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Using the projected Hartree-Fock (HF) wave functions, a theoretical formulation is given for calculating
the electromagnetic properties of nuclei, the nuclear form factors in electron scattering, ft values in P decay,
and the reduced widths of nuclear levels in direct reactions. The formulation is applied to calculate the quad-
rupole and magnetic moments, the electromagnetic transition probabilities, and the lifetimes of nuclear
levels of a large number of nuclei ranging from "Fto "Cl in the 2s-1d shell. The good agreement between the
calculated and the experimental values indicates a remarkable success of the projected HF wave functions
in predicting the electromagnetic properties of nuclei,

I. INTRODUCTION

'HERE are two main difficulties that arise in the
development of the theory of hnite nuclei. The

first concerns the strong short-range nature of nuclear
forces, and the other the finite size of nuclei. Some
attempts have been made to overcome these difficulties. '
However, these methods could not be used for all the
nuclei because of their intrinsic difficulties. The first
difhculty is in obtaining an effective interaction in
shell-model calculations for nucleons outside the core.'
The second dif6culty is in constructing antisymmetric
states of good angular momentum for many-nucleon
systems. %e know that the shell model works very well,
and hence any basic theory should finally lead to it.

We avoid the first difIiculty by assuming a phe-
nomenological internucleon interaction in the Hartree-
Foclt (HF) calculations for nucleons outside the core.
Our essential aim is to find an approximation which can
overcome the second difficulty in the exact treatment
of the many-body finite system. This is equivalent to
finding a workable method which can reproduce reason-
able results for a set of nuclei without requiring a
simplified model. Of course the shell-model configura-
tion-mixing calculation is an alternative approach, ' but
this method is rather difFicult to handle in the case of
many-nucleon systems. The projection technique' (an
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approximation to the configuration-mixing calculation)
is what we will be investigating further. Our earlier
studies' show that it reproduces the binding energies
and the low-lying excited spectra quite well. However,
we know that these quantities are rather insensitive to
the wave functions.

In this paper, we develop a formalism to test wave
functions obtained from the HF state by a projection
prescription. If one has to test the wave function, one
should choose a probe which has a known interaction
with the nucleus. The interaction between the probe
and the nucleus under study does not have to be
assumed, because this assumption would make it difh-
cult to test the nuclear wave function. Though electro-
magnetic properties of the nucleus depend on what the
nuclear currents and densities (eRective changes) are,
there are some physical grounds for their proper choice. '
We can use these properties in testing nuclear wave
functions. Besides these, other tests that one could
carry out are the nuclear form factors in electron scat-
tering, ft values in P decay, and single-particle reduced
widths in direct reactions. We discuss the theoretical
formulation of all these tests. As an application of this
theory, we have calculated magnetic moments, quadru-
pole moments, and transition probabilities for the
nuclei in the 2s-1d shell.

II. THEORETICAL FORMULATION

In this paper we will not rewrite the expression de-
rived in Ref. 5 for the evaluation of

px x'(~) (yx II'x x'lex)— (&)

where Pz.g~ is the projection operator defined in Ref. 5;
px. and phd (= lE)) are the HF determinantal states
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of given number A of nucleons. We first calculate the
inatrix element &Ver « I'I T„"I%'~«r) of a general one-

body tensor operator &I'Z'll T"IIII~) q2I+1»~

&IXII T~III'Ie) &2I'+1
(6)

As expected, the many-particle reduced matrix element
in Kq. (5) has the following property:

between the states %~.~. ' and 0'~~ projected from
the HF states Pz and pz respectively. We are employ-

ing unnormalized projected states. Using the Wigner-
Eckart theorem, we write

&+~ «'
I
2',"

I
+~«') = (»M~ II'M') &I'If. "II T'III&), (2)

where the first bracket on the right-hand side is the
Clebsch-Gordan coefficient for angular momentum cou-

pling, and the second is the many-particle reduced
matrix element. Our aim is to evaluate the latter in

terms of the single-particle reduced matrix elements and

the matrix elements p««r(A —1) of A —1 particles. It
is not difFicult to show that

&+~ «'I T,'I+~«')

