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Following our previous attempt to analyze the convergence rate of variational calculations for the ground
state of two-electron atoms, the nonconventional terms In(7+72) and [In(r-+72) ] were inserted into the
21S and 23S states, with the proper exponentials. The convergence of the energy eigenvalues seems to indi-
cate that logarithmic terms are important in these states also.

INTRODUCTION

N a previous paper,! we concluded that when loga-
rithmic terms are included to find the second root for
the 21S states, the results obtained by conventional
representation do not appreciably improve. The author
felt that better results can be obtained by satisfying
the proper asymptotic behavior for large 7; and 7, as
well as the singular behavior around the origin. So in
addition to the logarithmic terms, the proper exponen-
tial terms were included in the expansions.

METHOD OF SOLUTION

The author carried out calculations using the
Hylleraas variational form as in the previous paper,
namely, the scaled variables s, ¢, %:

t=r2—r1,

¥(s, u, 1) =1 (ks, ku, ki),

s=ri+rs,
U="rio,
and

2. C(n, 1, m,j)s tumf(tc) (Ins)’,

n,l,m,j

¢=

where f(fc) is the hyperbolic sine or cosine, depending
on the parity of / and the symmetry of the state. We
used the same selection rules as before for the arrange-
ment of the indices %, I, m, and 7; allowing » to be
negative. Terms involving (s?4-#)Y? were excluded
because of the lack of an efficient numerical algorithm
for handling the corresponding integrals. Without
these terms the natural grouping is p=19, 47, 98,

1 K. Frankowski and C. L. Pekeris, Phys. Rev. 146, 46 (1966) .
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and 174. A sample of indices for p=19 is shown in
Table. I.

The constants ¢ and k& were computed to two decimal
places only, in such a way as to optimize the energy
value E for the determinant of order 19. When we

TaBLe I. The ordering of indices for determinant p=19.

P n l m j
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 0 0 2 0
6 0 1 1 0
7 0 2 0 0
8 1 0 1 0
9 1 1 0 0
10 2 0 0 0
11 -1 0 2 0
12 -1 1 1 0
13 -1 2 0 0
14 0 0 2 1
15 0 1 1 1
16 0 2 0 1
17 1 0 1 1
18 1 1 0 1
19 2 0 0 1

checked these values later for higher-order deter-
minants, we found that up to two decimals ¢ and % do
not change, and that higher-order approximations are
insensitive to small changes in ¢ and &, with the excep-
tion of Z=1, in which ¢ and % had to be optimized
further. The constants ¢ and k are given in Table IL
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Tasre II. Values of pararheters ¢ and k.

zZ 1 2 3 4 5 6 7 8 9 10
Para c 0.87 0.49 0.41 0.37 0.35 0.34 0.33 0.33 0.33 0.32
k 0.52 0.64 0.68 0.70 0.71 0.72 0.72 0.73 0.73 0.73
Ortho ¢ 0.88 0.53 0.43 0.38 0.37 0.36  0.35 0.35 0.34 0.34
k 0.55 0.67 0.69 0.70  0.71 0.72 0.72 0.73 0.73 0.73

TaBLE ITI. Values of the energy parameter € in atomic units for various order of determinants, for para (215).

>p\ 19 47 98 174 Extrapolated.
1 0.499685 0.4997977 0.49988897 0.49991672 0.499921
2 2.145896 2.1459735 2.1459740383 2.1459740457 2.14597404582
3 5.040789 5.0408760 5.0408767177 5.0408767445 5.04087674575
4 9.184767 9.1848728 9.1848738573 9.1848738927 9.1848738944
5 14.578413 14.5785268 14.5785279950 14.5785280293 14.5785280305
6 21.221897 21.2220162 21.2220176420 21.2220176965 21.2220176992
7 29.115291 29.1154141 29.1154155764 29.1154157084 29.1154157257
8 38.258632 38.2587555 38.2587571540 38.2587572999 38.2587573191
9 48.651950 48.6520597 48.6520614719 48.6520616307 48.6520616514

10 60.295209 60.2953381 60.2953398511 60.2953400389 60.2953400688

RESULTS order 100 and p=98 is better than his extrapolated

Tables IIT and IV give energy eigenvalues € in
atomic units (a.u.) for Z=1 to Z=10 for determinants
up to order 174 for para, and up to order 98 for ortho.
The values of 174 for ortho are not given because
checks indicate that they are unreliable in single pre-
cision floating (about 14 decimal places on the CDC
6600) and their behavior does not differ enough to
justify the cost of higher-precision evaluation.

Because of the slow rate of convergence for Z=1,
23S was also evaluated by a determinant of order? 174:

(174) =0.49991526 and (&) exer =0.499926.2

All results for determinants of order 174 were checked
in double precision (28 decimal figures).

