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Comyuter "Exyeriments" on Classical Fluids. I. Thermodynamical
Properties of Lennard, -Jones Molecules~

Loup VzzLzrt
Bdfer Gradlaie School of Sciercce, Feehioa UNioersicy, Pm Fork, Peto Fork

(Received 30 January 1967)

The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has
been integrated for various values of the temperature and density, relative, generally, to a Quid state. The
equilibrium properties have been calculated and are shoran to agree very vreH vrith the corresponding
properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be
described thlough a t&o-twdy potential.

I. INTRODUCTION

~ 'HK "exact" machine computations relative to
clRsslcRl Aulds hRvc ScvcI'Rl RlIDs: It 18 posslblc

to realize "experiments" in which the intermolecular
forces are known; approximative theories can thus be
UnRmblguously tested Rnd soIQc guidelines RI'c provldcd
to build such thcoI'lcs whenever they do not cxlst. Thc
comparison of the results of such computations with
real experiments is the best way to obtain insight into
the interaction between molecules in the high-density
states.

The Monte Carlo method. inifiated by the I.os Alamos
group' is a 6rst example of these "exact" methods. It
amounts to a d,irect computation of the integrals in-
volved ln thc CRnonlcRl RvcI'ages. It Is cRsy to CRrry out&

with thc lncoIlvcIllencc) howcvcl ) of pl"ovldlng no
information on the time properties of the system.

Thc dynamics of Rn lsolRtcd systcIQ CRn Rlso bc
considered and used to calculate time averages and
time-dependent properties. The case of hard. spheres
Rnd hRrd spheres surroUndcd by R Square wcH hRS bccn
extensively studied by AMer et al.' In the case of a two-

body interaction simulating more closely the interaction
between the molccules, it is possible to integrate directly
thc cqURtlon of thc motions of RboUt R thoUsRnd

particles, as brilliantly demonstrated by Rahman. ' The
present paper presents some of the results which have
been obtained, using a technique inspired by Rahman's
work, for R system of 864 particles interacting through
a Lennard- Jones potentiaL

In Sec. II we give some tcchnical details on the
method which we use; in particular, we describe a book-

keeping device that cuts the computing time by a factor
of the order of 10.

In Sec. III we give and, discuss the results obtained
for the pressure, the internal energy, the high-frequency
elastic moduli, and the isotopic separation factor. These
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results, summarized in Table I,are suf6cicntly numerous
to allow a comparison on the whole density range of
thc Auld state Rnd on R wide tcIDpcrature IRngc which
essentially exclud. es the extremely high temperatures.
The ovcr-all agreement is surprisingly good. It appears
that the many-body forces, if they RIc at all important,
behave so Rs to rcRllzc RD elective lntcI'Rcflon which ls

state independent to a good approximation.
The correlation functions are described and, discussed

ln R scpR1 atc pRpcl. Thc formalism ncccssRI'y to cxpI'css

the Quctuations in the microcanonical ensemble was
discussed recently. s It can be applied to calculate the
derkvatnres of the thermodynamtc functions (e.g., the
specific heat and c)P/c)p) in terms of fluctuations
averaged, over time. The results are not very precise
and will only be presented as an illustration of these
theoretical conslderatlons.

The results on the time-dependent properties wiH be
reported later.

%e consider a system of 864 particles, enclosed. in a
cUbc of side L, with periodic boUDdaIy condltlons
interacting through a two-body potential of the
Lennard- Jones type

This potcntlRl ls cut Rt f'1, =2.50' ln Dlost of oui cxpcll-
ments, or, in some of them at r, =3.30. The problem is
to intcgrRtc thc cqURtlon of lnotion

d2r'
rN =Q f(r;;).

jets

Kc choose the following units: The lengths are ex-

pressed. in units of o (a =3.405 A for argon), and the
energies in units of e (a=119.8'K for argon). The
thermodynamic quantities will thus be measured in the

4 L, Verlet (to be published).' J.L. Lebowitz and J.K. Percus, Phys. Rev. 124, 1673 (1961).
6 $. L. Lebovatz, $. K. Percus, and L. Verlet, Phys. Rev. 153,

