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Theoretical expressions for both the nonrelativistic and relativistic nuclear matrix elements for P tran-
sitions of arbitrary forbiddenness are derived by using the Nilsson model. The P-decay operators are ex-
pressed in terms of irreducible spherical tensors. One- and two-particle intrinsic wave functions are used for
odd- and even-mass nuclei, respectively. For even-mass nuclei, the results are found to be strongly dependent
on the coupling of the two particles. The results are expected to be applicable to decays involving both in-
trinsic ground states and excited intrinsic states. The theoretical expressions are used to calculate matrix-
element parameters for P decays in Tm'" and Re' '. The theoretical values are compared with experimentally
determined values of the Tm'" and Re"' parameters.

I. INTRODUCTION

~[URING recent years experimental work (P-y
directional correlation, etc.) has yielded values

for the nuclear matrix elements for several forbidden

P decays. It is of interest to compare these experimental
values with the theoretical values predicted by nuclear
models. The calculation of P-decay nuclear matrix
elements using the Nilsson model' has been previously
considered. Bogdan' ' has derived theoretical expres-
sions for the matrix elements for 6rst-forbidden P decay
by using one-particle intrinsic wave functions. Recently,
Berthier and I.ipnik4 have considered the use of one-
and two-particle intrinsic wave functions. However,
they present results only for the nonrelativistic matrix
elements. Also, their results for two particle intrinsic
wave functions are restricted to transitions between
intrinsic ground states.

In the present work, considerably more general
theoretical expressions for the P-decay nuclear matrix
elements than were previously available are derived by
using the Nilsson model. The present results are
applicable to both the nonrelativistic and the relativistic
matrix elements for P decays of any degree of forbidden-
ness. This is accomplished by writing the P-decay
operators in terms of irreducible spherical tensors of
arbitrary rani» as defined by Rose and Osborn. ' Also,
the present results are applicable to P decays involving

both intrinsic ground states and excited intrinsic states.
One- and two-particle intrinsic wave functions are used

for odd- and even-mass nuclei, respectively. The two-

particle intrinsic wave functions have the general form
suggested by Gallagher. ' As indicated by Gallagher, it
is found that the results are strongly dependent on the
coupling of the two particles.
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The vibrational wave function has been omitted since
it is assumed in this investigation that the nucleus
remains in the same vibrational state. It is also assumed
that the nucleus has axial symmetry and hence the
condition E=Q exists throughout the investigation.

The intrinsic wave function XQ is the appropriately
symmetrized product of Nilsson single-particle wave
functions XQ,. where XQ,. is the wave function appropriate
for the ith nucleon. In the coupling scheme appropriate
for large deformations, the intrinsic motion is character-
ized by the constants of motion 0;, the component of
the angular momentum j; of each nucleon along the
symmetry axis. 0 (=P;0;) is the component of the
total intrinsic angular momentum j along the symmetry
axis and is a good quantum number. Mottelson and
Nilsson~ have described the intrinsic states of odd-mass
nuclei with single-particle intrinsic wave functions. In
this case, xo in Eq. (1) is simply the Nilsson state
appropriate for the odd particle.

In the present investigation, the intrinsic states of
even-mass nuclei are described with two-particle
intrinsic wave functions as suggested by Gallagher. '
In this case, Xo in Eq. (1) becomes the product of two

Nilsson single-particle states:

XQ —XQ XyQ

X Q —X Q X+Q2 ~

(2a)

(2b)

The sign of Q~ is determined by the coupling of the
particles. This general form applies to proton-proton,
neutron-neutron, and proton-neutron systems.

