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The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has
been integrated for various values of the temperature and density, relative, generally, to a fluid state. The
equilibrium properties have been calculated and are shown to agree very well with the corresponding
properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be

described through a two-body potential.

I. INTRODUCTION

HE “exact” machine computations relative to
classical fluids have several aims: It is possible
to realize “‘experiments” in which the intermolecular
forces are known; approximative theories can thus be
unambiguously tested and some guidelines are provided
to build such theories whenever they do not exist. The
comparison of the results of such computations with
real experiments is the best way to obtain insight into
the interaction between molecules in the high-density
states.

The Monte Carlo method initiated by the Los Alamos
group! is a first example of these “exact” methods. It
amounts to a direct computation of the integrals in-
volved in the canonical averages. It is easy to carry out,
with the inconvenience, however, of providing no
information on the time properties of the system.

The dynamics of an isolated system can also be
considered and used to calculate time averages and
time-dependent properties. The case of hard spheres
and hard spheres surrounded by a square well has been
extensively studied by Alder ef ¢l.? In the case of a two-
body interaction simulating more closely the interaction
between the molecules, it is possible to integrate directly
the equation of the motions of about a thousand
particles, as brilliantly demonstrated by Rahman.® The
present paper presents some of the results which have
been obtained, using a technique inspired by Rahman’s
work, for a system of 864 particles interacting through
a Lennard-Jones potential.

In Sec. II we give some technical details on the
method which we use; in particular, we describe a book-
keeping device that cuts the computing time by a factor
of the order of 10.

In Sec. III we give and discuss the results obtained
for the pressure, the internal energy, the high-frequency
elastic moduli, and the isotopic separation factor. These

* Supported by the U. S. Air Force Office of Scientific Research
Grant No. 508-66.
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results, summarized in Table I, are sufficiently numerous
to allow a comparison on the whole density range of
the fluid state and on a wide temperature range which
essentially excludes the extremely high temperatures.
The over-all agreement is surprisingly good. It appears
that the many-body forces, if they are at all important,
behave so as to realize an effective interaction which is
state independent to a good approximation.

The correlation functions are described and discussed
in a separate paper.! The formalism necessary to express
the fluctuations in the microcanonical ensemble was
discussed recently.? It can be applied to calculate the
derivatives of the thermodynamic functions (e.g., the
specific heat and dp/dp) in terms of fluctuations
averaged over time. The results are not very precise
and will only be presented as an illustration of these
theoretical considerations.®

The results on the time-dependent properties will be
reported later.

II. DESCRIPTION OF THE COMPUTER
EXPERIMENTS

We consider a system of 864 particles, enclosed in a
cube of side L, with periodic boundary conditions
interacting through a two-body potential of the
Lennard-Jones type

V(r)=4((c/r)*— (c/r)"). ¢y

This potential is cut at 7,=2.5¢ in most of our experi-
ments, or, in some of them at 7,=3.30. The problem is
to integrate the equation of motion

d“zl'i

a

m

=2 f(ry).

77

)

We choose the following units: The lengths are ex-
pressed in units of ¢ (5=3.405 A for argon), and the
energies in units of e (e=119.8°K for argon).” The
thermodynamic quantities will thus be measured in the

41, Verlet (to be published).

5 J. L. Lebowitz and J. K. Percus, Phys. Rev. 124, 1673 (1961).
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250 (1967).
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159 COMPUTER
usual “reduced” units. The time unit is chosen so that
m=48es2; it turns out to be, for argon, equal to
3X107 sec. This time is of the order of the kinetic
relaxation times of the system in the case considered in
this paper. With this in mind, we have, for the force
acting on particle ¢ in the « direction,

fz(ri) =m(wi—x;) (r;74—0.5¢;%). ©))

