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THE CALCULATION OF DETECTING AND AMPLIFYING
PROPERTIES OF AN ELECTRON TUBE FROM ITS

STATIC CHARACTERISTICS.

BY G. BREIT.

SYNOPSIS.

Calculation of the Detecting Egciency of an Electron Tube.—The detecting eKciency
of an electron tube is calculated. In the calculation it is assumed that experi-
mental knowledge of the static characteristics of the tube is available. The constants
of the circuits used with the tube are also taken as known. From these quantities
the average change in the plate current for a given amplitude impressed grid voltage
is derived. The impressed grid voltage is taken to be of the form A cos at where A

is constant. The case when A varies slowly is also discussed.
Calculation of the Input Impedance of an Electron Tube.—The input impedance of

an electron tube is calculated for the case of both positive and negative grid voltages,
no assumption being made as to the mathematical form of the tube characteristics.

Generalization of the Concept of Internal Resistance and Amplification Factor.—
The concept of the complex internal resistance is introduced in treating the ampli-
fication due to a single tube. This quantity is defined by

I
r I—+" (;.—;.j

where r~ is the internal resistance, C2 the grid plate capacity, J = I—r, and

co/a~ = frequency. Similarly the amplification factor is generalized. (See (4.3)).
Condition for. the Vanishing of Incoming Signal. —The condition for the vanishing

of the incoming signal has been worked out. For the case of zero grid current
this condition is just satisfied by tubes obeying Van der Bijl's relation.

It is also seen that the condition is not satisfied by the values of plate circuit
constants predicted from the simple theory neglecting internal capacities.

HE first rigorous calculation of the detecting action of an electron
tube is to my knowledge due to Carson. ' Carson treats the

special case of an electron tube used with sufficiently high negative

grid voltage to make the grid current zero. He does not take into account
the possibility of having a different value for the resistance of the plate
circuit at high and low frequencies, as is seen from his formula. He also

confines himself to the consideration of an electron tube for which Van
der Bijl's relation holds for the plate current in terms of the plate and

grid voltages.
The following treatment concerns itself with an electron tube having
' See Carson, Proceedings of the Institute of Radio Engineers, Vol. 7, April, rgrg.



three electrodes: (t) A cathode consisting usually of a wire heated to
incandescence by an electric current. (2) An anode which is usually
made of a flat or cylindrical metallic plate and (3) a wire control or grid
which is placed between the cathode and the anode.

In what follows I shall refer to the cathode as the filament, to the anode
as the p1ate, and to the intermediary electrode as the grid of the tube.

The filament of the tube has two terminals which are used to heat the
filament. It is clear that when the 61ament is heated by the passage of
an electric current through it the potential of its two terminals is different.
For this reason when the 61ament is used as a cathode we cannot speak
of the potential of the cathode as a whole. However, if the 61ament
current is known and if the potential of one of its terminals is known the

potential of all the remaining points of the fil-

ati

lamen
~

ment is determined uniquely. We thus choose
arbitrarily as our standard the potential of one
of the terminals of the 61ament and we shall

refer to it as the potential of the filament The.
grid and plate may in all practical cases be re-

garded as equipotential surfaces. The terms
Fi . 1.

"grid potential" and "plate potential" are thus

clear. The difference between the potential of the grid and that of the

filament we shall call Eg; similarly the difference between the potentia].

of the plate and that of the filament will be denoted by E„.
Experiments with direct currents show that two quantities E„E„

determine completely the currents which flow from the grid and from the

plate inside the tube. If these currents, reckoned positive in the direc-

tions shown on Fig. I, be called I„I„respectively we can write,

f%., &.)
I, = ~(&„&.)

where f and e& are functions of the two arguments Z, and E„. The form

of these functions can be determined mathematically with fair precision

for some tubes. The general action of the tube, however, can be predicted

without having an accurate knowledge of the mathematical law connect-

ing I„I„with Eg Ey.
We shall assume in what follows that these functions f and p have

within the range considered a first, second and third derivative, all of

these being finite and single valued, and the function itself with its first

two derivatives with respect to each argument being in addition con-

tinuous.
We shall also assume that even for unsteady currents the equations (r )
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' Radio Review, r, S3, rgz9.

give values of I, and I„which represent the current carried by conduction

by the ions inside the tube provided E„E„denote the instantaneous
values of the grid and plate potentials. (The filament potential is taken
as zero ).