For an odd-odd nucleus the two-particle intrinsic
state is formed from the appropriate Nilsson states for
the odd proton and the odd neutron. Therefore, the

' B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Skrifter 1, No. 8 (1958).
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II. DISCUSSION OF WAVE FUNCTION

The appropriately symmetrized total nuclear wave
function for strongly deformed nuclei has the form'



following possibilities exist:

x„=x„i,&i»x„„&i'& and Q=Q(p)+Q(N), (3a)

xo=xi&i &i &x i&i &i & and Q= IQ(P) Q(N) I
. (3b)

The proton and neutron have their angular momentum
components coupled parallel and antiparallel for
Eqs. (3a) and (3b), respectively. The superscripts
denote particles (1) and (2) and are superfluous since
the particles are not identical.

For an even-even nucleus, the intrinsic ground state
consists of pairs of nucleons coupled to spin zero so
that Q=O. Gallagher and Soloviev' have interpreted
the excited states of even-even nuclei as two-particle
intrinsic excitations for which the last two protons (or
neutrons) occupy different Niisson states. In this
situation, for a proton-proton intrinsic state the
following possibilities exist:

Xo=kLxi&i~i"'Xo(~ &"'—Xo(n &"'Xo(n&"'j

and Q=Q(p)yQ(p'), (4a)

Xo =kLxo(. &
"'X-oi'i"'—X-o('i"'Xoi.i"'j

and Q= IQ(p) —Q(p') I. {4b)

For a neutron-neutron intrinsic state the following
changes are made in Eqs. (4a) and (4b): Q(p) ~Q(ri)
and Q(p') ~Q(e'). For Kqs. (4a) and (4b), the two

protons have their angular momentum components
coup1ed parallel and antiparaHel, respectively. Since
the particles are identical, the wave functions have
been symmetrized. For the intrinsic ground state of an
even-even nucleus, the two protons will be in the same
Nilsson state. Therefore, the condition Xg(p ) =X@(p)
exists.

III. DISCUSSION OF OPERATORS

In the present work, the P-decay operators are
represented in terms of spherical tensors as suggested
by Rose and Osborn. ' The tensors are defined as
follows:

Tir, (r,~)=P (1 I. m', m'+mls&m)—

x'R, -+ (r)'JJ&,— (~) (5)

where the '&l's are soHd spherical harmonics and

(1 I. m', m'+ml&m) is a C—lebsch-Gordan coefficient.
For P decay of arbitrary forbiddenness the operators
fall into the following five types: 'Jji„(r), T»„(r,e),
Tgr, (r,p), '&f&, (r)e p, and T&,r, (r, exp). Rose and
Osborn give the relation between the reduced matrix
elements for the five operator types listed above and
the corresponding reduced matrix elements in the
customary notation of Konopinski and Uhlenbeck. ' For
any of the five operator types, the transition matrix

8 C. J. Gallagher and V. G. Soloviev, Kgl. Danske Videnskab.
Selskab, Mat. I'ys. Skrifter 2, No. 2 (II.962).' E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941).

element between the initial nuclear state IV;) and the
final nuclear state (4'r

I
can be expressed in the form

8'r'I T»-I+*&=&I'~I&I'ml IrIf f&&+rllT»ll+'&, (6)

) is the reduced matrix element of
the operator.

IV. EXPRESSION OF MATRIX ELEMENTS IN
TERMS OF SINGLE-PARTICLE

MATRIX ELEMENTS

From Eq. (6), the reduced matrix elements are
proportional to matrix elements of the form

&+r'I T»-I +')

Tqr, represents any of the five types of spherical tensor
operators defined by Rose and Osborn' and is expressed
in terms of a coordinate system fixed in space. The wave
functions are given by Kq. (1). Without specifying its
exact form, T),L, may be transformed to a coordinate
system fixed in the nucleus and the integration over
the variables of the rotational wave functions can be
performed. For odd-A nuclei with single-particle
intrinsic wave functions, the expression for the reduced
matrix elements becomes (see Ref. 1, p. 31)

XI &I,XE,, Er E;IIfEr&&xr—&,tlT, z, x, x, Ixo,). .