To integrate (2), we use the very simple algorithm

ri(t+h)= —ri(t—h)+2ri(t)+§'f(nj(t))h2, 4)

where % is the time increment which we take equal to
0.032. This is practically the value chosen by Rahman
(i.e., 107" sec in the case of argon). We have checked
that this time increment is adequate and even super-
fluously small in most cases. For instance, for 7'=1.38,
p=0.55 (i.e., temperature just above critical, density
almost twice critical), we have performed two integra-
tions up to the time ¢{=4. In one case we have taken
h=0.032, in the other £=0.016, with the same initial
conditions. The difference in position at time ¢ is
typically of the order of 0.001 and the difference in the
thermodynamic quantities, at the same final time,
amounts to 1/10 000. In this kind of calculation, most
of the time is spent in computing the force. If no special
devices are introduced, we must, at each step, compute
3N(N—1) terms, most of which turn out to be zero.
We introduce the following bookkeeping device® which
cuts the computing time by a factor of the order of 10:
Every nth step, we compute all the 3V (V—1) distances,
and, given a particle 7, we make a table of all the
particles which are within a distance 7 of that particle.
Then, for the next »—1 steps in time, we take into
account only the particles in the tables. There is no
error as long as 7y is sufficiently larger than 7, so that
no particle outside the table traverses the ‘“‘skin” of
depth 73—7, and gets into the range 7, of the potential.
The feasibility of such a procedure can be easily
appreciated by giving some orders of magnitude: Let &
be the root-mean-square velocity in our units, it is
typically of the order of 0.3; if this is so, no error is made
as long as

rau—r, SHbh. (5)

If, for instance n=16, n0h=0.15. By choosing 7, =3.3
for r,=2.5, the condition (5) is largely met, and at the
same time the “skin” depth stays reasonably small. We
have checked, by following some systems for several
hundred steps in time, that no difference at all was
observed when # was reduced. Moreover, the conserva-
tion of the total energy and of the total velocity, which
stays of the order of 1077, is a guarantee of the sound-
ness of the whole procedure.

8 Some time-saving tricks have been considered before: See
Ref. 2 and, for the hard-sphere case, A. Rotenberg [New York
University Report No. NYO-1480-3, 1964 (unpublished)].
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With this device, the time spent for an integration
step at the density 0.45 is about 12 sec on the UNIVAC
1107 of the Faculté des Sciences, Orsay, where the first
calculations were made, and ten times less (with careful
machine coding of the time-consuming subroutines) on
the CDC 6600 of New York University, where the
greatest part of the results reported here were obtained.

With that machine, a typical “experiment” takes
about 1 h. It goes as follows: The positions are initially
taken, in general, at the nodes of a face-centered-cubic
lattice which has the desired density, and the velocities
are chosen at random with a Gaussian probability law.
Three hundred steps in time are sufficient, in general, to
reach equilibrium. The computation is then carried on
for 1200 steps in time (this corresponds, for argon, to
1.2X107" sec). The main part of the computation con-
cerns the study of equilibrium quantities (thermo-
dynamic functions: temperature, pressure, internal
energy, specific heat, etc. ; time-independent correlation
functions) and of nonequilibrium quantities (velocity
autocorrelation function, elastic constants, viscosities,
heat conductivity, etc.). The necessary technical details
will be given when these results are reported.

III. THERMODYNAMIC QUANTITIES
A. Temperature

At each step in time the velocities are calculated
simply by the formula

vi(®)=[r:(t+h)—r:(t—h)]/2h. (6)

The temperature is, at time ¢, 2 of the kinetic energy,
in our units

T= 162 v?/N. (N

The error entailed by the use of (6) is of the order of
1/1000. This error is of no consequence, except that it
gives rise to small irregularities in the total energy
which should be otherwise strictly constant. The
temperature, averaged over the time, is affected by a
statistical error of the order of 0.004.

B. Pressure

The pressure is calculated from the virial theorem

I 1 67)“
/ r~—g (r)dr.
6T )., ©

e
pkT 6NET
The second term of (8) is the time average of the virial.
The last term is a correction term which takes into
account the effect on the pressure of the tail of the
potential which has been neglected in the dynamics.
The influence on the main term of (8) of the tail of
the potential, which has been neglected in the dynamics
can be appreciated by considering that cutoff tail as a
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TasrLe I. List of thermodynamical results: p is the particle
density, and T the temperature; 8p/p is the compressibility factor,
Qe is equal to (V2V)/m, K, and G, are the infinite-frequency bulk
and shear moduli, respectively, K,/G, their ratio, and 7, the
distance at which the potential is cut. Reduced units are used
throughout.