250 (1967).' A. Michels and H. Vhjker, Physica 1S, 627 (1949).
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where h is the time increment which we take equal to
0.032. This is practically the value chosen by Rahman
(i.e., 10 '4 sec in the case of argon). We have checked
that this time increment is adequate and even super-
Quously small in most cases. For instance, for T= 1.38,
p=0.55 (i.e., temperature just above critical, density
almost twice critical), we have performed two integra-
tions up to the time t=4. In one case we have taken
h=0.032, in the other k=0.016, with the same initial
conditions. The di6erence in position at time t is

typically of the order of 0.001 and the difference in the
thermodynamic quantities, at the same final time,
amounts to 1/10 000. In this kind of calculation, most
of the time is spent in computing the force. If no special
devices are introduced, we must, at each step, compute
—,'$(tV —1) terms, most of which turn out to be zero.
We introduce the following bookkeeping device which
cuts the computing time by a factor of the order of 10:
Every nth step, we compute all the -,'X(X—1) distances,
and, given a particle i, we make a table of all the
particles which are within a distance r~ of that particle.
Then, for the next n —1 steps in time, we take into
account only the particles in the tables. There is no
error as long as r~ is sufFiciently larger than r„so that
no particle outside the table traverses the "skin" of
depth r~—r„and gets into the range r„of the potential.
The feasibility of such a procedure can be easily
appreciated by giving some orders of magnitude: I.et 8
be the root-mean-square velocity in our units, it is
typically of the order of 0.3; if this is so, no error is made
as long as

r~—r„&n8h. (5)

If, for instance n=16, n8h=0. 15. By choosing r~ ——3.3
for r„=2.5, the condition (5) is largely met, and at the
same time the "skin" depth stays reasonably small. We
have checked, by following some systems for several
hundred steps in time, that no difference at all was
observed when n was reduced, . Moreover, the conserva-
tion of the total energy and of the total velocity, which
stays of the order of 10 ~, is a guarantee of the sound-
ness of the whole procedure.

'Some time-saving tricks have been considered before: See
Ref. 2 and, for the hard-sphere case, A. Rotenberg )New York
University Report No. NYO-1480-3, 1964 (unpublished)g.

usual "reduced" units. The time unit is chosen so that
m=48&0. ", it turns out to be, for argon, equal to
3)(10 " sec. This time is of the ord, er of the kinetic
relaxation times of the system in the case considered in
this paper. With this in mind, we have, for the force
acting on particle i in the x direction,

f, (r;,)=m(x,—x,) (r;; "—0.5r;; ) (3)

To integrate (2), we use the very simple algorithm

r, (t+h) = —r;(t —h)+2r;(t)+p f(r,;(t))hs, (4)

With this device, the time spent for an integration
step at the density 0.45 is about 12 sec on the UNIVAC
1107 of the Faculte des Sciences, Orsay, where the first
calculations were made, and ten times less (with careful
machine coding of the time-consuming subroutines) on
the CDC6600 of New York University, where the
greatest part of the results reported here were obtained.

With that machine, a typical "experiment" takes
about 1 h. It goes as follows: The positions are initially
taken, in general, at the nodes of a face-centered, -cubic
lattice which has the desired density, and the velocities
are chosen at random with a Gaussian probability law.
Three hundred, steps in time are sufFicient, in general, to
reach equilibrium. The computation is then carried on
for 1200 steps in time (this corresponds, for argon, to
1.2X10 "sec). The main part of the computation con-
cerns the study of equilibrium quantities (thermo-
dynamic functions: temperature, pressure, internal
energy, specific heat, etc. ; time-ind. ependent correlation
functions) and of nonequilibrium quantities (velocity
autocorrelation function, elastic constants, viscosities,
heat conductivity, etc.). The necessary technical details
will be given when these results are reported.

III. THERMODYNAMIC QUANTITIES

A. Temyerature

At each step in time the velocities are calculated
simply by the formula

v;(t) = $r;(t+h) r, (t h)—$/2h—

The temperature is, at time t, -', of the kinetic energy,
in our units

T=16 Q s'/E.

The error entailed by the use of (6) is of the order of
1/1000. This error is of no consequence, except that it
gives rise to small irregularities in the total energy
which shou M be otherwise strictly constant. The
temperature, averaged over the time, is affected by a
statistical error of the order of 0.004.

B. Pressure

The pressure is calculated from the virial theorem

p 1 9'v,; p 9'v—=1— P P r,, — r g(r)dr—
pkT 6EkT ' ~&i Br;; 6kT „, Br

(8)

The second term of (8) is the time average of the virial.
The last term is a correction term which takes into
account the effect on the pressure of the tail of the
potential which has been neglected, in the dynamics.