Before proceeding with the mathematical development of the problem
I must point out the limitations put on this development by the physical
assumptions made. There is no doubt that all of the functions considered
are finite and single valued. The differentiability of the functions can
be doubted in some cases especially in that of the grid current. Thus
it is known that there is an essential distinction between the behavior
of the grid current for positive and negative grid potentials. The grid
current for negative potentials grid is zero to all intents and purposes.
Thus at E, = o one would be unable to define the derivative: BI,/BE,

Fortunately this difficulty is only formal in character because a suffi-

ciently close examination of the static characteristics shows that there
is some grid current even for negative grid potentials. So that BI,/BE,
always exists. Thus we will be safe to apply our theory provided we

shall recognize by means of our instruments currents and potentials so
small that BI,/BE, is continuous.

Another possibility of a break down in the theory is offered by our

second assumption. In fact it is conceivable that the space inside the
electron tube may have a resonant frequency. This frequency may be
fixed by the dimensions or shape of the space between the electrodes.
If such is the case I„I„are no longer single-valued functions of E„E„
when unsteady currents are considered. In fact one would expect to
have here a dependence of I„I~ either on BE,/Bt, dE„/dt or on the previous

history of E„E„.
Such resonant effects have been described by R. %hiddington'. They

come into play, however, at frequencies very
much higher than those ordinarily employed
in wireless telegraphy. Also these effects are
practically absent in high vacuum tubes.
Thus here again we have a wide range within

which our theory applies. In many cases
electron tubes are used as detectors in di- Fig. . 2.

rection finder circuits. If such is the case
they are, connected across the terminals of the tuning condenser the
connections being as in Fig. 2. In this type of connection the electro-

motive force is induced in the coil. The reader will see without difficulty

that this circuit is a special case of a slightly more general one drawn in
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Fig. 3. Here e represents the place where the electromotive force is

induced; Zg' takes the place of the direction finder coil; Zg" replaces
the tuning condenser. For generality Zg was introduced into the circuit
so as to include the possibility of a blocking condenser and grid leak.
The capacities c~, c2 represent the effective capacities between the elec-

trodes. There is, of course, a third capacity between the filament and

plate. But this can be incorporated as part of the circuit Z„. The
diagram of Fig. 3 includes most of the circuits which are used w'ith

electron tubes. The only essential type of connection left out is that
in which there is inductive coupling between the plate and grid circuits.

NOTATION.

CI

Fig. 3.

%e shall distinguish between the behavior of the various circuits

Zg, Zg', Zg", Z„at different frequencies. Thus we shall not assume
that a definite resistance can be assigned to any one of these, because
experiments show that such an assumption is illegitimate. Since it is a
difficult matter to give in general the relation between the properties
of an electric circuit at various frequencies we shall content ourselves

by taking the impedance [meaning thereby R + jl(j = 0—I), R
denoting the resistance, X the
reactance] of a circuit as a func-

tion of the frequency which is

known either experimentally or
p/ X

by computation. These complex
values of the impedance at
frequency co/2~ we shall write

Z,„, Z,.„, Z,.„, Z„„, etc. The
real part of these expressions

. px (f e , the re. s.istance) will be writ-

ten R,„,
the imaginary part (f, e , the r. e.-

~p actance) will similarly be de-

noted by X,„, X,,„,X,„„,X„„.
We will not be concerned in

this problem with transient phe-

nomena. If therefore the impressed electromotive force is periodic or if

it consists of a sum of several periodic electromotive forces all the cur-

rents are periodic or are sums of periodic functions the periods of the
electromotive forces and the currents being equal.

It is convenient for the mathematical treatment to represent the cur-

rents and potentials as Fourier series.
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We shall first treat the case when the electromotive force impressed

(e) is of the form A cos cot. Then all the currents and potentials must
be Fourier series in cot. Thus any one of these quantities is of the form

bo + b~ cos ~t + b2 cos 2M' + ' ' ' + Gy sin cA + a2 sin 2cok +
= bo + Z(b cos stot + a„sin rtttdt)

+ gg egPbol 8

where
Qg 2 + b 2c—J' tan-t a /b

and where the real part only of the expression on the right is to be taken.
Using this complex notation we can write

i &
——Zi~, m~e'""'

and similarly for all other currents of Fig. 3.
We shall now express the quantities

E„E„in terms of I„I„and e.
We have

i, „Z,„—8„=Z, .„(I, + z2„—it —i;„)

—Z,„(I,„+ L2
—il )