P T Bl U 9 K, G, K /G,
0.88 1.095 348 —566 233 582 321 181 25
088 094 272 —5.84 214 524 298 176 235
088 0591 —018 —6.53 17.3 425 262 1.62 2.5
0.85 2.889 436 —4.25 351 90.7 445 204 25
0.85 2.202 420 —476 309 774 393 197 25
0.85 1214 306 -—5.60 224 547 303 181 25
0.85 1128 278 —5.69 21.5 522 293 178 2.5
0.85  0.880 1.64 —594 188 450 264 170 2.5
0.85 0782 098 —6.04 178 421 253 1.66 2.5
0.85 0786 099 —6.05 17.8 422 254 167 2.5
0.85 0.760 078 —6.07 175 414 250 1.66 2.5
0.85 0719 036 —6.12 17.0 399 244 163 25
085 0658 —020 —6.19 164 383 238 161 2.5
085 0591 —120 —626 155 357 227 157 2.5
0.75 2.849 310 —4.07 268 359.3 302 196 25
0.75 1.304 1.61 —-502 ... 361 209 173 25
0.75 1.069 090 -—-519 154 320 193 165 2.5
0.75 1.071 0.89 —5.17 154 316 191 1.66 3.3
075 0881 —012 -—-531 141 278 175 156 2.5
0.75 0827 —0.54 -—538 132 269 172 153 25
0.65 2.557 214 -378 ... 358 193 185 3.3
0.65 1.585 125 —423 ... 255 150 170 235
0.65 1.036 —0.11 —452 115 197 127 155 33
0.65 0900 —0.74 —4.61 104 178 119 150 2.5
0.55 2.645 163 —324 ... 230 127 180 25
0.5426 3.26 186 —3.00 --- 261 139 188 25
0.5426 1404 057 —-3.63 .-- 142 90 158 25
0.5426 1326 042 —-366 -.- 139 89 156 3.5
0.5 1.36 340 —338 85 114 74 154 23
045  4.625 1.68 —222 149 214 112 191 25
0.45 2.935 138 —2.60 110 148 83 179 25
0.45 1744 074 —290 820 110 67 164 2.5
0.45 1764 076 —2.89 820 110 67 164 2.5
0.45 1710 074 —295 820 11.0 6.7 1.64 2.5
0.45 1.552 075 —298 7.7 10.1 64 158 2.5
0.4 1.462 041 =272 ... 727 477 153 2.5
0.4 1424 038 —2.73 .- 7.22 475 152 33
0.35 1.620 058 —2.31 58 570 372 154 25
0.35 1.418 040 —-221 ... 492 331 149 25

weak long-range perturbation.’ The effect on the main
term of (8) is quite small: It amounts to 0.006 in the
one case studied (p=0.75, T=1.05). It is smaller than
the statistical error which is generally of the order of
0.01 when 1200 steps in time are considered. The main
error comes certainly from the correction term which
is very large at high density and low temperature where
it is of the order of 1 for »,=2.5.

The replacement of g(r) by 1 in the correction term
leads, for r,=2.5, to an error which may reach 0.05 at
the highest density and lowest temperature considered
here. Such a replacement is, however, not necessary as
the extrapolated values of g(r)* may be used.

As a whole, we believe that the over-all error on p/pkT
is probably of the order of 0.01 around the critical
density and may reach 0.05 in the high-density and
low-temperature region.

The results so far obtained have been gathered in
Table 1. Fig. 1 shows p/pkT for some isochores at high

9 J. Lebowitz (private communication).
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F16. 1. The compressibility factor 8p/p as a function of g8 for
the isochores p=0.88, 0.85, 0.75, 0.65, and 0.45 (solid lines), as
compared with the experimental data for argon (Refs. 10-12)
(dots). The dashed curves correspond to the gas-liquid and solid-
fluid coexistence lines.

density (0=0.88, 0.85, 0.75, 0.65, and 0.45), and the
comparison of the equation of state determined by vari-
ous experimental groups in Amsterdam,”® Toronto,"
and Louvain.?