+ ( )r~ »—(I,xz-, , z, E:;
I
—If z—r&—

X&x .g'I T»,-x -x;Ixo,&l (&)

In this expression the reduced matrix element is ex-
pressed in terms of single-particle intrinsic matrix
elements of the form (Xi&~tl T&,r, Ixo,.&, where Xo,. and
xg~ are, respectively, the initial and final Nilsson states
of the transforming particle, and Tql. represents the
spherical operators expressed in terms of a coordinate
system fixed in the nucleus.

For even-mass nuclei, equations for the P-decay
reduced matrix elements that are the analog of Eq. (7)
may be developed. In this case, two-particle intrinsic
wave functions are used. The present development is
for P decays from odd-odd to even-even nuclei. For
this situation the initial proton-neutron intrinsic wave
function is given by either Eq. (3a) or Eq. (3b). For a
final proton-proton state, the intrinsic wave function
is given by either Eq. (4a) or Eq. (4b). Therefore, there
are four possible combinations of initial and final in-
trinsic states. These may be divided into two categories
based on the angular-momentum couplings of the two
nucleons before and after the transition. The transition
is between states of the same relative couphng if the
two particles are coupled parallel (or antiparallel) in
both the initial and 6nal states, The transition is
between states of different relative coupling if the two
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particles are coupled parallel in the initial state and
antiparallel in the final state or vice versa.

The derivation of the expressions for the reduced ma-
trix elements for even mass nuclei in terms of the Nilsson
single-particle matrix elements proceeds in a manner
similar to that used for odd-mass nuclei. The total
nuclear wave function [Eq. (1)]with Xo representing the
appropriate two-particle intrinsic wave function is intro-
duced into Eq. (6). Since for the initial state the super-
script (2) is associated with the neutron, for P decay,
the transforming particle is denoted as particle (2) and
the nontransforming particle as particle (1).Hence, the
scalar product of two single particle intrinsic wave
functions for the nontransforming particle will appear in
the calculations. Integrals such as (x ()(„f)t(') lxo&„,.)('))

are identically zero because of the orthogonahty of
the single-particle wave functions. Integrals such as
&x„(„f)t(()lx„,„,.)("') are assumed to be equal to one if

~(uf) ~(u ) " ~(sy) + ~(s )

Equations for the reduced matrix elements in terms
of single-particle intrinsic matrix elements for a p
transition from an odd-odd to an even-even nucleus
are given below. The equations are valid for a transition
from a proton-neutron intrinsic state to a proton-proton
intrinsic state. Both initially and 6naBy the states may
be either the intrinsic ground state or an excited
intrinsic state. The results depend on the initial and
final coupling (parallel or' antiparallel) of 'tlM two
part1clcs. Thc appropriate couphng 1s glvcn below for
Cack equation.

Transitions between States of the Same Relative Coupling

Q;=Q(p, )+Q(e;) and Q, =Q(p,)+Q(p, '),

1 2I;+1)'~'
((I'l I.", It r It'IIr&r—)&)ro(.f )'I »i xf x; I &a(.;)&-&)(a(nf)'I &o(.;)&

2 2If+12
(I &&', Ei —It'I Ir&r) &x.—(.~)'I »~,xf ~; I &.(-;))&xo(m )'I &a(n;) &) (»)

Q =Q{p)—Q(e) and Qf=Q(pr) —Q(p/)

1 2I,+1)'"
&+Ill». ll+, )= —

I
((I'l I.", E:r &'I Ix&x) &—)r .(.g ) I

~»,-xf-x;lx-o(-, ) &&)rs(ur) I &«.,))
2 2If+ lf

+(—)'-'-' +'(I;&K, —Itr—It'IIr —Itf)&)( („)'I»r.,-rrr-rr;I)(- (.,))(x ( f )'l)(D( ))) (gb)

Transitions between States of Diferent Relative Coupling

Q;=Q(p, )+Q(~;) and Q, =Q(p, )—Q(p, '),

1 2I,+9 '"
&+rll»~ll+')= —

I ((I'~It', &r—It'IIrIt))&&-o(m )'I»~,x~-K;l)(o(-;)&&)ro(.g)'lxo(. ;)&
2 2I~+1)