= Z„~(I„„—I2~) —.
" —Zg„(Ig„+ it„—it„)t
2'

where the currents are as on the figure the positive directions being those
of the arrows. (The currents are written to satisfy the first of Kirchhoff's

laws. ) Solving these equations we find

—e„Zg.„+Ig„S,„
Z, .+Z,-.+

QCyCO

$2„

S2ss + Zysu + e Zgf~) +Zg/f~ +SIC/(lg
JC2cv

Z2

Z„„S,„+Ipse

( '". ' "+&2. +Zt. +-
Zgi +Zgii +S2 gCyM

e„Zg-„—I,„Sg„
Zpso Iso

Zg)~ +Zglf~ +gC] COSQa

Zg +Zga +S2~j'cyM

where S2 = Z, „Z, „+Z,„Z;„+Z,„Z, „. The complex expression

for Z,„ is obtained as it/jet&a while that for Z„ is zt„/jctt0 + z2„/jczco.
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Performing the calculation we find

(i.i)
where

gCl7 G 1CIl CO + Gg~ g~ + Gg)~

8„„=Pg„e„+Pg„Ig„+P„„I„„,

G)„——

I
Z g//~ Zy~) +

JC26)
S2„Z„„+—. —

(~ 2)

where

Z g//g)Zy~
Pg 47

Ci—Z„„S2„

S2„Z„„
A-.

S2„Z„„P„=—
gCO

A„

+ c2 Z g/(y + Z g//gp—+
C2 QC2GO

A„

A„= S2„z + —+ j Z„„c&co + Zg„'+ Zg„" Z„„+.
C2 QC2GO

We called the impressed electromotive force A cos cut. To each value

of A there corresponds a definite plate current. It is clear that if A = o
the plate current is steady. Similarly the grid current is steady. Let
these values of grid and plate current be I„, I„, respectively. For a
value of A distinct from zero

I, = I„+SI„
I„=I„,+ SI„,

where AI„AI„are Fourier Series in cot. We shall thus write

AI~ = 6p + 5y cos col + 62 cos 2~t + + a~ sin cot + a2 sin 2(of +
AIg = pp + py cos M$ + p2 cos 2cof + ' ' ' + 6) sin cot + a2 sin 2Guh +
Let us now write

G 1/

G1(d 1(g)e ~ I y

leo

G,„=G,„e'" ' Gg„"
Gg„' '

then denoting by AE„AE„the changes in the grid and plate voltage from

the value corresponding to A = o we have:

, Gg„"
AZ = G Pp+G~obp+G] A cos cot+tan

lcd



Vor.. XVI.
No. g. ELECTRON TUBE. 393

(~ 3)

G,„"i . G,„"
+G, p'cos &at+tan" —'—", ~+a'sin ~t+tan ' —,

Gg„' ) G,„'
G„„" G„„"

+G~„b& cos art+tan ', +a~ sin ~t+tan ' —,
G / G,„'

, G„„"I ~ G //

+G,2„pmcos 2~t+tan 'G —, I+n2sin 2'/+tan 'GG,2„'& g20)

G~ , G„2„"
+Gy2 52 cos 2cOt+tan ' —,+a2 sin 2~t+tan '—

G„2„' G„2„'

+ 0 ~ ~

PI„"'i
AZ, P,g, +P„=b,+P,Q co (A+t )

( P //

+p,„p'cos~ "t+tan ' ',— +n'sin ~t+tan ' —'"
—,

Pg„ Pg„

Ptd ~ P //

+Py b] cos cot+tan ' —,+a~ sin ~t+tan '

, Pg2„" , Pg2
"

+Pg2 p2 cos 20)t+ tan '—,+n2 sin 2 ~t+ tan '—
2 P g2(d

//$
~

+A@2 52cos zrA+tan '—,I+ansin 2&et+tan "—",
~P / 2

Pu&,„&
+ e ~ ~

But our assumption as to the nature of the relationship between I„, I~
with I/~, Zg shows that for suSciently small values of hE„, AEg

BI~ BI„xO'I„

a I„ r O'I„

BIg BIg I 9'Ig

O'Ig I O'Ig

g 2 ~+g

where the first derivatives are to be evaluated at I„=J„„
while the second derivatives are to be evaluated for some suitably chosen
values of E„,Eg in the intervals

(Q ~ Q +~+)(jF ~ +~~)
If 5E„, DEg are sufficiently small the values of the second derivatives
are sensibly constant and can be taken simply as the values at (E„„E„).

+le can, therefore, regard all the derivatives as constant coefficients.
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If the mathematical expressions for I„,I, are known the derivatives will

be obtained by ordinary differentiation. If no mathematical expression
is available the derivatives are still easily obtainable from the graphs
of the functions.

FIRST APPROXIMATION. INTERNAL RESISTANCE. AMPLIFICATION
CONSTANT. INPUT IMPEDANCE.