The over-all agreement between ‘‘theory” and experi-
ment is surprisingly good: It appears that the Lennard-
Jones potential is a quite satisfactory interaction as far
as the equilibrium properties of argon are concerned.
It is to be noted that if, instead of argon, xenon were
chosen for the comparison, the agreement would not be
so good. For instance, with, for T'=1.35, p=0.75, the
value of Bp/p from molecular dynamics is 0.86; the
same quantity is equal to 0.86 in argon. For xenon (with
the reduction parameters e/k=225.3°K, ¢=4.07 &),
the value 1.05 is obtained.’®

On Fig. 2 are represented three isotherms: One at
high temperature (I'=2.74) where comparison can be
made with the results obtained a long time ago by Wood
and Parker,? and also with a Lennard-Jones potential
through the Monte Carlo technique; the low-
temperature isotherm T'=1; and the isotherm T'=1.35,
which is also an isotherm for which Monte Carlo com-

103, M. H. Levelt, Physica 26, 361 (1960).

1W. Van Witzenburg, University of Toronto dissertation
Eunpublished); copy available in Dissertation Abstracts 25, 1268
1964).

2 A, Van Itterbeck, O. Verbeke, and K. Staes, Physica 29,
742 (1963).



159 COMPUTER *‘‘EXPERIMENTS"
BP
2
15}
1=
g
T=274
5
T=1.35)
Te|
| | | | 1 1 f |
I 2 3 4 5 .6/.7 .8 P

Fic. 2. For the isotherms T'=2.74, T=1.35, and T=1, 8p is
represented as a function of p. The low-density parts of the curves
were obtained with the help of the PY and PY II equations
(Ref. 13). The arrows show the results of Monte Carlo calculations
(Refs. 1, 13). The dots are the experimental results in argon
(Refs. 10-12).

putations have been made.!® That isotherm will be used
below to examine the question of the critical constants.

For low values of the pressure, our computation may
describe metastable states: The periodic boundary
prevents the occurrence of inhomogeneities of a size
larger than the side of the box, so that the formation
of a two-phase system is very much hindered. The low
pressure part of the isochores at p=0.85 and 0.88
has been obtained by “cooling” a liquid configuration:
That is, we start from a spatial distribution relative to
the liquid state, and a Gaussian initial velocity distri-
bution. Equilibrium configurations corresponding to
supercooled liquids may thus be reached. We have also
started from solid-like spatial configurations, with again
Gaussian velocity distributions. The temperature T
corresponding to this initial velocity is progressively
raised until “melting” occurs. Our criterion! for melting
is based on the evolution in time of pz=D>_; coskx;:
There £ corresponds to the smallest vector of the
reciprocal lattice, i.e., k=4r/a, where @ is the side of

18D, Levesque and L. Verlet, Physica (to be published).
4 P, Noziéres (private communication).
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unit cell of the original fcc lattice, which, in the x
direction extends from 0 to L. For a solid, px is of the
order of V. It oscillates around 0 with an amplitude of
the order of A/N for a liquid. If we admit that the
metastable states of the solid are short-lived (as com-
pared to the total time of the computation, i.e.
1.2X107" sec for argon), we can find by trial and error
the melting temperature. For p=0.85 a solid configura-
tion is still observed for T'=0.695. It corresponds to a
value of the initial temperature T=1.308. For
Ty=1.366, melting does occur. Experimentally (see
Fig. 1) melting occurs at T'=0.704. For p=0.88, we
have a solid for 7=0.825; this corresponds to T'o=1.545.
With Ty=1.67, melting is reached. Experimentally,
melting takes place for T=0.82 at that density. The
agreement with experiment is seen to be good.

C. Critical Constants

Because of computational errors, the precise deter-
mination of the critical constants is difficult. We
believe, however, that a careful examination of the data
warrants the following discussion and conclusions.

(a) The extrapolation of the isochores towards the
critical temperature yields results which are in good
agreement with the Monte Carlo results of Levesque
and Verlet® (108 particles, about 300000 configura-
tions). Those results, for T'=1.35, are shown in Fig. 2
and in Table II.