A. Magnetic Moment, Quadrupole Moment, and
Electromagnetic Transition Probability

The operators for the magnetic moment M, the
quadrupole moment Q, and the electric and magnetic
multipole fields 8,(X,p) and 8 (X,p) are~

M= 2 2 L(1+r~') (g~l'+g. o*)+(1—r3')g. '~'j,

Q= 2 (16«/5)'" 2 [(1+ra')~,

+ (1—r~')e„]r,2V2p(i),

B.(X,p) = —', P L(1+r3')e„+(1—r3')e„jr;"V),„(i),

= (IXMpl I'M') P(IRK' p'p'I IX'—)

From Eqs. (2) and (3) we have

(I'&'ll T"IIII')

= p(I&&' I'I'I I'If') &If—-'I &'"p« ',«'I If) (4-)

We have explicitly evaluated' the expression in Eq.
(4); we can, however, simplify it further. Using simple

properties of the Clebsch-Gordan coefFicients and the

projection operator, one can show that

where e„and e„are the effective charges of protons and
neutrons; g~, g„and g,

' have the values 1, 2.793, and
—j..913, respectively in units of nuclear magnetons.
All the operators in Eq. (7) have the form P~T„"(i),
and their matrix element with respect to antisymmetric
states can be written as

(I'It'll T"IIII')

= (2I+ 1)1/2 P (—)i+k+ji+I'+J+)g jz(+)g js(It&)

X (IjA —fl'fl'I IIt) (IjA' —"~f4
I
I'It')

I ji J
x (~~4j.ll

T"
ll ~*i'j')

jI, I'

Xp«c, ,«c (~—1)" .

The summation over i (k) in Eq. (5) indicates a sum-

mation both over e;l„j; (n),le k) and over the particles.
The reduced matrix element in the right-hand side of

Eq. (5) is the single-particle reduced matrix element as

defined in Ref. 7, and C'(E) are the coefficients in the
HF solution for the K band. For numerical computa-

tion, the expression given in Eq. (5) is the most useful.

= (I7 MI I
I'M') &I'It 'll T"III&).

If we know the single-particle reduced matrix elements
involved, it is straightforward to calculate, from Kq. (5),
the matrix elements of the operators in Eq. (7). We
avoid writing the lengthy expressions for each operator;
instead we quote' the single-particle reduced matrix
elements required in the evaluation of the electromag-
netic properties of nuclei. Before we give the reduced
single-particle matrix elements, we note that our single-
particle wave functions )P„i; are given by

y„&, =P(l ,'m m, m, lqm) g„,-(r)—I;„„(0,~)x„.. (g).
tns

where R„i(r) is a,n oscillator radial wave function and x

'A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic
Press Inc. , New York, 1963).
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is the spin function. Then

(nVq'll~llnlj) =8„„8«(—) '+'-"[6(2j+1)(2j'+1)]'
j j'

(n'l'j'll ill nlj) =b„„b«( )&—+' '"[l(l+1)(2l+1) (2j+1)(2j'+1)g'12
2

(n'l'j'll" I'illnlj) = (—)"[1+(—)'+'+"X(»+1)(2j'+1)/16wji12(j'X-,'Ol j-,')(nVllr"Ilnl),

(nVg'Ile, "V,(r ~Y„"(i))Ilnlj)= (—) '(2li+ 1)[3'�(2li —1)(2j+1)(2j'+ 1)(2l'+ 1)/2w)'~'

1I i j/
X (l'X —100

I
l0) l —, j (n'l'llr" 'Ilnl),

X—I 1

(9)

)I 'I & 'Ij 2
X (n —100

I
lo) (nV flri-'Ilnl) .j l X—1 1 j X—1

(n'1'g'llj, "V,(r,iV„"(i))llnlj)= (—) '+"+'~'(2)i+1) (2j+1)[)i(2X—1)j(j+1)(2j'+1)(2l'+1)]'~'

The radial integral in the formulas in Eq. (9) can be readily obtained by using the harmonic-oscillator wave func-
tions' and is given by

( k X/2

(n'l llr"llnl) =
I

[(2) '+' " "'+2(2l+2n+1)!!(21'+2n'+.])!!/( n tn' t)gu2
(M(0

pn
X Q Q (—2)"+"

I I
I[(2k+2k'+i+1'+X+1)/2g!/[(2l+ 2k+1)!!(2l'+2k'+1)!!j

(k &k'&
(10)

where 2n+l=1V, the principal quantum number of the
harmonic-oscillator shell, and both e and l take integral
values from 0 to the maximum permissible. The nota-
tion in Eqs. (9) and (10) is that of Ref. 7.