The influence on the main term of (8) of the tail of
the potential, which has been neglected in the dynamics
can be appreciated, by considering that cutoff tail as a
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TABLE I. List of thermodynamical results: p is the pa, rticle
density, aud T the temperature; PP/p is the compressibility factor,
00' is equal to (V'I/")/m, E„and G„are the in6nite-frequency bulk
and shear moduli, respectively, K„/G„ their ratio, aud r, the
distance at which the potential is cut. Reduced units are used
throughout.

p T PP/p U' &O' Z G„Z„/G„r,
0,88
0.88
0.88
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.75
0.75
0.75
0.75
0.75
0.75
0.65
0.65
0.65
0.65
0.55
0.5426
0,5426
0.5426
0.5
0.45
0.45
0,45
0.45
0.45
0,45
0.4
0.4
0.35
0.35

1.095 3.48
0.94 2,72
0.591 —0.18
2.889 4.36
2.202 4.20
1.214 3.06
1.128 2.78
0.880 1.64
0.782 0.98
0.786 0.99
0.760 0.78
0.719 0.36
0.658 —0.20
0.591 —1.20
2.849 3.10
1.304 1.61
1.069 0.90
1.071 0.89
0.881 —0.12
0.827 —0.54
2.557 2.14
1.585 1.25
1.036 —0.11
0.900 —0.74
2.645 1.63
3.26 1.86
1.404 0.57
1.326 0.42
1.36 3.40
4.625 1.68
2.935 1.3g
1.744 0.74
1.764 0.76
1.710 0.74
1.552 0.75
1,462 0.41
1,424 0,38
1.620 0.58
1.418 0,40

—5.66—5.84—6.53—4.25—4.76—5.60—5.69—5.94—6.04—6.05—6.07—6.12—6.19
-6.26—4.07—5.02—5.19—5.17—5.31—5.38—3.78—4.23—4.52—4.61—3.24—3.00—3.63—3.66—3.38—2.22—2.60—2.90-2.89—2.95—2.98—2.72—2.73—2.31—2.21

23.3
21.4
17.3
35.1
30.9
22.4
21.5
18.8
17.8
17.8
17.5
17.0
16.4
15.5
26.8

~ ~ ~

15.4
15.4
14.1
13.2

~ ~ ~

11.5
10.4

~ ~ ~

8.5
14.9
11.0
8.20
8.20
8.20
7.7

58.2 32.1
52.4 29.8
42.5 26.2
90.7 44.5
77.4 39.3
54.7 30.3
52.2 29.3
45.0 26.4
42.1 25.3
42.2 25.4
41.4 25.0
39.9 24.4
38.3 23.8
35.7 22.7
59.3 30.2
36.1 20.9
32.0 19.3
31.6 19.1
27.g 17.5
26.9 17.2
35.8 19.3
25.5 15.0
19.7 12.7
17.8 11.9
23.0 12.7
26.1 13.9
14.2 9.0
13.9 8.9
11.4 7.4
21.4 11.2
14.8 8.3
11.0 6.7
11.0 6.7
11.0 6.7
10.1 6.4
7.27 4.77
7,22 4.75
5.70 3.72
4.92 3.31

1.81 2.5
1.76 2.5
1.62 2.5
2.04 2.5
1.97 2.5
1.81 2.5
1.78 2.5
1.70 2.5
1.66 2.5
1.67 2.5
1.66 2.5
1.63 2.5
1.61 2.5
1.57 2.5
1.96 2.5
1.73 2.5
1.65 2.5
1.66 3.3
1.56 2.5
1.53 2.5
1.85 3.3
1.70 2.5
1.55 3.3
1.50 2.5
1.80 2.5
1.88 2.5
1.58 2.5
1.56 3.5
1.54 2.3
1.91 2.5
1.79 2.5
1.64 2.5
1.64 2.5
1.64 2.5
1.58 2.5
1.53 2.5
1.52 3.3
1.54 2.5
1.49 2.5

' J. Lebowitz (private communication).

weak long-range perturbation. ' The effect on the main
term of (8) is quite small: It amounts to 0.006 in the
one case studied (p=0.75, T=1.05). It is smaller than
the statistical error which is generally of the order of
0.01 when 1200 steps in time are considered. The main
error comes certainly from the correction term which
is very large at high density and low temperature where
it is of the order of 1 for r, =2.5.

The replacement of g(r) by 1 in the correction term
leads, for r, = 2.5, to an error which may reach 0.05 at
the highest density and lowest temperature considered
here. Such a replacement is, however, not necessary as
the extrapolated values of g(r)4 may be used.

