
PHYSICAL REVIEW VOLUME 160, NUMBER I 5 AUGUST 1967

Excitation of Helium by Electrons and Protons

L. VRrzws

Physics Laboratory of the Urtfeersity, Utrecht, The ftretherfartds

(Received 30 January 1967)

The erst part of this paper deals with generalized oscillator strengths f(E).On the basis of previous work
of Lassettre, we obtain a suitable form for the power-series representations of the f(K) for transitions in
which an electron jumps from a 1s to an ns, np, or nd orbital of an atom. We apply the method to give analyt-
ical representations of f(E) for the transitions 1'S—«2'P and 1'S—+3'P in helium. In the second part of
this paper, we study the dependence of the "total" excitation cross sections 0~ on the velocity e of the incident
electron or proton for various dipole-allowed and dipole-forbidden transitions. By expanding the theoretical
o@ (direct and interference) in a series in inverse powers of o', we find a qualitative interpretation of the
variation with o of the experimental oit of Moustafa and de Heer (electrons) and of Van den Bos, Winter,
and de Beer (protons) for the transitions 11S~n'S, n'E, and n'D in helium, with n=3, 4, 5, and 6. From
our analytical formula forf(E) in the transitions 1'S—&2'P, 3iP in helium, we calculate the corresponding o@,
and compare these values with some other theoretical and experimental ones. The influence of interference
between direct and exchange scattering is taken into account by using the Ochkur approximation. It is
shown that the Ochkur approximation can be obtained in a simple way from the Bethe and Mott formulas.
In the final part of this paper we study the nature of f(K), for complex K, for ionization of atoms, and find
the positions of the singularities (poles) .

I. INTRODUCTION

t IHK generalized oscillator strength associated with..a transition i if in an atom, as defined by Bethe, is

f(K) = (&/R) (Kao) '
I 2 Qt I

exp(iK r ) I &') I'

where E and E are the excitation energy and the
rydberg energy, P, and fi are the initial- and final-state
wave functions, AK is the momentum transfer, and a0 is
the radius of the first Bohr orbit of hydrogen. The sum
in Eq. (1) is over all atomic electrons, with coordinates
r, .

According to the Bethe theory, the collision cross
section for transfer of momentum Eu0 is

cr~ rrd (Kao) '= (4orao'R'/TE) f(K) Pd (Kao) '/(Ka ) 'j
(2)

where T=-,'me', m is the electron rest mass, and ~ the
velocity of the incident electron. Equation (2) applies
at great enough T.

By integrating Eq. (2) over E, we obtain the e'xcita-
tion cross section

4~~,~2@ (Ka p)

f(K)d(E«) '/(Kao) ',
(KaP) min

~here

(K«) --'= (&'/4TR) L1+ (&/2 T) +0(~/T') I (4)

We may expand exp(iK r, ) in Eq. (1) in a series of
powers of iK r.. It then follows that f(E) gets the form
of an infinite series of even powers of Eap.'

f(E) = Q b„(Eao)'".
v=0

The first few terms of this series may give a good repre-

sentation of the f(E) for small E, but not for large
IC. Since (Eao), ' is proportional to T and is never
small, we should not calculate OE with such series of
f(E) .

Recently, Lassettre'studied the nature of the function
f(E) for complex values of E, for excitation to bound
states, and came to the important conclusion that for
finite values of E,f(E) has singularities only for Eao
&icx) where cx=cr,+ixi) cr;= (—E,/R)' '= (I/R) "i
Q'f ( Er/R) 'i' =

I (I—E) /R]'ts. Here I is the ioniza-
tion energy and E, as before, is the excitation energy. In
order to obtain this result, one has to assume that the
electrons in different shells of an atom (or molecule) are
distinguishable so that in an excitation process we know
the initial and final orbital of the electron which is
excited. The E; and E~ may then be considered to be
the initial- and final-state energy eigenvalues of that
electron. For bound initial and 6nal states, E; and E~
are negative and o.„crt, and n are real and positive.

On the basis of this conclusion, Lassettre' introduced
a power series representation of f(E) which contains
terms like x/(1+x) with x= (Eas/cr) ', so that f(E) has
singularities for Kao +ice (x= —1),——as should be the
case. Furthermore, Lassettre's power series converges
for all physically attainable values of E, so that this
series may be used to calculate the excitation cross
section 0~. Lassettre' applied his method to find an
analytic representation of the f(K') and to calculate
the 0~ for the transition 1'S—+2'S in helium.