(b) The PY II equation leads at p=0.45 and p=0.5
to values of 8p/p which are definitely too low. The trend
to give too low values for the quantities at intermediate
density is already noticeable at p=0.4, as may be seen
from Table III, although one is at the border of com-
putational errors. If the values yielded by the PY II
equation are corrected by 0.005 at p=0.35, and by 0.02
at p=0.4—and this seems to be the most that can be
expected—the following critical constants are obtained:
T.=1.32, p,=0.32, and Bcp./p.=0.3, instead of those
obtained from the PY II equation, T,=1.36, p.=0.36,
and B.pe/p.=0.36. We expect the critical constants to
be situated somewhere between those limits.

TaBLE II. Values of 8p/p for the isotherm 7'=1.35 obtained
from the PY and PV II equations (Ref. 13), Monte Carlo com-
putations (M.C.) (Ref. 13), extrapolation of the molecular
dynamics (M.D.) results, 5-term virial series (Ref. 15), its Padé
approximant, and experiment on argon (Ref. 10).

p PY PYII M.C. M.D. S5Vir. Padé Exp.
0.2 0.510 0.50 0.506 0.505 0.527
0.3 0.396 0.36 0.36=0.03 0.377 0.374 0.404
0.35 0.376 0.30 0.324+0.02 0.350 0.343 0.368
0.4 0386 027 0.284-0.03 0.2940.02 0.351 0.338 0.349
0.45 0434 0.25 0.3320.03 0.30£0.02 0.382 0.359 0.353
0.5 0.532 0.30 0.33:£0.03 0.446 0.406 0.388
0.55 0.692 0.45 0.44-£0.03 0.42+0.02 0.545 0.481 0471
0.65 1.256 122 0.86+0.05 0.82£0.03 0.860 0.709 0.863
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TasLe III. Values of B8p/p, of the inverse compressibility
(Ref. 4), and of the interaction part of the integral as given by
the molecular dynamics (M.D.), the PY I, and the PY equation
for T'=1.46, p=04.

M.D. PYII PY
Bp/p 0.41+0.01 0.40 0.51
Bap/op 0.54 0.53 0.49
U: —2.7240.01 —2.72 —-2.7

(c) The five virial series'® gives values of 8p/p which
are clearly too high by 0.015 at p=0.3, by 0.05 at
p=0.35, and by 0.06 at p=0.4. The difference then
diminishes and changes sign at high density. The Padé
approximant shows the same behavior but a little less
accentuated. We conclude that one or several virial
coefficients after the fifth one must be negative, and
that some higher ones must be positive again.

The critical point deduced by Barker ef al.® from
their series is situated at 7,=1.29, p,=0.26, and
Bepe/pc=0.35. The critical density is quite low, a
consequence of the too low pressures at intermediate
densities.

(d) Table IV summarizes the situation: There a
comparison with experiment on argon is made, which
shows that there exists a discrepancy of at least 5% on
the critical temperature. This raises the following
problem : It is known nowadays'®? that the low-density
data are not well fitted by a Lennard-Jones potential;
a potential with a deeper bowl and a weaker tail, such
as the recently determined Kihara potential,’” seems
much more appropriate. It would seem natural to guess
that using such a potential will improve the situation
in the critical region. The reverse is true: Levesque
and Vieillard-Baron,!® using the PY II equation, find
a critical temperature of 1.42 (with the same units as
before). The blame for this discrepancy may be put on
many-body forces. Even at density around the critical
region, a relatively large amount of those forces would
be needed. It appears that these many-body forces

TasLE IV. Critical constants obtained from the PY II equation
(Ref. 13), from the PY II equation corrected as explained in
Sec. II1.A, from the 5-term virial series (Ref. 15) and from experi-
ment (Ref. 10).

T, Pe Bep c/ Pe
PYII 1.360.04 0.314-0.03 0.36:0.03
PY II
Maximum correction 1.32 0.31 0.30
5-term virial 1.29 0.26 0.352
Experiment 1.26 0.297 0.316

15 J. A. Barker, P. J. Leonard, and A. Pompe, J. Chem. Phys.
44, 4266 (1966).

16 . A. Guggenheim and M. C. McGlasham, Proc. Roy. Soc.
(London) 225A, 456 (1960); R. J. Munn and J. Alder, J. Chem.
Phys. 43, 3998 (1965); J. Rowlinson, Discussions Faraday Soc.
40, 19 (1965).

