206	2335		76	1602	3939	
32	3111	2430		77	1577	3964	
33	3095	2446	7 107 100 1 1 1 0007	78	1551	3990	
34	3063	2478	$Er^{167,109}$ levels contribute ~80%	79	1507	4034	
35	3035	2506	observed similar Q all Er but 108 present	80 81	$1477 \\ 1449$	4064 4092	
36	3004	2537		82	1405	4136	
37	2988	2553	Small Er ¹⁶⁷	83	1343	4198	
38 39	2957 2927	2584 2614	Observed similar Q all Er; therefore doubtful				
				1			

TABLE I. Energy levels in Er^{168} This table presents the mean Q value determined from the reaction $Er^{167}(d, p)Er^{168}$ at 45°, 60°, and 65°. It is estimated (see text) that the energy levels in Er^{168} which are deduced are generally accurate to ± 3 keV.

scattered deuterons could be calculated from the Rutherford scattering law. The isotopic analyses furnished by the Stable Isotopes Division of Oak Ridge National Laboratory were assumed to be correct, and the internal standard used for normalization was proton group 8 in Fig. 1, which also appeared on the plates of runs to odd-mass Er levels. Absolute cross sections were calculated for all Er isotopes investigated using the normalization and target thickness data. Although *relative* errors in cross sections obtained by the normalization were determined mainly by statistical considerations and may be as large as $\pm 15\%$ in unfavorable cases, the absolute cross sections determined are assigned an error of $\pm 60\%$, because an unfortunate 40%

discrepancy was discovered in the beam-integrating circuit between the time the runs were made and the time target thicknesses were measured. Odd-mass Er levels will be the subject of a subsequent publication.¹³ The cross sections determined for $\mathrm{Er}^{167}(d,p)\mathrm{Er}^{168}$ at 45° are given in Table II.

III. DISCUSSION

The analysis of the proton spectrum from the reaction $\mathrm{Er}^{167}(d,p)\mathrm{Er}^{168}$ clearly indicates the existence of the ground-state, γ vibrational, $K\pi=4-$ and $K\pi=3-$ rotational bands, which are presented together with their assignments and energies in Fig. 2. We will discuss first

Rotational band	Level No.	Spin parity	Energy (keV)	Experimental differential cross section in μ b/sr at 45°	Calculated differential cross section using theoretical values for $d\sigma_J/d\Omega^a$
Ground-state rotational band $(K=0)$	0 1 2 3 6	0+2+4+6+8+	3 ± 3 79 264 550 933 (202)	$1.5 \\ 1.2 \\ \sim 2.5^{b} \\ 2.1 \\ \sim 1.0^{b} \\ 2.1 \\ \sim 1.0^{b}$	0.01 1.3 2.1 1.4 0.3
γ vibrational band (K=2)	14 4 5 7 9	10+ 2+ 3+ 4+ 5+ 6+	(1393) 823 899 998 ~ 1110 1265	31° 2.1 2.8 1.6 1.1 $\sim 0.7^{\circ}$	$\begin{array}{c} 0.008\\ \approx 0.7^{\circ}\\ \approx 0.9^{\circ}\\ \approx 0.8^{\circ}\\ \approx 0.5^{\circ}\\ \approx 0.02^{\circ}\end{array}$
$K=4-$ band $[633\uparrow+521\downarrow]$	8 10 12 16 18	4 - 4 - 5 - 6 - 7 - 8 - 8 - 6	1094 1193 1312 1452 (1605)	$ \begin{array}{c} 140\\ 23\\ 13.9\\ \sim 3.0\\ \sim 1.1 \end{array} $	$ \begin{array}{r} 144 \\ 28 \\ 15.4 \\ 4.0 \\ 0.4 \end{array} $
$K=3-$ band $[633\uparrow-521\downarrow]$	17 19 20 22 24	3 - 4 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	$ \begin{array}{r} 1542 \\ 1615 \\ 1709 \\ 1826 \\ \sim 1944 \end{array} $	157 53 28 62^{d} (d)	123 40 19 8.2 1.8
$K = 1 - ? [633 \uparrow -512 \uparrow]$	13 14 15	$ \begin{array}{c} 1 - \\ 2 - \\ 3 - \end{array} $	1357 1393 1427	7.3 31° 27.3	9.5 27 35

TABLE II. Differential cross sections for the reaction $Er^{167}(d, \phi)Er^{168}$ populating the lower-lying states in Er^{168} . States are classified in rotational bands.