In this paper, we first study the nature of the f(K)
for some transitions in atomic hydrogen. Since the exact
atomic wave functions for all states in atomic hydrogen
are known, the f(K) for any transition in H may be
calculated exactly. The behavior of the f(E) found for
atomic hydrogen provides a basis for the general trend
of the f(K) for corresponding transitions in other
atoms. This may be understood by the following. First,

' H. Bethe, Ann. Physik 5, 325 (1930). &. ~ E. N. Lassettre, J. Chem. Phys. 43, 4479 (1965).
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Lassettre' found that the position and nature of the
singularities of f(K) only depend on the behavior of
tb; and Pf for very large r (distance from the nucleus).
Second, the behavior of f, and Pr is asymptotically
similar for different atoms if the quantum numbers of
initial and final states are the same. As we shall see for
instance in Sec. 2, the f(K) for the transitions is—&ep
in atomic hydrogen have sixth- and higher-order poles
for Kap &i(rr—;—+rrf) = &i(1+1/rr) . Consequently, the
f(K) for the transitions 1'S—+e'P in helium will also
have sixth- and higher-order poles for Kap ——&i (n;+err)
with diferent ni and o,f. In Secs. 2 and 8 we shall see, for
the transitions 1'S—+2'P, 3'P, and 2'S in He, that series
expansions of f(K) similar to the ones found for the
corresponding transitions in H, and a suitable choice
of only one or two parameters, enable us to reproduce
the experimental f(K) values within the experimental
accuracy. The lowest-order pole of f(K) simultaneously
determines how fast f(E) decreases for large K. We
also study the nature off(K) for ionization of atoms. In
this case, however, we only give an analysis of the
problem but no applications.

We thus use some analogies between the asymptotic
behavior of hydrogenic wave functions and wave func-
tions for complex atoms. However, it should be noted
that our procedure is entirely different from the pro-
cedure in which hydrogenic wave functions with effec-
tive nuclear charges are used for complex atoms. The
correct wave functions are proportional to exp( —cr,r/ap)
or exp( —

crier/ap) . Hydrogenic wave functions with
eGective nuclear charges Z, are proportional to
exp( —Z,r/rrap) and Z,/rr may be very different from
&i or y

In this paper we further calculate cross sections ag
from the obtained analytical expressions f(K) for the
transitions 1'S—+2'P, 3'P in He. We represent the 0~
analytically as series of powers in R/T. Such expan-
sions, which are very suitable for large T, have been
used before in the theory of stopping power. ' Inter-
ference between direct and exchange scattering is
approximately taken into account by using the Ochkur
approximation.

Finally, we study the variation of experimental gz
with T, for incident electrons and protons, for various
transitions in helium. As far as possible, we give a
theoretical interpretation of the diBerence in behavior
of the o~ for incident electrons and protons and for
different sorts of transitions.

2. POWER-SERIES REPRESENTATIONS OF f(K)

A. Atomic Hydrogen

On the basis of previous calculations of Massey and
Mohr, 4 we found that for transitions in the series 1s~

'L. M. Brown, Phys. Rev. 79, 297 (1950); M. C. Walske,
ibid 88, 1283 (1952).; 101, 940 (1956);U. Fano, Ann. Rev. Nucl.
Sci. 13, 1 (1963).

~ H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A132, 605 (1931). (See also ReL 11, p. 480.)

x x
)6~ v 1+

with integer v. For instance, for the transition 1s—+2s one
finds (Bates and Griffing, s Inokutis) a'= 9/4, cp= 2's/3P,

and c,=0 for v&1. For the transition, 1s—+3s is'6
cr'=16/9, cp=3'/2', cr=cs——3'/2', and c„=0 for v&3.

For 1s +rlp:—

where f(o) is the optical oscillator strength. For the
transition 1s—+2P, one finds ' f(o) = 2"/3' esp=9/4
and c„=0 for all v&1. For is—+3p, f(o) =3'/2", n'=
16/9, ci= cs——4, and c,= 0 for v&3.

For 1s~rrd:

x t' x

(1+ ),Z c~
1&1+

where for the transition 1s-+3d, cr'= 16/9, cp
——3s/2s, and

c,=0 for v&1.

B. Helium

On the basis of general considerations, Lassettre'
found that the first term of the expansion of f(K) for
the transition 1'S—+2'S is cpm/(1+x)p, in agreement
with Eq. (5), which is obtained in a different. way. By
only fitting this adjustable constant co to experiment,
Lassettre obtained excellent agreement with his experi-
mental f(E) values.

We will now use Eq. (6) to find analytical representa-
tions off(K) for the transitions 1'S~2'P and 1'S~3'P
in helium. The optical oscillator strengths have ac-
curately been calculated by Schiff and Pekeris, ~ values
of f(E) have been calculated and measured by Silver-
man and Lassettre and measured by Lassettre,
Krasnov, and Silverman. ' The 0,' values can easily be
calculated from the experimental 8; and E~ values
(excitation and ionization energies) . We found that the
shape of the function f(K) according to Eq. (6) could
be excellently fitted to experiment with only c1. unequal
to zero for the transition 1'S—+2'P and with only c&

and c2 unequal to zero for the transition 1.'5—+3'P. We
thus found that a good representation of the f(K) is

~ D. R. Bates and G. GrifBng, Proc. Phys. Soc. (London) 66A,
961 (1953).

6 M. Inokuti (private communication) .
r B. Schiff and C. L. Pelceris, Phys. Rev. 134, A638 (1964).

S. M. Silverman and E. N. Lassettre, J. Chem. Phys. 40,
1265 {1964).

9 E. N. Lassettre, M. E. Krasnow, and S. Silverman, J. Chem.
Phys. 40, 1242 {1964).

es, 1s +—np, and is~rid the following expansions may be
given.

For 1s—+ms:
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given by Eq. (6) with:

For 1'S—+2'E:

no= 3.391, ci——0.86, c,= 0 for o)2, andr f(o) =0.27616.