+(—)" '"~ '"'+'(I'~I~'', &f &—'IIr —&f)&& —.(m)'I ~»-xf x; I)(,-a(-,-) &&)(o(n;)'I xo(.;)&) (gc)

Q, =Q(p;) —Q(e;) and Qf ——Q(pf)+Q(pr'),

1 2I;+1~'~'
I

(I'~&' &r It'
I
IrI'r)(&)(«w )'I »—~,x~-x; I

& e(. )&«o(.g)'I)(o(') &-
2 2If+1i —&&.(ng)'I ~».xr-x; I &-a(-,))&)(o(m )'l)(o(n;) &} (gd)

If the 6nal state is the intrinsic ground state of the even-even nucleus, the proton pair is in the same Nilsson
single particle level and is coupled antiparallel. In this case, the following conditions exist: X&(»)——X&(„f.) and
Xr ——Q(pf) —Q(pf )=0. For this special situation Eqs. (Sa) through (gd) reduce to the following two cases:

Q;=Q(p;) —Q(e;),

2I,+1 "'
(I'~It*, —It'IIro)()(-a(w)'I ~»,-x'I &-o(-'))&"o(n~)'I xo(.') &'

2Ir+1

Q;= Q(p,)+ Q(~;),

2I,y1 '~'

(I'~&' It'II~O)&"—o(Pf) I »r-, -rr;I ~()(-;)&&xo(.f)'l)r()(. ,)) ~

2If+1
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In Eqs. (8a) through (Sd) and Eqs. (9a) and (9b),
EJ 0f and I;=0; are always treated as positive quan-
tities. Therefore, for the situation in which the particles
are initially coupled antiparallel the equations are
written specifically for the case Q(p, )&Q(e;). In order
to retain the same functional dependence on Q(p;) and
Q(e,) for the case Q(eq) &Q(p, ) LQ;=Q(eq) —Q(p;)], the
modification E,-+ E; —must be made in Eqs. (Sb),
(Sd), and (9a).

Equations (Sa) through (Sd) and Eqs. (9a) and (9b)
are made applicable to a P+ transition from an odd-odd
nucleus to an even-even nucleus by systematically
replacing the subscript rs with the subscript p and
vice versa throughout the equations. This change must
be made in both the matrix-element equations and the
equations that state the 0 couplings for the various
cases. When so modified the equations are valid for a
P+ transition between an initial proton-neutron in-
trinsic state and a final neutron-neutron intrinsic state.
The initial and final states may be either the intrinsic
ground state or an excited intrinsic state.

The corrections to P-decay matrix elements due to
nuclear super fluidity have been determined by
Soloviev. " In order to include this correction the
reduced-matrix elements of Eqs. (7), (8), and (9) must
be multiplied by the factor L where I.'=RgR~. For
both the proton and neutron systems, which are con-
sidered independently, R has the following form

R=y g(U, U.'jV.V,')'.

The primes refer to the final state and the product is
over all levels in which there are no quasiparticles.
According to Soloviev, "if the number of paired particles
does not change during the transition, then y= Uy",
whereas if the number of paired particles changes during
the transition, then y= Vi', where f refers to the level
in which the particle appears or disappears. Uf' and V~'
characterize the system with the smaller number of
quasiparticles.

For the transitions considered in the present work
the following situation exists. For the P decay of an
odd Z, even 1V nucleus LEq. (7)j, the number of paired
particles remains constant for both protons and neu-
trons. For the P decay of an odd-odd nucleus to the
intrinsic ground sta, te of an even-even nucleus )Eqs.
(9a) and (9b)j, the number of paired neutrons remains

constant and the number of paired protons increases
by 1. For the P decay of an odd-odd nucleus to an
excited proton-proton state of an even-even nucleus