B. Nuclear Form Factor in Electron Scattering

The inelastic scattering of high-energy electrons pro-
vides a useful tool for testing nuclear wave functions.
It is known that the effect of the transverse electric
interaction can be neglected' and that it is enough to
consider only the longitudinal Coulomb interaction.
Further, since in light nuclei, eQ/137+e X/137 is
small (where Z and E are the numbers of protons and
neutrons), first Born approximation is enough to calcu-
late the cross sections. It has been. pointed out' that for
excited states characterized by a strong configuration
mixing, a Gaussian shape is entirely inadequate for the
transition density, which is the overlap between the
excited and ground state wave functions. In the rela-
tivistic limit, the inelastic differential cross section, with
the above approximations, is given by'

~(8)=~~(8) IF (q) I', (11)

where a~(8), the Mott cross section for the electron of
incident energy E;, is given by

0~(8)= e' cos'(8/2)/4E' sin'(8/2),

and the form factor F(q) for the momentum transfer q
is given by

where
I i) and

I f) are the initial- and final-state nuclear
wave functions, respectively. Besides the form factor
F(q) in Eq. (11),one has to multiply o~(8) by two cor-
rection factors: one due to the finite size of the proton
and the second due to the center-of-mass correction.
By expanding the exponential in Eq. (12) we have

F(q) =4~ Z i"1'~.*(q)F,"(q),

where F„"(q)has a similar structure to that of B,(X,p)
except that in this case, the radial integral in Eq. (9)
would be (n&l&ll ji, (qr) Iln, l;) instead of (nflfllr" Iln'l ).
Using the Hankel transform, " it is straightforward to

Sy Gillet and M. A. Melkanoff, Phys. Rev. 133, 81190 (1961). "H. Bateman, Tables of Integral Transforma~ions (McGraw-
9 R. Huby, Rept. Progr. Phys. 21, 59 (1958). Hill Book Company, Inc., New Y'ork, 1954).
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carry out the radial integral

exp( —q'/8&) 2'+' " "'(21+2n+1)!!(2l'+2m'+1)!!'" n n m'l n).
(r!'~'ll j~(qr)II~0= (q/2&»'")"

"
— 2 2 (—2)'+"'

(~+o)! e!e'| &=o & =o k) P/

(2k+2k'+l+f'+1+X (X 2k+2k'+/+l'
X

~

— !I'~ — —,X+-,', q'/8» (2k+ 2l+ 1)!!(2k'+2l'+ 1)!!,
2 k2 2

where Ii(a,b, s) is the hypergeornetric function, " and
the other symbols are the same as in Ref. 7. For the
unpolarized target, the cross section in. Eq. (11) after
summing over final states and averaging over initial
states becomes

~(0)= rM(e) X4~[(2I'+1)/(2I+1)] p(I'&'~~I'~~I&)'.

(14)

The reduced matrix element in Eq. (14) can be ob-'

tained from Eqs. (5) and (9).

C. Single-Particle Reduced Widths in Direct Reactions

It is known" that stripping and pickup reactions at
low incident deuteron energy also provide a sensitive
tool for studying the wave functions of nuclear states
through the measurement of their reduced widths. This
is firstly because the neutron capture in (d,p) reactions,
and the pickup in (d, t) reactions take place at the
nuclear surface without the complications of an inter-
mediate compound nucleus, and secondly because they
are insensitive to the deuteron-nucleus interaction. Let
us define" the quantity P, & as follows:

p;& ——(4»r.x '(A+1)!,Q(Ij Mrl~!I'M')4'orx (A) q&~&'),

(15)

where q
&' is the wave function of the stripped or the

captured neutron; N»r. x r'(A+1) and Vorxr(A) are the
wave functions of the nuclei with A+1 and A nucleons,
respectively. The reduced width is then defined by

O, P= (A+1)P,P.