For 1'S~3'E:

3. THE CROSS SECTION dJ,. FOR INCIDENT
ELECTRONS

A. Dipole-Allowed Transitions

For dipole-allowed transitions, we may rewrite Eq.
(3) as

o@= (4orap'R'/TE) Lln(4cttT/R) —P(E, T) jf(0) (8)

with

and

f(IC) d(ICa, )' -R.')inc~ ——lim , +ln.-o, f(o) («o) ' (9)

4TE
@(E, T) = ln, (Kap) .„'

f(K) d(Kap)'

o g(o) («o) '

j(K) d(Kap)'
10

(~..) .. f(0) («o)'
Equation (9) has been used before by Miller and Platz-
man" and by Inokuti. s The function p(E, T) may be
expanded in a series of powers of R/T, where the first
term is of the order R/T so that p(E, T) may be put
equal to zero in the limit of large T.

Inserting Eq. (6) into Eqs. (9) and (10) results in

nR 137 cl cs cs c4

E 60 6 42 168 504

and

P(E, T) = E/2T+(ci 6) E'/4n'RT+O(R'/T') (—12)

With Eqs. (11) and (12) and the values of f(o), n',
cy, and c2 given in Sec. 28, we find for the transition
VS~2'P (E= 21.22 eV), ines= —1.81 and P(E, T) =

' W. F. Miller and R. L. Platzman, Proc. Phys. Soc. (London)
VO, 299 (1957).

n'=2. 896, ci——1.5, co=20, c„=0 for t )3, an&P f(0) =
0.0734.

When, for the transition VS +2'P—, we use Eq. (6)
with Lassettre's value of f(o) and with the values of
0.2 and c~ given above, then we reproduce the theoretical
f(K) of Silverman and Lassettres within 1 to 2%. For
the transition 1'S—+3'I' we cannot very well give an
error margin since the experimental values of f(K) are
too much scattered.

—0144R/T+O(R'/T'). For the transition VS-+3'P
(E= 23.08 eV), we find inc~ ———1.56 and rtt(E, T) =

0.2—7R/T+0(R'/T'). Thus Eq. (8) gives:

For 1'S~2'P:

ox = (4orapsR/T) [0.177 ln( T/R) —0.075

+0.0255(R/T) +0(R'/T') ] (13)

For 1'S~3'E.

otr = (4orao'R/T) L0.0432 ln ( T/R) —0.0075

+0.0117(R/T) +O(R'/T') ). (14)

For T/R) 10, the contribution of the third term in
Eqs. (13) and (14) is less than 1%. Further, inter-
ference between direct and exchange scattering will
also give a term of the order (R/T)' in ot, . The inter-
ference term will diminish the cross sections and will
therefore work in the opposite direction to the third
term of Eqs. (13) and (14). In Sec. 5 we calculate the
interference terms with the Ochkur approximation. The
sum of the direct and interference 0~ are given by Eqs.
(31) and (32) of Sec. 5.

Some cross sections calculated with Eqs. (13), (14),
(31),and (32) are given in Table I for different energies
E,i of the incident electron. The relation between T and
E,i is T= E, r1i—3E,i/2rrtc'+0(E, is/rrtsc') j, where
c is the velocity of light. In the table are also included
some' theoretical cross sections given by Mott and
Massey" (these cross sections were calculated by Fox),
some experimental cross sections of Moustafa and de
Heer, " and theoretically calculated (including inter-
ference and exchange) cross sections of Ochkur and
Brattsev. " No comparison has been made with the
theoretical work of Altshuler" and experimental results
of St. John ct al." (this is done in Ref. 12) .

The agreement of the 0~ for the transition 1'5—+2'P
is reasonable. The discrepancies between the cr~ for the
transition 1'S—+3'P may be due to (i) errors in the
co and ci values used in the present calculation. Such
errors may have been caused by uncertainties in the
f(K) values of Silverman and Lassettres ' as well as by
our fitting procedure. However, since the major con-
tribution to inc+ comes from small Eao, it is not very
probable that our fitting procedure alone leads to large
errors in o~, (ii) inaccuracies in the wave functions
used in the theoretical calculations of Refs. 11 and 13;
(iii) errors in the experimental o@. According to
Moustafa and de Heer, " these errors may be 10%.

n N. F. Mott and H. S. W. Massey, The Theory of Atomic
Coll7'sio77s (Oxford University Press, London, 1965), 3rd ed. ,
p. 498.

' H. R. Moustafa and F. J. de Beer, Physica (to be published).
"V. I. Ochkur and V. F. Brattsev, Opt. i Spektroskopiya 19,

490 (1965) PEnglisli transl. : Opt. Spectry. (USSR) 19, 274
(1965)3.