I Eqs. (Sa) through (Sd)], the number of paired particles
remains constant for both protons and neutrons.
Gallagher and Soloviev have determined numerical
values for the correction factor for a nuinber of P decays
involving even mass nuclei for which the intrinsic states
are described as two-particle Nilsson states.

where

i
1VtAZ) p'e '" iFi(—m, t+-,', p') Yisf, s (11)

(12)

iFi(—n, t+s, p') is the confluent hypergeometric func-
tion, Yis the spherical harmonic, and f,x the spin wave
function with s= —', . Details of the wave function are
given by Nilsson. '

The variable p appearing in the radial part of the
wave function is dimensionless and is related to the
variable r appearing in the various operators as follows,

r = (ts/Mo~s)'"p. (13)

M is the nucleon mass and coo is a parameter defined by
Nilsson. ' The variables r and p in the present work are
denoted as r' and r, respectively, by Nilsson.

The evaluation of (Xnrt~Tir, „~Xn,.) proceeds in a
straightforward manner from the definitions of Xg and
T),1. . The details are omitted here and the final results
are given below:

V. NILSSON SINGLE-PARTICLE INTRINSIC
MATRIX ELEMENTS

In this section, theoretical expressions are presented
for the single-particle intrinsic matrix elements,
(Xnrt~Tir, „~Xn,.), for each of the five spherical tensor
operators defined by Rose and Osborn. ' For P decay of
any order forbiddenness, all of the operators and the
corresponding matrix elements may be expressed in
terms of these five types. T&I. represents the spherical
operators expressed in terms of a coordinate system
fixed in the nuclear frame in which the Nilsson single-
particle wave functions are described.

The Nilsson single-particle intrinsic wave function
may be expressed as

Xn =Q cia
~
1V tAZ),

2k+1 '"
&xnr'I gi-(r) I xo;)= (—1)" — 2 «;s;nifs&ri(tr) Oo

I t'O&&t') A'~ I tftii)»'~&.
4m

The radial integral F), is defined as follows, "
5' (1V t,1V,t,)=(ts/M, ) i'(1V t i "itV;t;).

'0 V. G. Soloviev, Dokl. Akad. Nauk SSSR 137, 1350 (1961) LEnglish transl. : Soviet Phys. —Doklady 6, 346 (1961)j.
"The formula for the integral (Nrtr ~

p" (N;t;) is given by Eq. (41) of Ref. 1.

(15)
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&xa,' I
T» (r,~) I xn;)

3 2L+1) '"= (—1)~—
I Q ai,g,ai,g,.Sr&/fLOOI/;0)(&L, 1, —

m& OI) —m)&/, LA,mI/rA~)( —1)~' '"Bz,zr
3 ', f

+(2)'"(L, 1, 1 m—, 1—I)t—m)&l,LA;, m+1I/fA~)o. ..„sled.r
—(2)'~'&L, 1, 1—m, —1I)t—m)&/, LA;, m —1IlfAf)6v t/s~ /iaaf t/s). (16)

&xort
I T»-(r, p) I xn, )

(3)'"
t' — (2)i+1)'"P a, q a«a, ( 1)'+—"(L(/~+1)(2/+3)]'"5r,—(/+1, /&OOILO)W(/, 1/qL; /+1, )t)

4x i,f
—

I /, (2/,—1)]t~s5,+&/,—1, /, ooILo)w(/, »,L;/,—1, ) ))&/;) A;mI/, A, )~,,», (17)

where the 8"'s are Racah coefficients. The radial integrals Fl,+ and $1. are defined as follows,

(L—1) /2

Fr,+(NJ/r, N, /;) = &Nr/f I
p'D+ IN'l'),

3Rd p

where D+=d/dp+ ( ,/+1)/p and D = d/dp l /p. Acc—ording to Rose," the matrix elements &Ni/y
I
p~D+

I
N, /;) inay

be expressed as follows":

(L+1)&Ng/gIp D+IN l)= ', (lf /+L+-1)—(/ +i/; L)(Nf/iIp— 'IN l)+[(W„Wr)/hrss—](Nf/rIp +'IN, /) (19)