As a whole, we believe that the over-all error on p/pkT
is probably of the order of 0.01 around the critical
density and may reach 0.05 in the high-d. ensity and.
low-temperature region.

The results so far obtained have been gathered in
Table I. Fig. I shows p/pkT for some isochores at high

l.5

Fro. t. The compressibility factor Pp/p as a function of P for
the isochores p=0.88, 0.85, 0.75, 0.65, and 0.45 (solid lines), as
compared with the experimental data for argon (Refs. 10-12)
(dots). The dashed curves correspond to the gas-liquid and solid-
Quid coexistence lines.

density (p=0.88, 0.85, 0.75, 0.65, and 0.45), and the
comparison of the equation of state determined by vari-
ous experimental groups in Amsterdam 7,io Toronto
and Louvain "

The over-all agreement between "theory" and. experi-
ment is surprisingly good: It appears that the Lennard-
Jones potential is a quite satisfactory interaction as far
as the equilibrium properties of argon are concerned.
It is to be noted that if, instead. of argon, xenon were
chosen for the comparison, the agreement would not be
so good. For instance, with, for T= j..35, p=0.75, the
value of pp/p from molecular dynamics is 0.86; the
same quantity is equal to 0.86 in argon. For xenon (with
the reduction parameters e/k=225. 3'K, o =4.07 A),
the value j..05 is obtained. "

On Fig. 2 are represented three isotherms: One at
high temperature (T=2.74) where comparison can be
made with the results obtained a long time ago by Wood
and Parker, ' and also with a I ennard-Jones potential
through the Monte Carlo technique; the low-
temperature isotherm T= 1; and the isotherm T= 1.35,
which is also an isotherm for which Monte Carlo com-

"$.M. H. Levelt, Physica 26, 361 (1960)."W. Van Witzenburg, University of Toronto dissertation
(unpublished); copy available in Dissertation Abstracts 25, 1268
(1964).

~A. Van Itterbeck, 0. Verbeke, and K. Staes, Physica 29,
742 (1963}.
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TsaLE III. Values of Ppjp, of the inverse compressibility
(Ref. 4), and of the interaction part of the integral as given by
the molecular dynamics (M.D.), the PV II, and the PY equation
for T=1.46, p=0.4.

PP/~
p&p/sn

U'

M.D.

0.41+0.01
0.54—2.72+0.01

0.40
0.53—2.'l2

0.51
0.49—2.71

Tmr.E IV. Critical constants obtained from the PY II equation
(Ref. 13), from the PYII equation corrected as explained in
Sec. III.A, from the 5-term virial series (Ref. 15) and from experi-
ment (Ref. 10).

PV II
PV II

Maximum correction
5-term virial
Experiment

1.36a0.04 0.31+0.03 0.36~0.03

1.32
1.29
1,26

0.31
0.26
0,297

0.30
0.352
0.316

(c) The five virial series's gives values of PP/p which
are clearly too high by 0.015 at p=0.3, by 0.05 at
p=0.35, and by 0.06 at p=0.4. The difference then
dllllllllsllcs Rnd cllallgcs sigil R't lllgll density. T}lc Pad6
approximant shows the same behavior but a little less
accentuated. Ke conclude that one or several virial
cocScients after the fifth one must be negative, and
that some higher ones must be positive again.

The critical point deduced, by Barker et ul. '5 from
their series is situated at T,=1.29, p, =0.26, and

p,p./p, =0.35. The critical density is quite low, a
consequence of the too low pressures at intermediate
dcnsltlcs.

(d) Table IV summarizes the situation: There a
comparison with experiment oIl argon is made, which
shows that there exists a discrepancy of at least 5% on
the critical temperature. This raises the following
problem: It is known nowadays"'7 that the low-density
data are not well fitted by a Lennard-Jones potential;
a potcntiRl with R deeper bowl Rnd R wcRkcI' tRil such
as the recently determined Kihara potential, " seems
much more appropriate. It would seem natural to guess
that using such a potential will improve the situation
in the critical region. The reverse is true: I.evcsque
and Vieillard-Baron, "using the PY II equation, find
R cl'ltlcal telllpcl'R'tlllc of 1.42 (with tllc salllc lllllts Rs

before). The blame for this discrepancy may be put on
many-body forces. Even at density around the critical
region, a relatively large amount of those forces would
be needed. It appears that these many-body forces

should thcQ mRnif est, themselves in thc form of Rn

interaction which is clearly state dependent at high
density; and this seems to be contradicted by the
excellence of the 6t obtained in the present paper.