14 S. Altshuler, Phys. Rev. 87', 992 (1952).' R. M. St. John, C. J. Bronco, and R. G. Fowler, J. Opt. Soc.
Am. SO, 28 (1960);R. M. St. John and R. G. Fowler, Phys. Rev.
122, 1813 (1961).
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TABLE I. Theoretical and experimental excitation cross sections az in units 7ra0.

o ii(1'S-+2'P)
E,i in eV Eq. (13) Kq. (31) 0 8i B' M 8z M ZOC

(1&S 31')
Eq. (14) Kq. (32) M@M Mo8zHO ORB ZOC~

200
400

1000
2000

0.109 0.106 0.099
0.0712 0.0706 0.066
0.0372 0.0371
0.0220 0.0220

0.111
0.072

—0.007
—0.0035
-0.0014
—0.0007

0.0297 0.0287 0.0275 0.0240
0.0189 0.0186 0.0180 0.0159
0.0097 0.00966 0.00835
0.00565 0.00564 0.00491

0.025
0.017

0.0004
0 ' 0002
0.00008
0.00004

~ Ochkur and Brattsev (Ref. 13)." Mott and Massey (values calculated by Fox) (Ref. 11).
Moustafa and de Heer (Ref. 12).

Zeroth-order correction, giving the values which should be added to
the cross sections calculated with Eqs. (13) and (14) in order to get the
cross sections corresponding to c1 =0 (1'S—+2'P) and c1 =@2=4 (11$~31P) .

However, Moustafa and de Heer find that a plot of their
experimental AT/R against ln(T/R) gives a straight
line, as should be the case for large T Lsee Eq. (14)).
From the slope of this straight line, ' they obtain an
f(o) value of 0.073 which excellently agrees with the
theoretical f(o) value 0.0734. This suggests that the
Oz of Moustafa and de Heer are reasonably accurate.

From the o~ values obtained via Eqs. (13), (14),
(31), and (32), it follows that interference may give
a 2% reduction of the o~ for E.i=200 eV. Since this
effect of 2% is very small, we cannot give much weight
to it. Higher-order terms in oE (see Sec. 8) and failure
of the Ochkur approximation may easily compensate
the 2% reduction of the os for E,i——200 eV.

B. Dipole-Forbidden Transitions

For dipole-forbidden transitions we may rewrite
Eq. (3) as

as ——(4mao2R'/TE) $C r)(E, T)j—

small Eao (x) we rewrite Eqs. (5) and (7) as

f(E) =cox+O(x'), (20)
so that Eq. (17) becomes Lsee Eq. (4))

q(E, T) = coE'/4n'TR+O(R'/T') (21)
The parameter co in Eqs. (5), (7), (18), (19), (20),
and (21) is directly proportional to the square of the
matrix element g, Qr ~

(E r,)'
~ P;), where E is the

unit vector in the direction of K. From the structure of
Eq. (17), ii(E, T) is always positive, and from the fact
that interference also diminishes the cross sections for
small T, it follows that plotting oET/R against lnT/R
or against T/R would give a straight line with a zero
slope for large T and deviations towards lower oJ, T/R
values for small T. This is in accord with experimental
observations by Moustafa and de Heer" (see Sec. 4 for
a further discussion) .

4. THE DIFFERENCE BETWEEN EXCITATION BY
PROTONS AND BY ELECTRONS

with

C = f(E)
d(Eao)'

ixaoim in d(Eii ) 2

~(» T) = f(E)
0 Eao '

(16)

It is interesting to consider how great the difference
is between excitation by protons and excitation by
electrons.

When T= —,'mv', where m is the electron rest mass and
v the velocity of the proton, then all formulas of Secs. 1
and 2 remain applicable when v is much larger than the
orbital velocity of the atomic electrons, except Eq. (4),
which must be replaced by

(Eao) ~;~'= E'/4TRj 1+(mE/2M T) +0(&/To) j.
(22)

Here M is the mass of the proton.
According to Eq. (5) we find

and according to Eq. (7)

(19)

For large T, it is again very suitable to expand oz in a
series of powers of R/T, and because f(E) decreases
very rapidly for large E, we may neglect the second
term of Eq. (17) with respect to the first term. For very

A. Dipole-Allowed Transitions

Equations (8), (9), (10), and (11) of Sec. 3A also
remain. applicable, but the first term of Eq. (10) be-
comes negligible compared with the second term. The
third term of Eq. (10) only gives terms of the order
(R/T)' and higher orders and is negligible for incident
electrons and protons. The term E/2T in Eq. (12) must
be replaced by @ATE/2MT. The coefficients 0.0255 and
0.0117 of the third term of Eqs. (13) and (14) must be
replaced by 0.164 and 0.0484. Since there is no inter-
ference between direct and exchange scattering, as in
the case of incident electrons, we find, according to
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Eqs. (13) and (14) with the new coeflicients given
above, that for protons the plot of oJ.T/R against
lnT/R gives a straight line for large T/R() 10) with
a deviation towards higher o~T/R values for small
T/R. This behavior is also found from the experimental
tr~ of Van den Bos, Winter, and de Heer" (see also
Sec. 8).

B. Dipole-Forbidden Transitions

All equations of Sec. 3B remain unchanged in the
case of incident protons. This has some interesting
consequences. From measurements of Van den Bos,
Winter, and de Beer" for incident protons it follows
that plotting the experimental a~T/R against lnT/R
for the transitions 1'S~3'S, 4'S, 5'S, 6'S, 3'D, 4'D,
5'D, and O'D in helium gives a straight line with a zero
slope for large T, while deviations towards lower
o~T/R values Lin agreement with the fact that ti(E, T)
is positive] start to become important for T/R 3.
From measurements of Moustafa and de Beer" for
incident electrons for the same transitions in helium,
an entirely different behavior is found. For the transi-
tions 1'S—&e'S, they And that deviations from the
straight line towards lower o~T/R become important
already for /TR~110 and for the transitions 1'S—ee'D
for T/R ~6. Since the term of the order R/T in tl (E, T)
is essentially the same for incident electrons and protons
and since for incident protons the function ti(E, T) is
negligible for T/R)4 (see above), we cannot ascribe
the difference in behavior for protons and electrons to
the function rl(E, T). We will show in the next para-
graph that interference between direct and exchange
scattering may qualitatively explain a part of the
difference in behavior for incident protons and electrons.