^a U² values are assumed to be 0.4 for the [633] orbital and to be 0.7 for the [521] and [512] orbitals, in obtaining the theoretical cross sections.
^b Possible light impurity interferes in the differential cross section at 45°. The cross section is estimated from data at 60° or 65°, assuming little or no angular dependence. These are to be regarded as "order-of-magnitude" estimates.
^a The same proton group has been used elsewhere in the interpretation.
^d Large impurity masks cross section.
^e Approximate calculation. See the text.

the energy systematics of these bands and second the cross sections for their population.

A. Energy Systematics in Er¹⁶⁸

The ground-state rotational band in Er¹⁶⁸ has been previously observed.^{3-6,8,10} The energies of the levels below 1312 keV excited in this experiment agree within our experimental error with those previously reported, with two exceptions. One case, group 6 reported herein at 933 keV, is within 5 keV of the 8+ rotational state reported by Koch¹⁰ at 928 keV. The other exception is group 9, whose excitation energy determined here is 7 keV lower than that of Koch.¹⁰ Both of these proton groups are weak. The first is influenced at 45° by a Si²⁸ impurity and the second is located in the tail of the strong group 8. Agreement with previously determined levels, up to an excitation energy of 1709 keV, is within our reported errors of ± 3 keV, whenever a group observed in this work can be identified as a previously determined level.¹⁰

Thus, states at 79, 264, 550, and 933 keV are interpreted as the 2+, 4+, 6+, and 8+ members of the ground-state rotational band, respectively.

The γ vibrational band has also been previously observed.^{3-6,8,10} The energy differences of the proton groups numbered 4, 5, and 7 (see Table I) agree well with what is expected for a K=2 band. The excitation

energies determined for the extremely weak states at \approx 1110 and 1265 keV are, of course, less precise than those for more intense groups. Therefore, these data corroborate previous experimental results and suggest that the states at 823, 899, 998, \approx 1110, and \approx 1265 keV are the 2+, 3+, 4+, 5+, and 6+ members, respectively, of the γ vibrational band.

No clear evidence is found for any K=0 states other than the ground state. Several very weak and uncertain proton groups have not been labeled in Fig. 1, but have been observed in several runs. In some cases they are not observed at all angles, in others they lie under or near known impurities. Somewhat uncertain excitation energies which can be derived from the energies of these proton groups, if it is assumed that they are Er¹⁶⁸ states, are ≈1124, 1163, 1218, 1291, 1385, 1508, and 1694 keV. Because of the uncertainty in experimental assignment, some of these states are almost certainly nonexistent. They are mentioned because they lie very close to the region in which Soloviev¹⁴ has predicted a K=0+ band. A preliminary attempt at band assignment leads to at least two different possible interpretations. Therefore, both because of the ambiguity in band assignment and the uncertainty about their existence, we leave their evaluation to future experiments.

¹⁴ V. G. Soloviev, Nucl. Phys. 69, 1 (1965).