As a first approximation we can disregard the squares of dE„, hE, .
Then

BIp BIy

BI, BI,

Let us analyze AI„, AI„AE„, AZg into a Fourier series, say ZAI„„,
ZAI, „, ZAP~„, ZAE, „where DI~ is of the form Ae'"' (j = 0—r) and

where it is understood that only the real parts of the equations are to
be considered. Since the equations (2) are linear we can write

87„— BI~-

BIg — BIg
QIg„= AE„„+ - AZg„.

g g

Combining these with (r.r) we have

BI„— BI„— — t' BI„— BI„—

&I„— BI„—
~es ~ +les + ~ Glee p

'g7g QIg l 'BIg BIg

8I, — BI, —
I'i. + —

~
—Gr,—

~

y )
Hence

(2.r)

I„„=e„

~
g

~
g~ ~~

~

~

~
~

~
~ ~

~

~

~
~~

~~

~ ~

~

~
~~~~~

~

~
~

~ ~
~

g

()Ig — BIg — BI@ — BIp

BI@ — BIy — ' BIg — BIg
~" ~ -+ ~ C - g~' ~l-+ gg' G-

gI~ "— BI„— BIg — BIg—

gIg — BIg — 81„— BIy—
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where
& BI„— BI„—l BIg — BIg—

BE '" BE ' i BE "" BEu g ) ~ u g

BI„— BI„— BIg — BIg——
~
—"P„„+~" G„„—I ~' Pg„+—

~
—'Gg„—I

BIg — BIg — BI„— BI„—= —'+ g~ g-+ g~ g-+ g~ ~-+ gg G~-

i
BI„BI„

Pg„ Gg„ BZ„ BBg+ P„„G„„, BZy BEg

BZ„ BEg

Before proceeding with the second approximation of the problem we
shall interpret the equations given. Let us consider the special case when
Z,„=Z,. = o. Then (see x2) 5,„=o,

IA„= Zg „Z„„+—. —
jc2co

Gg„= I, Gg„= o, G,„=o,
Z pQ7

jC2GlPPG) I
Zp +

jc2co

(& 3)

(~ 2) — Z~

jC2M

From (a.x) and (2.2) we derive:

BIg BIy jcm(vZ, B( I„, Ig) Z„„'+ '
. ""-+

BEg BEs z +jc,&oZ„„B(Er Eg) i +jc,raZ,.
Zycn BIyI+

I + jc2G0Z~

BI„jcpcoZ„„BI~
. ""-+

'()+u I + jc2+Z&„~+g
Z 'I

I + jc,~Z,„~~&
Also from (r') and (2.2)

(2 4)

Hence

Ig„+ s2„=P.„

jcmo)(e„+ Z,„I„„)
240

I + jc207Zy(y

Z„„BI„I +
I + jc2coZ„„~&n

Z „' BI„Z„„BI„
".'"- +'

I + jcgGDZy~)
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BI, BI, Z„„a(I„, I,) Z„„/gc2a&

"Z,.+. " ' Z,.+.
jC2M jC26)

Z„„BI„I+
x + jc,~Z„„BE~

(BI„BI„BI, BI, t BI, Z B(I, I,)

I Z„„BI„
Z,.+. +.""

jCoGO jC2GO BE

The ratio e /(I, + iq„) may be called the intrinsic input. impedance of
the tube because (neglecting the current flowing through the capacity
Cg) Ig + f2 is the total current of frequency &o/2'r which flows from
the outside circuit into the tube. I call the quotient e„/(I, + z,„)
the intrinsic input impedance of the tube in distinction to the trle-input
impedance which is e„/(I,„+z&„.—s&„). There is really no advantage
in knowing the true input 'impedance of the tube because the tube is
always put in parallel with some other circuit, and the capcaity C& can,
therefore, be considered as part of that other circuit. This procedure
as well as the fact that we incorporate the capacity from filament to
plate in Z„simplifies our expressions.

Let Z;„denote the intrinsic input ~mpedonce. Then

Z~„BI„
Z + —+ ———

jc2co jc2co BE~
aI„aI„aI, aI,
BE„ BEO BE„ BEg

BI, B(I„,I,) Z,„
jcp(a BE, B(E„Zg)jc2(u

An inspection of this equation shows that both the numerator and
denominator are linear in Z„„. This fact admits of an interesting inter-
pretation. For it is clear that the relation between R„„and X„„
(Z„„=p„„+jX„„)which will necessitate the real or the imaginary
part of Z;„ to be constant is such as to make the pts. (8„„,X„„)referred
to cartesian axes lie on a circle. Thus the lines of constant input re-
sistance in the R~„, X„„plane, or constant input reactance are circles.
Moreover all of these circles must pass through one point, viz. , the point
corresponding to Z;„= oc. Again since in the Z;„plane the lines of
input resistance are orthogonal to the lines of input reactances the same
must be true in the Z~„plane. This gives a general picture of the