S. THE OCHKUR APPROXIMATION

On the basis of the Born—Oppenheimer approxima-
tion, Ochkur' expanded the exchange amplitude of the
Born —Oppenheimer approximation into powers of
(R/T)" and took into account only the first term of
the expansion. Thus we may expect that Ochkur's
method gives good results for large T. The Ochkur
approximation is easy to apply and gives reasonable
total cross sections for a given excitation, even for small
r.

We will derive the Ochkur approximation in a simple
way from the Bethe formulas LEqs. (1) and (2) of this
paperj and Mott's formula for scattering of electrons
by free electrons at rest. Ochkur' already mentioned
the analogy between his and Mott's formula. Therefore,
we rewrite Eqs. (1) and (2) as

rrz, rrd(Kao) = (4rrap R/T) L1/(Kao) tjP(K& E)d(Kao) sr

(23)
' J. Van den Bos, G. %inter, and F. J. de Beer, Physica I'to

be published) .
"V. I. Ochkur, Zh. Kksperim. i Teor. Fiz. 45, 734 (1964)

/English trsnsl. :Soviet Phys, —JETP 18, 503 (1964)g.

where

P(K, E) =
I 2 (6 I

exp(t'K r.) 14') I' (24)

The Rutherford formula for scattering of electrons by
free electrons at rest is

A. Excitation of Atomic Hydrogen

When f and g are the direct and exchange scattering
amplitudes, the cross section oE,~ is proportional to
4 I f+g I'+4

I f g I'. With diffe—rent f and g, this rela-
tion also holds for scattering of electrons by free elec-
trons (not necessarily at rest) since the presence of the
nucleus does not affect the symmetry properties of the
wave functions. Equation (26) should therefore be ap-
plicable for excitation of atomic hydrogen. The Och-
kur approximation also leads to Eq. (26) in this case.

In the preceding paragraphs, we confined ourselves
to the terms of the order (R/T) ln(T/R), R/T, and
R'/T' in o~. Therefore, we will neglect the second term
of Eq. (26).

We de6ne the function
/ ~

p l,t~j) trE. interferenee/trZ, direct (2&)

"L.Vriens, Proc. Phys. Soc. (London) 89, 13 (1966)."N. F. Mott, Proc. Roy. Soc. (London) A126, 259 (1930).

oxd(Kap)'= (47r ap' R/T) I 1/(Kap)')d(Kap)'. (25)

Equation (25) is also equal to Eq. (31) of Vriens" for
scattering of electrons by free electrons moving in
arbitrary directions. This confirms the interpretation of
Fano (Ref. 3, p. 8) that trz & is equal to P(K, E) times
the cross section that one particular atomic electron
receives a momentum Eao.

When we include exchange and interference in our
treatment and when the velocity of the incident elec-
tron is much larger than the orbital velocities of the
atomic electrons, then the cross section for one particu-
lar atomic electron to receive a momentum E~ is no
longer given by the Rutherford formula but by the
Mott formula. "Therefore, az,z will better be given by
P(K, E) times the Mott formula, which for T))E gives

47ra 'R 1 R' R
T (Kap)4 T ( Ka)p' T

XP (K, E)d(Kao) ', (26)

where the first term is the direct-scattering term, the
second the exchange term, and the third the inter-
ference term. Thus Eq. (26) is an approximation in
that in the exchange and interference terms the binding
and orbital velocity of the atomic electrons are dis-
regarded with respect to the velocity of the incident
electron.

Before applying Eq. (26), we first need to consider
the symmetry properties of the total wave functions.
In the following, we will separately consider excitation
of atomic hydrogen and excitation of heliume
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This function is a direct measure of the relative im-
portance of interference between direct and exchange
scattering. From Eqs. (1), (3), (5), (6), (7), (8), (9),
(11), (15), (16), (24), and (26) and from the coeK-
cients 0.', co and ci given in Sec. 2A, it follows that

fi(is~2s) =9R/16T+O(R'/T'),

p(is-+2P) = (9R/20T) ln(4czT/R)+O(Rs/Ts)

where, according to Inokuti, ' cip=0.4980579. Further,

p (1s—+3s) =244R/351T+O(R'/T'),

p(ise3d) = 8R/27T+O(R'/T')

Thus for large T/R,

ft (is~2s) /fi(is-+2P) ~ (5/4) ln(4cir T/R)

and

ft (isis) /ft (is~3d) 2.35.