%e know that the differential cross section depends
only on the orbital angular momentum l of the captured
or stripped neutron and not on j=l&-,'. Since the two

j values do not interfere, we define 5~, the spectroscopic
factor by

S!=Z &,P.

In terms of S~ and the intrinsic single-particle cross
section g~(e), the differential cross section for the
stripping or pickup reaction has the form

(0) = [(2I'+1)/(2I+ 1)]r. S 4 (~) (ig)

In Eq. (18), S! contains information on the nuclear
wave functions. After expanding the determinant of
3+1 particles into a product of a determinant of 3
particles and a single-particle orbital, one obtains P,!
in Eq. (15):

P,!=[pxx '(A+1)pxx'(A)(A+1)] "'

Xg(—)*C,, "&(K')(IjIt' —n,n, ~I'Z')

XPx e;,xr(A). (19)

A sum rule similar to that in Ref. 11 can easily be de-
rived by using Eq. (19) and noting that+, (Co.'"&)'=1:

Z px x'(A+1)&,P

=P(px D, , K'(A))'/pxx'(A) (2o).

D. ft Values in g-Decay

The reduced transition probability for a Fermi transi-
tion operator $~(h, p) corresponding to the degree of
forbiddenness A, is given by"

D& (X)—P ~
(+»r x'

~
&& P,p)

~

+»rx')
~

pM' (21)
= L(2I'+ 1)/(2I+ 1)]

I

(I'&'ll &~(~)III&) I'

Similarly one can define the corresponding quantity for
Gamow-Teller (GT) transition operator. The com-
parative ft values can then be expressed in terms of
these reduced transition probabilities. "Let us consider
a GT operator

S (l», )=S(X)P [;&,(;" '1',„('))] ', (22)

where the isospin operator v~ transforms proton into
neutron and vice versa. cr, are the spin operators and
S(X) is a constant. "We observe that this operator has
the same form as the second term in 8 (X+1,p) in

Eq. (7) except that there is a multiplicative factor
S(X)r~' instead of g, '(1—ro'). Therefore the many-
particle reduced matrix element (I'K'~~ X)oT(X)~~IX) can
easily be obtained from Eqs. (5) and (9). There is a
difference, however, namely, that the sum over i and

"G. R. Satchler, Ann. Phys. 3, 275 (1958); J. B. French and
B.J. Raz, Phys. Rev. 104, 1411 (1956).

"S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Skrifter 29, No. 16 (1955).
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k in Kq. (5) must be over ail the protons and neutrons,
respectively, instead of all the neutrons only.

To conclude this section, it is worth remarking that
if we use the definition of the many-particle reduced
matrix element given in Eq. (4) and approximate it
with only the p'= 0 term, then the expressions for all the
operators that we considered above become very similar
to the corresponding expressions obtained in the strongly
deformed nuclear model of Bohr and Mottelson.

III. APPLICATIONS

In order to test the projected wave functions, we
have calculated the magnetic moments, quadrupole
moments, and lifetimes of the states of nuclei in the
2s-1d shell. The electromagnetic transition probabilities
have also been computed. We have considered about
20 nuclei ranging from "F to '~Cl. In all these calcula-
tions we have treated all the particles outside the "0
core. The effective two-body interaction employed in
the calculations is the Rosenfeld mixture with Yukawa
radial dependence:

exp( —r; /p)
'U(i,j)= st~, ~, (-0 3+0 7.e, e,.) Vo"

(r,,/p)

Io all cases the calculations were carried out using
V0=45 MeV, p=1.37 F, and the oscillator size-param-
eter (5/M&o)Us=1. 65 F in computing the two-body
matrix elements of the interaction. The single-particle
spacings of d5/&, s&~2, and d3/g are fixed by the strength
n= —2.48 MeV of the spin-orbit force. We have spe-
cifically taken the same parameter values as in the
earlier paper' because they were found to reproduce an
over-all fair agreement between the calculated and
experimental low-lying excited spectra and the binding
energies of the nuclei in this shell. More trust can be
placed in the interaction with these pertinent param-
eters, and also in the projection technique, if the
electromagnetic properties are as fairly reproduced as
the energy spectra and the binding energies of nuclei.
We stress again that we have not attempted a detailed
fit for each nucleus by varying any parameter.