variation of Z;„with Z„„. I have treated this matter in more detail
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for the special case of negative grid voltage. ' It is seen, therefore, that
so far as the general properties of the relationship between the plate
circuit and the input impedance are concerned there is no difference
between the case of positive and negative grid voltage.

A more thorough investigation of the expression (3) will show, however,
an essential distinction between the two cases. This is given by the
value of Z;„ for co = o. In fact this value is

(3 r)
BIg
BEg

BI„
I +Zpa

p

B(Iy, I,)
g(E E )

If the grid voltage is sufficiently negative I, is constant and therefore

Z;, = ~. In other words, there is no appreciable current absorbed
from the external circuit when the frequency of the alternating current
becomes sufficiently low and when E, & o.

On the contrary if E, & o then no matter how low the frequency used

may be a sufficient amount of current is absorbed from the external
circuit by the tube to oblige us to replace the tube for pur'poses of com-

putation by the fictitious resistance Z;, given in (3.i).
In most tubes BI„/BE~, BI,/BE„BI„/BE, are positive while BI,/BE„ is

negative. Thus the Jacobian 8(I„, I,)/8(E„, E,) is positive and Z;,
is positive.

The subject of input impedance has been worked out in detail for the
case of negative grid voltage by Dr. J. M. Miller. ' My formula (3)
agrees with Dr. Miller's result if I, = const. and if in Dr. Miller's

formula C~ and C3 are put equal to zero. In fact both of these become

provided we set
(Z+ t)Z„„+r„

BIp r

BE& rp
'

BIp BIp—"—=Z —"—

BEg BE„'

The reasons why the internal resistance and the amplification constant
X are to be identified with the expressions given will be discussed later.

In order to compute the input impedance in the general case it is

convenient to call
' See Bureau of Standards Radio Laboratory Report 5—V.
' See Bureau of Standards Scientific Paper No. 3sx.
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Then

I
BI@

BZp

aI„aI„aI, aI, / aI„
aE +aE, +aE„+aE, / aE„'

8(I„ I,) BI„
g(E E)
l9Ig (PING

BZg BBp

Writing

Z 1 CO

c Zy~r„+A~Z„„+ . + j9.""
jCo CO jC2a

(3 2)

Z;„=R;„+jX,„,
my+ P8

2+, g2

X+@7
a R„„r„+

C2GO

where

X +R—""
C2co

gau + j peas

—0.8 + P7
'p +

X,. C
y = r„+A~R„„+8 "", 8 = A,X„„——

C2GO C2(d C2co

It is thus seen that a knowledge of the four derivatives 8I„/&E„, gI„/gE„
BI,/BE„BE,/BE~ of Cs and of R„„,X„„is sufficient to enable one to
calculate the input resistance and input reactance. We can thus con-
sider the problem of input impedance as solved for both positive and
negative grid voltages.

COMPUTATION OF CURRENT IN PLATE CIRCUIT.

In many cases it is necessary to know the quantity I~„—I2„because
this, to a 6rst approximation is the current in Z„. Such is, for example
the case of a transformer-coupled amplifier. Now from (2.3) and (z.4,

jC2C08~ I„„
I + jC2coZ~„ I + jC2o)Z„„

(4)
I + jC2coZ„„

BI„BI„jC2co"+
~&g ~&n I + jC2coZ„„—jC2co +

Zy~ BI@I +
I + jC2coZ~„ f)&u

BIge„—jC2or +
BI„

I + jC2o)Z„„+Z„„
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This simple relation connects the current through Z„with the voltage
from the filament to the grid of the tube. It is seen that BI,/BZ~,

aI,/aZ, do not come into this expression as could be expected. If cq&o

is sufficiently small

(4 r)

where

BIg)

aBI„„—z2„= e„—
I + Z~~

ai„ /al„=
az, / az,

Ee„
ru+ Zu-

I
BIp
i9E„

BI„
~" —jC2o)

BI@
jC2o) +

I
BI„" + jC2co

and writing
I

as„
aalu
—"+jC2o)

(4 ~) BI„
az,

- jc'"
40 gI 1

jC2(o +
p

k„e„I„„—i2„=—
Z„„+f„

Thus p„may be spoken of as the complex internal resistance of the