A direct consequence of the structure of Eq. (26) and
of the nature of the functions f(K) is that ft(i~f)
becomes larger when the major contribution to the
direct term of 0E comes from larger Z. Consequently,
for large T, interference will be more important for
dipole-forbidden than for dipole-allowed transitions;
this has already been noted by Ochkur. '~ Extensive
calculations of Inokutis' concerning the nature of f(E)
show that the major contribution to the direct term of
oE comes from larger E for 1s~es than for is—+rrd

transitions. We may expect, therefore, that interference
is more important for 1s—&ms than for is—&ed transitions.
These conclusions agree with the few values of p calcu-
lated above and enable us (see below) to give a qualita-
tive interpretation of the behavior of experimental
excitation cross sections in He. Concerning the relative
importance of interference for large T, one must be
aware that the validity of our conclusions depends on
the validity of the Ochkur approximation for large T
for the total cross sections.

B. Excitation of Helium

When f and g are again the direct and exchange
scattering amplitudes, the cross section 0E ~ for excita-
tion of a singlet state is proportional to

~ f g~'. The-
relationship between f and g is different in H and He,
and Eq. (2) of Ochkur and Brattsev" is incorrect on
this point (at least for singlet excitation). For singlet
excitation of He we find that Eq. (26) must be replaced
by

4xas'R 1
0- d Eai' =

(X.,) 4~ (X..) T

XI'(Jt., E)d(Zap)'. (28)
20 M. Inokuti, Argonne National Laboratory, Radiological

Physics Division Report No. 6769, 1963 (unpublished).
O' M. Inokuti, Argonne National Laboratory, Radiological

Physics Division Report No, 7220, 1966 (unpublished).
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FIG. 1. Preliminary experimental (Refs. 12, 16) excitation cross
sections times 10r2'/4rraerIf plotted against 1n(T/ff). The dashed
curves for incident protons are extrapolated (Ref. 16). The ex-
perimental curve for incident electrons for the transition 11S~4ig
is given in two parts.

Using the same method as for atomic hydrogen and
using the coefficients f(0), ns, and c, of Sec. 2B, we find:

For 1'5~2'P
o'g, interference=- (4x'ap R/T) f 0.138(R/T) j& (29)

For 1'S~3'P:
&E, inter erien e=c(4&ap R/T) $ 0 055 (R/T) ). (30)

By comparison with Eqs. (13) and (14), we see that
interference corrections are much more important than
the corrections of Sec. 3A. For the sum of the direct and
interference terms, we get, according to Eqs. (13),
(14), (29), and (30),

For 1'S—+2'P

az ——(47rap'R/T) L0.177 ln(T/R) —0.075 —0.112(R/T)

+O(R/T)j, (31)
For 1'5—&3'P

a'z= (4rrapsR/T) L0.0432 ln(T/R) —0.0075—0.043(R/T)
+0(R'/T') j. (32)

Some cross sections calculated with Eqs. (31) and (32)
have been listed in the table.

From the value n'= 3.551 for the transition 1'5~2'5
in helium and from the fact that c,=0 for v& 1 for that
transition, it follows that

ft(VS—+2'5) =u'R/4T=0. 888R/T.
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If we assume that the tt(1'S-+3'S)/tt(1'S —+2'S) in
helium is approximately the same as the ratio
tt(1s~3s)/tt(1s~2s) = 1.24 for atomic hydrogen, then

tt (1'S—+3'S)~1.10R/T

and interference gives a O'Po reduction of os for E,i

300 eV. This does not quantitatively agree with the
experimental result of Moustafa and de Heer" that
deviations from the straight line in the plot of ot. T/R
against T/R become important for very large E.i
( 1500 eV) for transitions to tt'S states. For excitation
of the 2'P and 3'E states we find from the small coefB-
cients in Eqs. (29) and (30) that interference is not
significant. This fact is consistent with Moustafa and
de Heer's" result that the Bethe-Born approximation
remains valid down to surprisingly low T for I'S—w' P
transitions. Moustafa and de Heer's" finding that the
Bethe-Born approximation breaks down for higher T
for n'S than for e'D excitation also agrees with our
theoretical conclusions for es and ed excitation in
atomic hydrogen.

The behavior of the experimental Og for incident
electrons" and protons" is illustrated in Fig. 1, which
is reproduced here with the kind permission of de Heer.

6. EXCITATION AND IONIZATION BY
ELECTRONS

For ionization of helium and other atoms, Schram
et c/. 22 found that in a plot of the ionization cross sec-
tions Q times T/R against ln T/R, the deviations from
the straight line towards lower QT/R start to become
important already for E,& 500 eV. For excitation of
helium to the 3'P, O'P, and 5'E states, Moustafa and
de Heer" find that deviations from the straight line
become important somewhere between 50 and 100 eV,
in contrast with the 500 eV for ionization. This dif-
ference in behavior may be explained by the following:

(i) Interference will be most important when the
velocities of the two outgoing electrons are comparable
(E s T), and will become less and less important as E
becomes smaller. Thus interference will give a more
substantial reduction of the cross sections for ionization
than for excitation.