There are" a considerable number of experimental
data available on the ground-state magnetic moments,
though the corresponding information on quadrupole
moments is scarce. The magnetic moments of many
odd-A nuclei have large deviations from the single-
particle Schmidt values. The most conspicuous cases
are "Na, "Mg, and "Si for which the experimental
ground-state magnetic moments (in units of nuclear
magnetons) are 2.22, —0.85, and —0.56 respectively,
whereas the Schmidt values are 0.12, —1.91,and —1.91.
Recently, magnetic moments of some odd-A nuclei were
calculated by Ripka and Zamick'4 by assuming that

'8 I. I.indgren, J. I.indskog, P. Sparrman, and T. Sandstrom,
Perturbed Angular Correlations (North-Holland Publishing Com-
pany, Amsterdam, 1964).

"G.Pipka and L. Zamick, Phys. Letters 23, 347 (1966).

TABLE I.The Schmidt (sp) calculated and experimental values
of the magnetic moment (in units of nuclear magnetons) for the
nuclear state with spin J (second column) are tabulated in the
third, fourth, and fifth columns, respectively. The sixth and
seventh columns, respectively, give the quadrupole moments
calculated with e„=e, e =0, and with e„=1.5e, e =0.5e (see text);
the last column gives the experimental quadrupole moments. The
tabulated quadrupole moments are in units of eX10 ~ cm'.

Nucleus J p,p @calo Pexpt Q i )(l) Qoaio '(2) Qexpt

19F

20F

19Ne

"Ne
"Ne

"Ne
"Na
"Na 2

5
2

'4Na 4
'4Mg 2
2'Mg

'7

2
1
2
3

"Al
x
2
1

3
2

5
5
2

2
1
2
3
2

1
1
2

1

"Al
"Al
28Si

"Si

80P

81P

82P

88S

85S

850
"Cl

2.79

1.73
—1.91

0.85

—1.91
1.73
0.12

1.73

—1.91

4.79

4.79

—1.91

2.79

0.85
0.85
0.85
0,85

2,89
—1.58

3.78
1.54

—2.03
1.08

—0.57
0,22

—0,71
1.75
2.11
2.09
1.59
1.10

—0.58
0.72
0.25
1,12
3.37
3.14
0.35
0.34
2.77
3.61
1.11

—0.38
1.93
0.40
1.62

—0.39
0.54
0.65
0,73
0.35

2.63

3.69
2.09

—1.89

—0.66

1.75
2.22

1.69

—0.85

3.64

—0.55

1.13
—0.25

0.64
1.00
0.82
0.68

0
—0.026
—0.04

0.03
0

—0.07
0.047

—0.02
0.08
0.11
0.05

—0.015
0.13

—0.08
0.09
0.01
0

—0.06
0.08
0.03
0

—0.06
0.11
0.07
0.10
0
0.07
0.02
0

—0.02
—0.015

0.005
—0.04
—0.04

0
—0.06
—0.09

0.08
0

—0.14
0.097

—0.04
0.16
0.22
0.10

—0.03
0.24

—0.16
0.18
0.03
0

—0.12
0.16
0.04
0

—0.12
0.22
0.12
0.20
0
0.13
0.04
0

—0.04
—0.04

0.03
—0.09
—0.06

0.093

0.097

0.22

0.15

—0.06
0.05

—0,08
—0.06

the last odd nucleon is coupled to a deformed Hartree-
Fock core of the even nucleus. In this simplified phe-
nomenological model, by assuming g&=0.5, they get
reasonable agreement with experiment in a few odd-A
nuclei that they have considered in this region. In our
calculations, we do not have to make any simplified
model, since we can treat all the nucleons in the system
and calculate all the electromagnetic properties. How-
ever, as mentioned earlier in the introduction, we may
have to attribute an effective charge to the protons and
neutrons, since we are neglecting the "0 core and
treating only the particles in the 2s-1d shell.