tube and k as its complex amplification factor at frequency &o/2s. .

(4 3)

A simple interpretation can be given to this last expression. In fact
it shows that if C2 is negligible the current through Z„can be imagined
as due to an electromotive force Ee„acting in series with Z„„and a
pure resistance, r„ inside the tube. The positive direction of this electro-
motive force is visibly in the direction from filament to plate outside
the tube. For this reason we can call X the amplification factor and r~

the internal resistance of the tube. We note the fact that Van der
Bijl's rela'tion is not used in making these definitions.

If C2 is not negligible we can still write (4) as:
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It is of interest to note the connection between g„and r„. For
obviously

I
x / x

r, / jC,gl

This shows that the comp/ex internal resistance can be obtained by imagining
the capaci ty C2 connected in parallel with the interna/ resistance r„.

SECOND APPROXIMATION.

Having calculated our quantities to the 6rst order we can proceed
to the calculation of bg and pg. From equations (t.3) we find that the
constant terms of (AEg)', (ARg(AE„)), (AE„)' are neglecting quantities
of higher order than the second. In (AEg)':

+ —'—"(pig + nlg) + —"—"(big + lllg)
2

+ A p, (Ggay'G, ~' + Gg„"G,„")+ Anl(Gg„"Gl„' —Gg„'Gl~")

+ Abl(G„ay'Gl~' + G„„"Gl„")+ Aa, (G„„"Gl„'—G,„'G,„")
+ (—n,n, + p,b,)(G,„'G„' + G, "G„„")

(5) + (plal —nlbl)(G„„"Gg„' —G„„'G, ") = 2R„.
In 26EgDE„:

(Play Glay + Play Gl ) +AP1%1ru Pgay + Glw Pg~

+ Pl„'Gg„' + Pl„"Gg„"]+ Anl[Pg„"Gl„' —Pg„'Gl„"

+ Pl„'Gg " —Gg„'Pl„"] + Ab, (G,~'Pg ' + G,„"P,„"
+ Pl."Gg."+ Pl.'G,.') + Arll(P, ."Gl.' —Pg.'Gl."
+ G„„"Pl„'—G„„'Pl~") + (Pg„'Gg~'+ Pg„"Gg~")(pl' —nl')

+ (P„„'G„„'+ P,„"G„„")(b,' —a,')

+ (nlbl —&lpl)(G, "P„'—P„"G,„'+P, "G„'—P, 'G„")
+ (plbl —n,a,)(Gg„'P„„'+ G,„"P„"+ P,„'G,„'

(5.t) + P,„"G„„")= ~R,„.

In (aE„)' = " + '"
(pl, + n, ') + ""

(bl, + al')
2 2 2

+ Apl(Pgay Play + Pgay Play ) + Anl(Pg~ Play Pgay Play )

+ Abl(Pgay Play + Pgcu Play ) + ACl(Pgra Play Pgru Play )

+ (plbl —nial) (P,„'P ' + P,„"P„„")
(5.2) + (plnl nlbl) (P„„"Pg„'—Pg„'Pg~") = 2Rgg.
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These expressions are calculable if we content ourselves with using
values of a» b» 0,» P& as obtained by our first approximation.

In most practical cases the expressions for R«, Eg„, R» simplify
considerably, but for the sake of generality I preferred giving their
complete expression.

Identifying now constant terms on both sides of the equationsBI„BI„xO'I„, O'I„

+ p@", (~n)'8 Iy

BI, BI, I O'I, , O'I,

O'Ig

we find BI„BI„BI„BI„
bo I —P„, "—

Gp,
" —Po Pg, "+Gg, " = Cp

BIg BIg BIg BIg
b P" E'+G" E' + po I —P' E' —G z' =C

u g p
where

(s s)
+8@~,B+ + ~@

g gQ 2 PP+ g~ gg Pg + g~ 2 gg ~

Solving these two simultaneous equations in b, P, we obtain

(5 4)

BIg BI, BI„BI~
gp + gp ~ + g gp @ .+ gp gg

bp
g gBI„BI„BIg BIg

o gjV o gjV o(jjV

(
aI„aI„aI„aI,

Pg, ~~ + Gg, ~~ P„, @ + G

BI„BI„ BIg BIg
C, I —P„, ~

—G„, ~" + C„P„, ~' +G„,
Po = (9I„&I„BIg BIgI —P„, @" —G„, ~ I —Pg, —

~
——Gg,

~
aI„aI, aI„aI,

gp g@ + gp g~ Pp g~ + Pp g~

The first of these expressions enables us to calculate the average change
in plate current due to the electromotive force, A cos ~t, impressed in
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series with Zg'. In a similar manner the second equation gives the
average change in the grid current. The amplitude A enters in these
equations only through C„, C, which are homogeneous linear functions
of R«, R,„, R». Since 0.~, P~, u~, b~, are as a first approximation pro-