(I+1)&Nf/r I
p~D

I
N / ) =-', (/r —l,—L—1)(/1+/ +L+2)(Nflf

I p
' N / )

+L(W —Wf)/A(os](Ny/f
I p 'IN, l;). (20)

In Eqs. (19) and (20), W, and Wr are the initial and final energy eigenvalues of the spherically syrnrnetric term
in the Nilsson single-particle Harniltonian. Hence, one obtains the following, W;—Wf ——(N; Nf)hois. In orde—r
to obtain Eqs. (19) and (20) it is assumed that the neutron and proton mass are equal.

where

( l;+1
X

I
&/f)too Il,+1, 0)A 8()i, l,+ 1, mA'ZArZf)

1/2

&/f)tooI/, —1, 0)F&+B(X, /, 1, mA, Z,ArZ—r), (21)
(2/, —1

B()t, l &1, mA Z AfZf) (l &1, 1AOI/A)(l &1, )A mI/fAf)( 1)s' '"6g g,

+ (2)'Is&/;&1, 1, A;+1, —1
I
/4;)(/;&1, )t, A;+1, m

I
lfA f)/i$, , t/s5rr, t/s—

—(2)'"&/, ~1, 1, A;—1, 1I/, A;)&/;&1, &, A,—1, mI/fAq)&s, , t~s&~, , t~s. (22)

3
&xn,t I

Ti,r, (r, e x y) I
xn,.)= p at,a,a«&, (—)"g (2/+ 1)W(11)tL,1/)

4m l

X (I (/;+ 1)(2/'+3)]'i'&/ +1, lfoo
I
Lo)W(/'1/rL, l,+1l)fr,

—
I /, (2/, —1)J~'&/; —1, /foo

I
Lo)W(l, 1/fL, l,—1/)Pr+)D()t/m, A,Z;ArZr), (23)

"M. E. Rose, Mnl/Iipole Fields (John Wiley R Sons, Inc. , New York, 1955), p. 81.
"The formula for the integral (ffylr

~

ps+' ~N, /, ) is given by Eq. (41) of Ref. 1.
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where

D(him, A,Z;A»Z») = (1l0ml ) m)(l, lA,m
l l»A»)( —)x' '—/'8z, z/.

+42(1/ —1, 1+ml &m)(l;lA, 1+ml lfA»)Bz, , i/2'5z», i/2—
—v2(111, —1+ml X m)(l;/A;, —1+ml l»A j)r/z, , i/p//z—/, i/2 ~ (24)

VI. NUCLEAR PARAMETERS FOR FIRST
FORBIDDEN LI DECAY

The theoretical expressions presented in the preceding
sections will now be used to determine the nuclear
matrix elements for first forbidden P decays in Tm"'
and Re'". In both isotopes, the transition under
consideration takes place from the ground state of an
odd-odd nucleus with J;=1 to the first excited state
of an even-even nucleus with J~= 2. The nuclear matrix
elements involved in this situation are

$e &r, and

in the Konopinski and Uhlenbeck notation' or

(f gi(r) lli), (flj &io(r, y) i(i), (f[l &ii(r,o') jli), and

(f Tgi(r, o)lli) in the spherical-tensor notation. In the
present calculation the following parameters are
evaluated:

Cv fr f'ig xr fin
and A.=

f&'
where j=nZ//2p and p is the nuclear radius.

For the transitions in Tmito and Rei86 two-particle
intrinsic wave functions for both the initial and final
states should adequately describe the situation. For
both transitions, the initial intrinsic state is described
as a proton-neutron state in which the odd proton and
odd neutron couple together so that E=0=0(p)
+Q(e) =1. The final intrinsic state is described as a
proton-proton state in which the two protons pair off
in the same Nilsson state so that E=Q=O.