The calculated values of the magnetic moment p (in
units of nuclear magnetons) and the quadrupole mo-
ment Q (in units of eX10 '4 cm') are tabulated in
Table I below. The agreement between the calculated
and the experimental values of magnetic moments is
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TABr,z II.The calculated and the experimental B(E2) values (in units of e'X 10 "cm') for an electromagnetic transition between the
initial state (spin J;}and the final state (spin Jf) are tabulated in the fourth and fifth columns, respectively. The ratio of the calculated
B(E2) value to the single-particle estimate is given in the sixth column. The intensity ratio of the E2 to 3f1 transition is tabulated
in the seventh column. The last two columns give the calculated and the experimental half-lives (in seconds} of the states (spin Jf),
respectively; the multiplying factor 10 "is indicated by (—n) in both these columns.

Nucleus

19F

"Ne

"Ne

"Na

'4Mg

"Mg

"Al
"Al

28Si

29si

31P

0.005
0.004
0.024
0.010
0,012
0.006
0.007

0.014
0.007
0.007
0.030
0.014
0.012
0.004
0.006
0.009
0.003
0.007
0.018
0.20
0.016
0.024
0.004
0.006
0,008
0.003

0.005

0.047

0.025

0.011

0.054

0.027

0.011

3.2
2.4

14.0
6.3
6.9
3.7-

3.8
7.2
3.7
3.6

15.0
7.1
5.6
1.9
2.9
4.1
1.3
3.4
7.0
8.0
6.1
90
1.4
2.0
2.9
1.0

a (E2}„,
8 (E2)ca,]0 8 (E2)exp 8 (E2}sp

r(Z2)
X100

T(m1)

0.6

0.1

0.4
0.1

0.7

0.7

0.7
0.5

0.4

0.8

1.0
1.1

4.0

&. l (Jf)

11,0(—8)
3.1(—14)

10.9(—13)
7.9(—14)
1.3 (—12)
1.4(—14)

4.0(—13)
6.3 (—15)

19.O(—13)
4.5 (—14)
0.6(—14)

O.5 (—14)

8.9{—13)

0.3 (—13)

O.9(—13)
3 7(—13)

~e*r (~f)

8.7 (—8)

5 3(—13)
5.3 (—14)

1O.O(—13)

10.0(—13)

1.7 (—14)

5.1(—13)

1.0(—13l

1.5 (—13)
3.1(—13)

2.5

2.0-
p(No)

a(Mgi

l.5 "

-Q(Na)
l.O-

4'5 50 55 -2.l6 -2.48 -2.SO

—5-
p(Mg)

-l.0 '

FIG. 1. The variation of the magnetic moment p, (in units of
nuclear magneton) and the quadrupole moment Q (in units of
eX10 9' cm') with Uo {on the left) and ~ (on the right} for 23Na

and "Mg. Uo is varied from 45—55 MeV, and 0. is varied from
2.16-2.80 MeV.

fair to good over the whole region; the two cases in
which there is a considerable disagreement are "P and
"Cl. However, in the case of "P, the prolate and oblate
HF minima are very close, namely —116.79 MeV and—116.73 MeV, respectively, and the magnetic moments
of the J=-,' states projected from the two HF states
are 0.62 and 1.62, respectively. The proximity of the
two HF states makes the calculated value unreliable.
It may be noted that the average of the two values is
very close to the experimental magnetic moment. The
quadrupole moments Q are calculated by taking the
proton charge e~= e, and the neutron charge e„=0;and
also with e„=1.5e and e =0.5e. As we see from Table I,
the agreement between the experimental and calculated
values with the latter set of effective charges is quite
good over the whole mass region. The additional charge
of 0.5e attributed to both types of particles is in ac-
cordance with the expected Z/A dependence. '

The reduced transition probabilities B(E2) for elec-
tric quadrupole transitions are calculated by taking the
effective charges e„=1.5e and e„=0.5e. The calculated
B(E2) values (in units of e'X10 "cm4) are tabulated
in Table II. In the same table, the calculated half-lives
of some nuclear states are also tabulated. Since the
experimental information on B(E2) and half-life mea-
surements is scarce, we have tabulated only those few
cases wherein experimental data are available. From
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Table II, it is clear that the calculated B(E2) values
are quite good, and at the worst are oR by a factor of —,'.
This is certainly encouraging. The enhancement ratio
of the calculated B(E2) to the single-particle estimate
varies in the range 2—15. The agreement between the
calculated and the experimental half-lives of the states
is quite fair. From the calculated intensity ratio of E2
to Mi transitions, the transitions from the first excited
state to the ground state are almost pure M1 type in all
odd-A nuclei studied.