portional to A it is readily seen from (5), (5.i), (5.a) that R«, R,„, R»
are proportional to A'. Hence our expressions for bo, Po are proportional
to A'. In general, of course, there is no reason why this law should be
strictly true. But it is true that the smaller A the more nearly bo, Po

are proportional to A'.
One of the fundamental assumptions in our discussion was that the

electromotive force A. cos cot has been impressed on the circuit so long
that the effect of the initial conditions has been obliterated. The time
necessary for this is generally very small. Let us change A slowly
enough to justify us in considering all of the currents at any instant as
having values identical with the values which they would have if A.

had had the value which it has at that instant during an infinite time
before the instant under consideration. If such is the case the value of bo

at any instant is proportional to the value which A has at that instant.
Thus, if A. should vary as I + E cos pt where p is sufficiently small to
secure conditions discussed above, the average change in the plate current
will vary as I + (X'/2) + 2Z cos pt + (Z'/2) cos 2pt.

SPEcIAL CAsEs.

The expressions (5.4) apply to the most general case under con-
sideration and enable us to calculate bo, Po when the E.M.F. impressed in
series with Zg' is know'n. Ke have shown, however, how the action of
the tube on the currents in the circuits Z„Z,", Z, ' can be computed by
endowing the tube with an input impedance. Since our expressions for
R», R„„R«involve only the squares of first order terms in 2 we can
for convenience of computation divide the problem into two parts. The
first will concern itself with a calculation of the voltage from F to G
account being taken only of first powers in A. The second will deal
with the calculation of bo assuming voltage as known. Using formula

(3) we have no difficulty in solving the first phase of the problem.
In order to deduce a solution of the second phase from our general

expressions we imagine a case when Z, „=Z,„=o. Then equations
(r.2) simplify as in (2.a) and I,„, I~„are given as in (2.3). Also from

(5), (5.i), (5.~) we have
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A'
2R fgg 2 '

zR,„=A'Pg„' + A(b&P„' + agP„„"),
(5 5)

2 P 2

2R„„=—"—A'+ ""
(a '+ b ') + Abg(P„'Pg„'+ P„~"Pg„")

+ Aa, (P„„"P,' —P„„'P,„").
But it follows from expressions (2.2) that

Hence

an(i

+ C2MPy an0 Pg = C267Py

P„„'Pi„'+ P„„"P&„"——0

Thus
Ply PasszR» —— —A.'+ (a/+ bP) + Aa, c~o&P„'.

2 . 2 (5 5)

We note that n~, P~ do not occur in these expressions. Now (z.3) can
be written

BI„— BI„
BE ' " BE X —'C PI„=e„

ry —P„„
BEy

(K + Cpcop, „")—jC2cop„„'
84$ I ' /I„—P„„—jP,„

(K + C2(oP,„")(r„—P„„')+ C2(oP,„'P,„"
(r~ —P~.')' + Pn-'"

.P„„"(K+ C2(aP„„") —Cyrus(r„— P,„')P„'(P l)2+P I/2

fK(r~ Pp„') + r„—C&ruP„„"]+j [XP„„"+ Cp&oP„' —r„C2(aP~„]

(r„P,„) + P„„'"—

In our case

Therefore
e„= A (cos ~t +j sin cut)

K(r„—P„„')+ r~CgcuPy "
(r„—P„„) +P„„"

r„C2a P„„'—C2a P„„'—KP,„"
(r, —P„„) +P„„"
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Also

A(brP„„' + ~,p„")

, (Z + C2(ap„„")' + Cg'cu'P„„"

p I)2~ p rP

= A'
—XP„„'+ Ey„P„„'+ 2y„C~~P„„'P'„„"—C2~P„„"P„„

(r„—P„„')'+ P„'"
r„2C,~P„„"—ZP„„~+Zr„P„„'= A' —C (oP "+—"

(re —P.-')' + Pu-'"
We thus derive from (5.5) and (6.5)' that

g2 +2y 2C2P +P 2 + +r P
Rg g

( p 1)2 y p l/2

because P~„' ——C2orP„„",
A' (X+ C (op ")'+ C '(a'P

C2~2P 2+ P 2

4 4 (r„—P„„')'+ P„„'"

(5.6)
A' r„C2(oP„„' —C2o)P„„' —EP„„"+ —C2(oP

P 1)2yP
g2 +2 + y 2C 2~2—P 2—
4 (r, —P, ')' + P, '"

Now from (5.4) and (5.3) it fo11ows that