(ii) For excitation, we distinguish between rt S,
s Pp n'D, and other states. For ionization we always
take the sum, since we do not distinguish under usual
experimental conditions between transitions with Al= 0,
1, 2, and higher, where l is the azimuthal quantum
number. Therefore, we should not compare the ioniza-
tion cross sections with the cross sections for excitation
to n'P states, but with the sum of the cross sections
for the excitation to rs'S, e'E, n'D, and following states.
From the behavior of the o~T/R for dipole-forbidden

"B.L. Schram, F. J. de Heer, M. J. Van der Wiel, and J.
Kistemaker, Physica 31,94 (1965);B.L. Schram, H. R. Moustafa,
J. Schutten, and F.J.de Heer, ibid. 32, 734 (1966);B.L. Schram,
ibid 32, 197 (1966). .

transitions (see Secs. 3B, 4B, and 5) it follows that in
the plot of ot; T/R against lnT/R, deviations from the
straight line start to become important at higher E,i for
os(1'S~rt'S+I'P+rt'D+ ~ ) than for as(1'S &t—t'P)

(iii) The third term of Eq. (10) did not give a con-
tribution to a term of the order R/T in g(E, T), the
first term gives E/2 T+0( R'/Ts) . For excitation of the
2'P and 3'P states in helium, we have found that f(K)
decreases so rapidly when E becomes larger than zero,
that the sum of the first two terms of clt(E, T) is nega-
tive. For ionization, f(K) in. general has a maximum for
K&0, and for large E, f(K) has a maximum for
(KtJo)'~E/R. This behavior of f(K) for different E
has been explained by Inokuti and Platzman. " The
second term of Eq. (10) will thus become positive for
larger E and will give an additional reduction of the
(ionization) cross sections.

(iv) The energy transfers involved in ionization are
substantially larger than the energy transfers needed
for excitation of bound states. We may expect therefore
that the Bethe —Born approximation breaks down at
higher E,i for ionization than for excitation.

7. POLES OF f(X) FOR IONIZATION

In Sec. 2 we conhned ourselves, just as Lassettre'
did before, to the excitation of bound states. We will
now also consider ionization by electrons or protons.

For the excitation of bound states, E~&0, and a~ ——

( EI/R)" is real—and positive. For ionization we have
a different situation, since E~)0. However, it is still
true that the position of the singularities (poles) of
f(K) only depends on the behavior of p; and QI for very
large r. This follows, just as for excitation to bound
states, ' from the structure of the matrix elements

(fI ~
exp(iK r, ) ~ f;) in Eq. (1).The integration over

coordinate space may be divided into two parts, the
first over the interior of a sphere with radius R,» with
R„much larger than the atomic dimensions, and the
second over the exterior of the sphere. The 6rst part
can never lead to poles for finite values of E, since we
are integrating bounded functions over a finite region
of coordinate space. Since the behavior of f, and Pr for
very large r is hydrogen-like and similar for all atoms,
it will again (see Sec. 2) be sufficient' to study the
behavior of f(K) for ionization of atomic hydrogen. For
the generalized oscillator density associated with transi-
tions to continuum states we now use the notation
df(K)/d(E/R) instead of f(K).

If we take the df(K)/d(E/R) calculated by Bethe'

"M. Inokuti and R. L. Platzman, Abstracts of Papers, IVth
International Conference on the Physics of Etectrorric and Atomic
Coll''sions, Quebec, 1965 (Science Bookcrafters, Inc. , ¹wYork,
1965), p. 408.

o4We note that the behavior of the f(E) for ionization of
complex atoms may for special energies become a little compli-
cated because of things like auto-ionization. For instance (see
below), for an auto-ionizing level between a lower ionization
threshold indicated by suffix 1 and a higher-ionization threshold
indicated by sniTix 2, f(E) has poles for Kao ——~i(a@+afl)
and for Tao= &o(ate+ate) ~
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FIG. 2. Position of the poles of f(&)
and df (E) /d (E/R) in the complex
(Euo)' plane for excitation and ionization
of atomic hydrogen from the ground
state. The only physically attainable
values of (Eas)' are real and positive.
The n correspond to the principal quan-
tum number of the excited states
and the R/R to the (continuum) exci-
tation energies.
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for the ionization of atomic hydrogen from the ground for ionization of atomic hydrogen from the n=2 and
state, and the df(K)/d(E/R) calculated by Burhops' v=3 states, it follows that in all these cases we may
Mandl" Walske, and Khandelwal and Merzbacher ~ write

df(K')

d ERR
= Ii:(«o)'+(~~+~f)')L(«s)'+(~' —~f)'ll "t(K E) (33)

with integer v&3 and with

K, E e"pL (2/I rxf I) arctan(2rr '
I err I/I («o)'+err'+rr" I)j

y K, E,
1 —exp( —2s/I nr I)

(34)

where the p(K, E) are simple analytic functions of K
and E without any singularities for 6nite values of K.

From Eq. (33) it follows that df(K)/d(EIR) has
poles for Kao ——&i(cr;+err) instead of &s(n~+rrr), as
was found for excitation to bound states. The position
of the poles of f(K) and df(K)/d(E/R) for excitation
and ionization of atomic hydrogen from the ground
state is illustrated in Fig. 2. Similar figures can now be
made for other initial states and for other atoms pro-
vided that the energy-eigenvalues are known from
theory or experiment. Equation (33) gives us valuable
information about the nature of df(K)/d(E/R) for
complex atoms. When the ionization energy is I, the
relations between the energy eigenvalues E; and E~, the
excitation energy E, and I are: I= —E; and E=
I+E~.For practical applications (not given here), Eq.
(33) may more conveniently be rewritten as

df(K) E
d(E/R) R

I —V

+4 — (Kap)' $(K, E). (35)
R

"E.H. S. Burhop, Proc. Cambridge Phil. Soc. 36, 43 (1940).
2s F. Mandl, Report, Harwell, England, 1952 (unpublished).
"G. S. Khandelwal and E. Merzbacher, Phys. Rev. 151, 12

(1966).