Though we are keeping Vo and e fixed for all the
nuclei, the eRect of the variation of these parameters
on the quadrupole and magnetic moment has been
studied in case of two nuclei "Na and 2'Mg. This is
shown in Fig. 1. It is seen that the magnitudes of Q as
well as p increase with increasing Vo and decrease with
increasing n. However, the variation is slow and quite
smooth.

IV. CONCLUSION

A formulation to calculate the electromagnetic prop-
erties of nuclei, the form factors in electron scattering,
ft values in P decay, and the reduced widths of nuclear
states in the direct reaction has been developed, in
order to test the nuclear wave functions obtained from
a determinantal HF state by the projection technique.
Employing a phenomenological internucleon interaction

in the form of a Rosenfeld mixture with Yukawa radial
dependence, we have calculated the quadrupole and
magnetic moments, B(E2) values, and half-lives of
nuclear states in a number of nuclei in the sd shell. In
view of the fact that we have kept all the parameters
6xed, the agreement obtained between the experimental
and calculated values over the whole region of the sd-

shell nuclei is quite good. It should also be mentioned
at this stage that the excited spectra, the binding
energies, ' and the electromagnetic properties of a large
number of nuclei in a region are successfully explained

by treating all the particles in the system. Ke also
plan to calculate the other nuclear properties described
in this paper.

It should, however, be mentioned that since we

started from a determinantal HF state for neutrons
and protons together, in certain cases it may happen
that our projected wave functions do not have a good
isospin quantum number. Ke believe that because of
the variational nature of the HF state, the admixture
of the excited isospin state would be quite small. It
may also be mentioned that our restriction in the HF
calculations to orbitals in the sd shell may not be a
good approximation for when the total number of
nucleons is large. %e plan to investigate these points
in the near future.
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Excited states of N" have been studied by the C"(He', py)N" reaction. Proton spectra were measured
with a magnetic spectrometer at two angles for He' energies of 2 and 5 MeV. Excitation energies
of 9.054~0.004, 9.225&0.003, 9.829%0.004, and 10.072~0.004 MeV were obtained for levels in N".
Electromagnetic branching ratios were measured for levels at 8.31, 8.57, 9.05, 9.16, 9.22, 9.76, 9.83, 9.93,
10.07, and 10.45 MeV. A comparison was made with theoretical branching ratios calculated from shell-model
wave functions for levels at 8.31, 8.57, 9.05, and 9.93 MeV. Measured branching ratios for the first three
of these levels agree with calculated ratios for shell-model levels of J =-,'+, $+, and ~+, respectively. Proton-
s-ray angular-correlation measurements for levels at 9.05, 9.16, and 9.22 MeV indicate J= —,

' for the 9.16-MeV
state, J=-', or $ for the 9.05-MeV level, and J=~ (90% probability) or J=-', (10'P0 probability) for the
9.22-MeV level.

I. INTRODUCTION

HE mirror nuclei, N" and 0", are of considerable
theoretical interest because in the shell model

their lowest-order configurations have only a single
hole within the closed (1s)4(1p)" shell. Thus, shell-

*Research supported in part by the U. S. Atomic Energy
Commission.

f Present address: University of Washington, Seattle,
Washington.

model calculations for the low-lying levels are rela-
tively straightforward and are expected to agree
reasonably well with experiment. Apart from the Z
projection of the isobaric-spin quantum number, the
theoretical treatment of N" and 0"is identical (neglec-
ting Coulomb-energy effects). Where spins and parities
are known, it should be possible to identify experimental
levels in N" with their isobaric analog levels in 0"
which have theoretical wave functions that diRer
only in T,.