60 = cxyyRyp + cxygRpg + clggRggq
where

6'a„„

6'egg

and

t9 Iy
2X+

cl Iy

BE„BEg

8 Iy——) +aug'

O'Ig

~~ 2 Jll~

O'Ig+ aZ„aZ, "'
8 Ig
~~ 2P~

where
8I, BI,X=z —P ——GgQ gQ gQ gQu gBI„BI„

p, =P —+Ggp g~ gp gg

~I@ ~~@ BI@ 8 Ig
gpaz„+ "aug " az, + " gE„

Using the values of R», R„„R«obtained in (5.6) we have

4 ' (r. —Pn-')' Pu-'"
(5 r) g2 +2+ r 2, C2~2

tx P



Vox. XUI.
No, g. ELECTRON TUBE,

This expression shows the nature of the dependence of the recti6ed
component of the plate current on the constants of the plate circuit.
In fact the quantity

ZpQ)
PP@)

I + jcpcoZp~ I I=—+z„„U&») '

can be seen to be the negative of the impedance which would be obtained

by connecting the capacity C2 across the plate circuit impedance Z„„.
If P~„ is very large the predominating terms in (g.t) are

A' Ko.g„ A'
a —— '"A'+ n —(Z'+ r 'C'(u')gg P 2 ~

It is seen, therefore, that in general there is no reason why bo should

become zero when I'p„= ~. It is also seen that on account of the term
rp'C2'oP multiplying into 0;» even if it were possible to make bo = o by
I'p„= ~ for one value of co this in general would not be true for a different
co. The condition which is necessary and sufficient to make bo = o
when I'p = ~ for the case when rp'C~'co' is negligible in comparison to
K 1s Agg 2Kclgp + clppK = o.

CASE OF NEGATIVE GRID VOLTAGE.

8 IP
BZPBEg

Zp.
'

I +
r2

6 =I+—,Zpo

rp'

Hence

It is of interest to see how our equations reduce in the case of negative

grid voltage when I, = const. = o. In this case

8 IP
az:

~PP =
~ &Pg = 0!gg

Z„, '

I +
rp

It is convenient to write Z„
real. Then

O'I P '(X'+ r 'C'&o')
n2

= —2'p„= R„+jX„; R„, X„being both
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Similarly of course (5.7) could be written
A' ru2C2~X„+ KZ '+ Kr„R

5 7 I'2 = nuu 2nuu („pR )2 p X 2

g 2(K2 + r 2C 2~2)
"" (r„+R )'+ X'„

It is of interest to investigate the conditions for which bo can be made

equal to zero or else to reverse sign by a proper choice of E„and X„.
Clearing fractions

(R„' + X'„')(n, u
—2Kn,„+n»(K2 + r,2C22222))

+ 2r,R„(n„—Kn, „) —2n, „r„'C2~X + ru'nuu

4 (r„+R„)' + X„'
If n« —2Kn,„+n»(K' + r„2C22uu2) Q O the denOminatar Cannat be-

come in6nite without making the numerator in6nite and of the same
order. Hence excluding the case mentioned the condition is that the
equation

(R„' + X ') (nuu —2Knu„+ n„„(K' + r„2C22cv2))

+ 2ru(n„—Kn, „)R„—2n, „r„'CusuX„+ r„'n« = o (6.o)

be satis6ed by a possible pair of values of R„and X„. The equation
written is the equation of a circle in Cartesian coordinates. This circle
is real if

—r„'n„(n„—~Kn,„+n„(K2+ ru'C2'~')) + ru'(nuu —Knuu)'

+ nu„uru'C22o& ) o or nuu2 ) n«n». (6 r)

This therefore is the condition which is necessary in order that it be
possible to reverse the sign of bo by merely changing the plate circuit.
If the grid voltage is negative this condition becomes

BE@BEg BEg BEy

It is remarkable that for tubes obeying Van der Bijl's relation

(
B'I„' B'I„& B'I„

BEyBEg BEg BEy

This corresponds to the case when circle (6.o) collapses to a point. Thus
bo can always be reduced to zero but cannot be made to reverse sign.
As a matter of fact the circle (6.o) reduces in this case to

F222 + X/2 P

Thus bo = p when 8„=p,
XX

Co CO
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This explains why for very high values of R„, bo has been observed to be
diminished but not quite to zero.

Proceeding now with the special case of tubes obeying Van der Bijl's
relation we have

In particular if C2 is very small

and

BBg
b

i + —"' [(r, + R„„)'+ X„„']
ru
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