( 17 _T.) A. Barker, W. Fock, and F. Smith, Phys. Fluids 7, 429
1964).
18 D, Levesque and J. Vieillard-Baron (to be published).
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should then manifest themselves in the form of an
interaction which is clearly state dependent at high
density; and this seems to be contradicted by the
excellence of the fit obtained in the present paper.

D. Internal Energies

The part of the internal energy due to the interaction
U‘ is calculated as the time average of the sum of the
interparticle interaction energies. A tail correction is
included, as for the pressure and the energy ; the over-all
error appears to be of the order of 0.02. The agreement
between our results and the (not too extensive) experi-
mental datal® is satisfactory, although the calculated
internal energies are a little larger in magnitude than
the experimental one. For instance, for p=0.45, at
T=2.935, Ueici=—2.60, Uep'=—2.49; at the same
density, for T=1.764, U= —2.89, Uexp’=—2.84. At
higher densities, the same trend is noticeable, for
p=0.5426, T=1.404, Ucpie’=—3.63, Uexp’=—3.55. It
appears, roughly speaking, that the Lennard-Jones
potential is slightly too deep.

E. High-Frequency Elastic Moduli

Zwanzig and Mountain® have shown that in simple
fluids the infinite-frequency bulk modulus K, and the
infinite-frequency shear modulus G, can be expressed
in terms of the radial distribution function; and that,
furthermore, in the case of the Lennard-Jones potential,
the necessary integrals can be expressed in terms of the
pressure and of the internal energy, so that G, and K,
are simply given by the following expressions:

Go=3p—2pT— (24/5)pU", 9)
Koo= (S/S)Geo+ Z(P -p T) . (10)

Results for K., G., and the ratio K.,/G., are given in
Table I. When the temperature is low, the internal-
energy effects predominate and K,/G, is near (5/3),
the value obtained from Cauchy condition for solids.

We may compare the “‘exact results” given in Table I
with those obtained by Zwanzig and Mountain who
used (9) and (10), and the experimental data of Levelt,!
supposing that the interaction between argon atoms is
exactly the Lennard-Jones potential. The good agree-
ment between those results and ours shows again—
although this proof is not independent of the preceding
ones—that the Lennard-Jones potential is appropriate
to describe argon in the temperature and density do-
main considered in the present paper.

F. Isotopic Separation Factor
The separation faction in a liquid-gas mixture of

isotopes of argon can be expressed® in terms of the

( 19 15{) Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
1965).
2 G. Casanova, A. Levi, and N. Terzi, Physica 30, 937 (1964).
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Fi6. 3. The solid lines show the quantity C=Q¢/2mpm
=(A%V)/96mp for the isochores p=0.85, p=0.75, and p=0.65, as
a function of 8. The crosses represent the intercepts of those
isochores with the experimental liquid-gas coexistence line. It
should be compared with the isotopic separation factor in argon
(Ref. 20) (triangles).

average value of the Laplacian of the potential (V2V (r)).
The quantity Q¢*= (1/M)(V2V (r)), which is also im-
portant in the time development of the system, has
been calculated, and the values we obtained are shown
in Table I. The quantity C=Q¢/2mp is plotted for
several isochores in Fig. 3. We have used experimental
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information (pressure-versus-density curve for the
coexistence curve, as shown on Fig. 1), to locate the
temperature of the coexistence line on the isochores. It
may be seen easily, however, that this introduces very
little arbitrariness. A good fit of the experiment is ob-
tained, as seen from Fig. 3.

IV. CONCLUSIONS

We have shown, using Rahman’s work as a starting
point, how it is possible to integrate the equations of
motion of about a thousand particles in a relatively
easy way. The first application of this tool is the
thermodynamic study of a fluid composed of atoms
interacting through a Lennard-Jones potential. The
striking result of this study is the over-all agreement
between the results thus obtained and the thermo-
dynamics of real argon. It is likely that those results
can still be slightly improved and that a two-body
potential can fit the experimental data with a large
degree of success.
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