D. Internal Energies

The part of the internal energy due to the interaction
U' is calculated as the time average of the sum of the
intcI'pRrticlc intel Rction cncI'gics. A tail col I cctioQ is
included, as for the pressure and the energy; the over-all
error appears to be of the order of 0.02. The agreement
between our results and the (not too extensive) experi-
mental data" is satisfactory, although the calculated
internal energies are a little larger in magnitude than
the experimental one. For instance, for p=0.45, at
T=2.935, U„i,'= —2.60, U, ,'= —2.49; at the same

density, for 7= 1.764, U„»,'= —2.89, U, ~'= —2.84. At
higher densities, the same trend is noticeable, for
p=0.5426, T= 1.404, U„i,'= —3.63, U, p'= —3.55. It
appears, roughly speaking, that the Lennard-Jones
potential is slightly too deep.

E. High-Frequency Elastic Moduli

Zwanzig and Mountain" have shown that in simple
Auids the infinite-frequency bulk modulus E„and the
infinite-frequency shear modulus G„can be expressed,
in terms of the radial distribution function; and that,
furthermore, in the case of the Lennard-Jones potential,
the necessary integrals can be expressed in terms of the
pressure and of the internal energy, so that G„and E„
are simply given by the following expressions:

G„=3p 2p 7 (24/5)—p U', — (9)

E-= (5/3)G.+2(p I») — (&0)

Results for E„,G„, and, the ratio E„/G„are given in

Table I. When the temperature is low, the internal™

energy effects predominate and E„/G„ is near (5/3),
the value obtained from Cauchy condition for solids.

Ke may compare the "exact results" given in Table I
with those obtained by Zwanzig Rnd Mountain who

used (9) and (10),and the experimental data of Levelt, "
supposing that the interaction between argon atoms is

exactly the Lennard-Jones potentiaL The good agree-
ment between those results and ours shows again-
Rlthough this proof is not independent of thc picccding
ones —that the Lennard-Jones potential is appropriate
to describe argon in the temperature and. density do-
main considered m. the present paper.

"J.A. Barker, P. j.Leonard, and A. Pompe, $. Chem. Phys.
44, 4266 {1966).

. "E.A. Guggenheim and M. C. McGlasham, Proc. Roy. Soc.
(London) 22SA, 456 (1960); R. J. Munn and J. Alder, J. Chem.
Phys. 43, 3998 (1965); J. Rowlinson, Discussions Faraday Soc.
40, 19 (1965)."J.A. Barker, %. Fock, and F. Smith, Phys. Fluids 7, 429
(1964).

~s D, I.eVezqne any J. Vieliiard-iiaren (tO be pnb~izimg).

F. Isotopic Separation Factor

The separation faction in a liquid-gas mixture of
isotopes of argon can be expressed" in terms of the

'9 R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(1965).

"G.Casanova, A. Levi, and N. Terzi, Physica I, 937 (1964).
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information (pressure-versus-density curve for the
coexistence curve, as shown on Fig. I), to locate the
temperature of the coexistence line on the isochores. It
may be seen easily, however, that this introduces very
little arbitrariness. A good IIIt of the experiment is ob-
taQlcd) as scen from Flg. 3.

IV. CONCLUSIONS

We have shown, using Rahman's work as a starting
point, how it is possible to integrate the equations of
motion of about a thousand particles in a relatively
easy way. The erst application of this tool is the
thermodynamic study of a Quid composed of atoms
interacting through a Lennard-Jones potentiaL The
striking result of this study is the over-all agreement
between the results thus obtained. and the thermo-
dynamics of real argon. It is likely that those results
can still be slightly improved and that a two-body
potential can 6t the experimental data with a large
dcglcc of success.

f

l.5

Fro. 3. The solid hnes show the quantity C=Q&'/2spra
= (n'Vl/96sp for the isochores p=0.85, p=0.75, and p=0.65, as
a function of P. The crosses represent the intercepts of those
isochores with the experimental liquid-gas coexistence line. It
should be compared with the isotopic separation factor in argon
(Ref. 20) (triangles).

average value of the Laplacian of the potential (V' V(r) ).
The quantity Qs'= (I/M)(PV(r)), which is also im-

portant in the time development of the system, has
been calculated, and the values we obtained are shown
in Table I. The quantity C=Qss/2sp is plotted for
several isochores in Fig. 3. We have used experimental
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