The lowest-lying, two-quasiparticle neutron states are expected to have the configuration $[633\uparrow\pm521\downarrow]$ with $K\pi = 4 - \text{ and } 3 -$, because the ground state of all known 99-neutron nuclides is found to be $\frac{7}{2} + \lceil 633 \uparrow \rceil$ and the lowest-lying excited state is the particle excitation $\frac{1}{2}$ - [521]. In Er¹⁶⁷, for example, the $\frac{1}{2}$ - [521] state lies 207.8 keV above the ground state, whereas in Dy¹⁶⁵ it lies 108 keV above the ground state.¹⁵ According to the Gallagher-Soloviev rules,⁷ one expects that, of these two, the K=4- band will be the lowest lying. Indeed, as suggested by Koch,¹⁰ we believe the strong proton group at 1094 keV represents the I = 4 band head of the $K\pi = 4 - \text{ band.}$ We find states at 1193, 1312, 1452, and ≈ 1605 keV with spin and parities 5-, 6-, 7-, and 8-, respectively, (in excellent agreement with the more precise energies of Koch¹⁰). The intense proton group at 1542 keV is believed to be the band head of the $K\pi = 3$ band. Additional states at $\approx 1615,\ 1709,\ 1826,\ {\rm and}$ \approx 1944 keV are interpreted as the 4-, 5-, 6-, and 7- members of this band.

This interpretation accounts for all the states below 1894 keV observed in the $\text{Er}^{167}(d,p)$ reaction, with the exception of the states at 1357, 1393, and 1427 keV. The predicted position for the 10+ member of the ground-state band is ≈ 1399 keV, using the rotational-energy parameters determined by Koch.¹⁰ However, the observed intensity of the 1393-keV peak is ≈ 4000 times

greater than that expected for this 10+ rotational state. Perhaps even more significant is the fact that this intensity is much greater than that expected theoretically for the sum of the cross sections for excitation of all members of the ground-state rotational band (see Table II). Consequently, we believe the largest contribution to the intensity of this peak must arise from a different configuration, and the contribution to this peak from the 10+ state can be a few percent at most. For this reason the 10+ state is indicated in Fig. 2 as a dashed line.

The cross section for the ground-state proton group is also much larger than expected theoretically. Although we have no easy explanation for this fact, the groundstate group does have a cross section comparable to other members of the ground-state band.

On a very tentative basis, we suggest that the states at 1357, 1393, and 1427 keV might be interpreted in terms of a band from the configuration $[633\uparrow-512\uparrow]_{K\pi=1-}$. The sequence of levels in this interpretation would be the 1- state at 1357 keV, a 2- state at 1393 keV, and a 3- state at 1427 keV. It is obvious that the energies of the states in this tentative 1- band do not follow the simple rotational-energy systematics. On the other hand, a similar situation has been found¹⁶ in Gd¹⁵⁸. In both of these instances, it appears that the mixing of a $K\pi=0-$ collective octupole band into the intrinsic state may distort the energy systematics. In any case,

¹⁵ Nuclear Data Sheets, compiled by K. Way et al. (Printing and Publishing Office, National Academy of Sciences—National Research Council, Washington 25, D. C.).

¹⁶ W. N. Shelton and R. K. Sheline (to be published).

however, this interpretation must be considered to be highly tentative.

B. Differential Cross Sections for the Reaction $Er^{167}(d,p)Er^{168}$

Systematic analysis of the differential cross section of the (d,p) reaction leading to even-even deformed nuclei is underway in this laboratory.¹⁷ We have used the results from the analysis¹⁷ in interpreting some cross sections in this paper. The differential cross section for populating the ground and the two-quasiparticle states in an even-even nucleus is given^{18,19} by the following equation:

$$\frac{d\sigma}{d\Omega}(a, I_i, K_i = \Omega_a \to ab, I_f, K_f = |\Omega_a \pm \Omega_b|)
= \frac{1}{2}g \sum_j \frac{d\sigma_j}{d\Omega}(0 \to b, j, K = \Omega_b)
\times \langle j, \pm \Omega_b, I_i, \Omega_a | I_f, \Omega_a \pm \Omega_b \rangle^2, \quad (1)$$

with

$$g=2V_b^2/U_b^2$$
 for the ground state $(a=b)$,
=1 for the two-quasiparticle state $(a\neq b)$,

where a and ab denote the quasiparticle configuration in the initial and final states, while U^2 and V^2 are usual occupation probabilities.¹