8. DISCUSSION AND CONCLUSIONS

The basic subjects of this paper are (i) the nature
and position of the poles of the functions f(K') and
df(K) /d(E/R), (ii) the power-series representations
off(K), (iii) the expansion of o@ in powers of RIT, and
(iv) the derivation and. application of the Ochkur
approximation.

Power-series representations of f(K) such as given
in Sec. 2 are of great practical importance since, when
a transition f(K) is known for only a few K values,
reasonable estimates of f(K) can be made for other .K
values and analytical expressions can be given for 0@.
Thus experimental differential and total cross sections
can be correlated with each other in a simple way. Apart
from the theoretical justi6cation of the power-series
expansions given by Lassettre, ' some sort of justifica-
tion is also given by the following:

In Secs. 3 and 5 we calculated inc~ and 0~ values for
the transitions 1'5—&2'P and 1'S—&3'P in helium, using
the analytical f(K) obtained in Sec. 2. Suppose we use
the "zeroth-order" approximation of our method; i.e.,
for the transition 1'S—+2'I' we take cy=o instead of
c&=0.86, just as for the transition 1s—&2P in hydrogen;
and for the transition 1'5—+3'I' we take cy=c2=4
(instead of cr ——1.5 and cs ——20), just as for the transition
1s~3P in hydrogen. Then the resulting differences in
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incise are 7.9% (1'S~2'P) and 2.25% (1'S~3U'), and
the di6erences in the OE obtained are very small. This
is illustrated in the table; if we add the values of the
columns "ZOC" to the cross sections calculated with
Eqs. (13) and (14), we get the "zeroth-order" cross
sections. Further, in Sec. 2B we found already that
Lassettre's analytical f(IC) for the transition 1'S~2'S
in helium did have the same "shape" as the function
f(E) for the transition 1s—+2s in hydrogen. These
results lead to the tentative conclusion that knowledge
of the optical oscillator strength for a dipole-allowed
transition and of the "quadrupole" matrix element for
a dipole-forbidden transition in helium is sufhcient for
a quite accurate determination of the oE for large E,j.
Further research along these lines for other transitions
(also to the continuum, see Sec. 7) and for other atoms
would be of interest. The results of this paper also sug-
gest that in choosing trial wave functions for complex
atoms, it is quite important to give these trial wave
functions the correct asymptotic behavior, since only
in this way is a correct position of the poles of f(E)
found. Research on this subject would also be of interest.

Expansions of os (direct and interference) in powers
of R/T such as given in Secs. 3, 4, and 5 are of impor-
tance when studying deviations from the asymptotic
cross-section formulas. By considering the term of order
(R/T)s in cr~ for dipole-forbidden and dipole-allowed
transitions in helium, we found a qualitative interpreta-
tion of the variation of experimental a~T/R with T for
incident electrons and protons. One should clearly be
aware, however, that expansions of o~ in powers of R/T
are only of value for suKciently large T, for instance
T/R) 10. For smaller T, too many terms have to be
included in the expansions, and what is more important,
the Bethe —Born and Ochkur approximations are no
longer applicable for small T. Therefore, from expan-
sions of o~ in powers of R/T we can obtain information
about the variation of o~ with T for T/R) 10, but not
for T/R(10. Even for T/R) 10 we cannot exclude the
possibility that in some special cases the coeS.cient of
the term of the order (R/T) ' in o@ is much larger than
the coef5cient of the term of the order (R/T)' in o~.
Since for incident electrons only the first-order exchange
and interference terms can properly be given, we cannot
exactly derive the coefFicient of the term of the order

(R/T)' in o~. For incident protons, more terms of the
expansion may be given, as has been done, for instance,
in the theory of stopping power. ' We may further expect
that the Ochkur approximation for incident electrons
breaks down at higher T/R than the Bethe-Born
approximation for incident protons. This may be made
plausible by the fact that for given T, E, and E, the
distortion of the incident wave is much larger for in-
cident electrons than for incident protons. Distortion
can thus also be partly responsible for the difference
in behavior of the 0~ for incident electrons and protons.
Charge transfer and polarization may give further small
differences.

That the Ochkur approximation can be obtained in
this simple way from the Bethe and Mott formulas is
interesting in that it gives us the simple pictorial repre-
sentation of the collision process: tT~,~ is the cross
section o~, for transfer of momentum E from the fast
incident to one atomic electron, times the probability
that such a momentum transfer leads to a certain final
state (see also Fano, Ref. 3, p. 8).

Note added in proof. After the work described in this
paper was finished, it was brought to the author' s
attention that the approximate relationship between
exchange and direct scattering amplitudes derived by
Ochkur'7 and usually referred to as "Ochkur approxi-
mation, " was actually (except for some minor details)
already found before by Bonham's Lsee Eqs. (1.18),
(2.11),and (2.16) of Ref. 28$.
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