It is interesting to compare the rate of convergence
with the values obtained by Pekeris by method C
(without logarithmic terms and with unequal ex-
ponents). For Z=2, 21§ state, the determinant of
order 19 gives a lower energy value then Pekeris®
value with a determinant of order 56; p=47 is better
than the extrapolated value (order over 220). However,
in ortho states the improvement is smaller: Z=2,
238 state, p=47 compares with Pekeris” value of about

2 The extrapolation is made on an assumption that the succes-
sive ratios of differences are nearly constant (which is true with
the exception of Z=1), and uses the Pekeris formula [C. L.
Pekeris, Phys. Rev. 112, 1652 (1958) ] for 4 terms and the Aitken

scheme for 3 terms.
3 C. L. Pekeris, Phys. Rev. 127, 509 (1962).

value (order over 220). The same is true for Z=3
(Pekeris?). In addition to this research the method was
applied to higher excited states. The results from 3§
up to 615 for Z=2 are given in Table V. Comparison
of these results with Pekeris® shows that the expansions
with logarithmic terms produce comparable number of
eigenvalues as the expansions with conventional
terms, but the former produce much higher accuracy.
From these results it seems that the logarithmic terms
are important even in excited states, but more impor-
tant in para states, than in ortho.

TasLE IV. Values of the energy parameter € in atomic units for
various order of determinants, for ortho (23S).

X 19 47 98 Extrapolated
1 0.499705  0.4998408  0.49989535 0.499932
2 2.175225 2.1752293  2.175229375  2.1752293785
3 5.110723  5.1107272  5.110727366  5.1107273713
4 9.297161  9.2971664 9.297166581  9.2971665867
5 14.733801 14.7338971 14.733897338 14.7338973467
6  21.420749 21.4207556 21.420755890 21.4207559003
7  29.357674 29.3576814 29.357681724 29.3576817350
8  38.544639 38.5446470 38.544647305 38.5446473180
9  48.981630 48.9816380 48.981638314 48.9816383270
10  60.668638 60.6686462 60.668646568 60.6686465820

4 C. L. Pekeris, Phys. Rev. 126, 143 (1962).
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TasLe V. The excited singlet S states of helium. Values of the nonrelativistic energy parameter € in atomic units; p denotes the order
of the determinant; ¢ and %, the exponent coefficients. Pekeris’s (Ref. 3) values are given for comparison.

» 3S ¢=0.68 k=0.61

4§ ¢=0.77 £=0.55

515 ¢=0.82 £=0.55 6'S ¢=0.84 £k=0.54

47 2.06127077 2.03358633 2.02117361 see
98 2.0612719785 2.0335866187 2.0211766540 2.01455842
174 2.0612719892 2.0335866982 2.0211767784 2.01456292
Extrap. 2.06127198933 2.033586728 2.0211767837 see
Pekeris’ values
56 2.06113355 2.03345646 2.02106034 2.0144436
120 2.06122632 2.03353215 2.02112309 2.0145124
220 2.06125581 2.03356302 2.02115033 2.0145364
Extrap. 2.06127053 2.03358470 2.02117522 2.0145617
EVALUATION OF INTEGRALS Call
.. 1y [In(14-ax) Jidx
We compute the following integrals: L(a, kb, n, )= / —_— =
p g integ (a, &, m, ) T (e
Then

o 8 U

I= / s"e~ In’sds / uldu [ imectdt,
0 0 0

or

Y 1 ) . 8 sl+1__tl+1
I= / sme~*(Ins) 7 s/ mect (—) dat;
B R

putting ¢=swx,
I=(l+41)"1 ” snttmtle—s (Ins) ids
0
1
X / x™ exp(csx) (1—aH1) dx,
0

1
I=(l+1)1 f (1 — ) dx
0

X f “ gmbntits exp[ —s(1—cx) ](Ins) 7ds,
0

or
1=+ 3 (1) Kk, j=o) (-
p=0 \P
1Ine (1 —cx) [am—amtiH ]dy
X _/(; (l_cx)k+1 !
where
k=n+m+1+42, K(k,j) = /m exp(—s) s*(Ins) ids.

0

I=(l+1)1 g (Z) (=)[L(—c, k, m, p)

—L(—c¢, k, m+1+1, p) 1K (k, j—p).

Since in this scheme 0<j<4, this formula is very
convenient to use in the computations. For a given a,
the L(a,k,n,j) and K(k,j) were computed and
stored in fast memory. Since

L(d, k) n, .7) = (_)J(a]/ak]) [L(d, k, n, O) ])
recurrence relations were used. First

1[n(1 i In#1(1
L(a,0,0, ) = [n(ltex)} =~ In ( +a)

o ldax a(j+1)
was computed; then two recurrence relations for
L(a, k,n,0) were differentiated j times with respect
to & to produce the needed three-dimensional relations.
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