The quantity $d\sigma_j/d\Omega$ in Eq. (1) is given in terms of the distorted-wave Born approximation (DWBA) cross section ϕ_l and the Nilsson amplitude C_{jl} , as

$$\frac{d\sigma_j}{d\Omega}(0 \to b, j, K = \Omega_b) = 2U^2{}_b C^2{}_{jl} \phi_l, \qquad (2)$$

which is the (d,p) cross section from even to odd nuclei. It can be obtained either theoretically or from experimental measurement on the appropriate odd-A nucleus. Values of $d\sigma_j/d\Omega$ given in the last column of Table II are theoretical values, as opposed to empirically determined values. The experimentally measured cross sections for the excitation of members of the ground-state rotational band are so small that it may be difficult to draw significant conclusions. There does seem to be some tendency both experimentally and theoretically that the 4+ and 6+ members of this band are more strongly populated than the remaining levels of this band.

The tentative assignment of proton groups 13, 14, and 15 as the 1-, 2-, and 3- members of the configuration, $[633\uparrow - 512\uparrow]_{K=1}$, can also be checked by comparing the theoretical and experimental cross sections. This is done in Table II. However, since only three proposed members of the band are observed and mixing with the octupole band has been postulated, the satisfactory agreement between experiment and theory cannot be taken as strong evidence for this tentative assignment.

In populating the γ vibrational band, the reaction should proceed mainly through those admixtures of two-quasiparticle states which have the $\lceil 633\uparrow \rceil$ orbital as one of the two orbitals. Based on relative values of the $U_{b}^{2}C_{il}^{2}$ and the calculated amplitudes¹⁷ of the various two-quasiparticle configurations, this band should be populated primarily through the $[633\uparrow - 631\uparrow]_{K=2}$ configuration. We have made a simplified estimate of the differential cross section for exciting the various members of the γ vibrational band by multiplying the square of the forward amplitude¹⁷ of the $[633\uparrow -631\uparrow]$ configuration times the cross sections estimated for exciting the pure $[633\uparrow - 631\uparrow]$ band. The results of this calculation, given in Table II, show excellent agreement with experiment in relative intensities, but absolute values predicted are considerably smaller than experimental values. More detailed calculations¹⁷ of (d,p) cross sections for populating γ vibrational bands in Er¹⁶⁸ and several other even-even deformed nuclei have been carried out by Kern et al.17

The agreement between both the K=4- and K=3experimental and calculated differential cross sections is very gratifying. This seems to indicate that the "fingerprint" method, which has worked so successfully in the interpretation of quasiparticle states in odd-A and oddodd nuclei, will also be useful in interpreting twoquasiparticle states in even-even nuclei.

ACKNOWLEDGMENTS

The authors wish to thank Dr. H. R. Koch and the Risø Laboratory for communicating their data to us prior to publication. We wish especially to thank Dr. Takeshi Udagawa for his aid in preparing this manuscript and Dr. C. W. Reich for critically reading and commenting on it. We are also grateful to Dr. R. A. Kenefick, Dr. W. N. Shelton, Dr. C. W. Watson, Dr. C. L. Nealy, R. T. Jernigan, the plate scanners and the supporting personnel of the FSU tandem Van de Graaff for helpful discussions and/or material aid in operating the accelerator and reducing the data.

One of us, (R.H.) wishes to acknowledge the Tennessee-Eastman Company for a fellowship during the experimental part of this work and some support given the reanalysis of a part of these data under U.S. Atomic Energy Commission Contract No. AT-(40-1)-3235 at the University of Arkansas.

¹⁷ J. Kern, O. Mikoshiba, R. K. Sheline, T. Udagawa, and S. Yoshida (to be published).
 ¹⁸ G. R. Satchler, Ann. Phys. 3, 275 (1958).
 ¹⁹ W. Tobocman, Phys. Rev. 115, 99 (1959).