According to Fig. 9 of Ref. 7 the deformation param-
eters p are approximately equal to 6 and 4 for Tm'"
and Re'", respectively. Therefore, the intrinsic wave
functions are determined at q =6 for Tm and g =4 for
Re from the Nilsson energy-level diagrams. ' However,
in order to show the variation of the parameters with
respect to deformation the calculations are also made
for g = 2 and g =4 for Tm and g = 2 and g =6 for Re.

In Nilsson's representation the expansion coefficients
a~~ for a particular intrinsic state depend on the
parameter p which determines the relative strength of
the spin-orbit and 1 terms in the single-particle Hamil-
tonian. Nilsson has assigned values of p, for each E shell
for both proton and neutron levels in order to reproduce
for zero deformation the proper sequence of shell model
levels. For both the Tm'70 and Re'" transitions, the
transforming nucleon is initially in a neutron level from
the shell E;=5 and finally in a proton level from the

shell Ã~ ——4. For these levels Nilsson' has assigned the
values p;=0.45 and pf =0.55 and calculated the corre-
sponding expansion coeScients. These coefficients were
used in the present calculations. In addition, Mottelson
and Nilsson' have given values for the expansion
coeScients for the %=5 shell with p=0.70. Berthier
and Lipnik. ' have used the p =0.70 expansion coeKcients
for the initial intrinsic state in calculating the matrix
elements for the Tm'" transition. However, this does
not appear to be appropriate since Nilsson and
Mottelson specify that the calculation with @=0.7 is
valid only for proton levels, and in the Tm' calculation
the transforming nucleon is initially in a neutron level.
However in order to compare our results with those of
Berthier and Lipnik and to show the variation of nuclear
parameters with respect to p, , results are presented for
both Re'" and Tm' for two sets of p values: p,;=0.45)
p f 0,55 and p; =0.70, p f ——0.55.

Gallagher and Solovievs concluded that for the
ground state of Tm'", which is the initial state for the
transition under consideration, the odd proton is in
the Nilsson state -', +L'411[,], and the odd neutron is in
the Nilsson state —,

' —[521J,].In the final state both pro-
tons are characterized by ~i+t 411$]. In order to meet
the requirement IC=Q it is necessary that

Thus, the proton and neutron are coupled parallel in
the initial state and the two protons are coupled anti-
parallel in the final state. Therefore, the transition takes
place between states of different relative coupling and
the general expression for the reduced matrix elements
is given by Eq. (9b).

For the Re'" transition, as suggested by Gallagher
and Soloviev, ' the initial intrinsic states are taken to
be —',+L402$] and —,

' —L512J,] for the odd proton and
odd neutron, respectively. In the final state, both
protons are in the —,'+[4021'] state. For this situation

Thus, the particles are coupled antiparallel in both the
initial and final states. The transition takes place
between states of the same relative coupling and the
reduced matrix elements are given by Eq. (9a).

In Tables I and II the values of the nuclear parame-
ters x, u, and A are given for Tm" and Re'". In order
to show the dependence of the parameters on the de-
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TABLE I. Nuclear parameters for 883-keV p transition in Tm"
as a function of q for p,;=0.45 and pf =0,55. For Tm'" the accepted
value for p is approximately equal to 6.

parameters such as g and p, . In fact, the Nilsson model
predicts the following general expression for A,

Parameter
A = (W.—Wf) p' (25)

0.055—3.208
0,966

—0.101
4.185
0.966

—0.032
1.523
0.966

TABLE II. Nuclear parameters for 934-keV p transition in Re'
as a function of g for p;=0.45 and pf =0.55. For Re' the accepted
value for q is approximately equal to 4.

Parameter

—0.043—0.189
0.890

—0.029—0.223
0.890

—0.023—0.247
0.890

"T.Ahrens and E. Feenberg, Phys. Rev. 86, 64 I', 1952)."$. I. Fujita, Phys. Rev. 126, 202 (1962).

formation, values are given for three values of q. The
"best" values are for g =4 and g =6 for Re' " and Tm'~

respectively. The variation of the nuclear parameters
with respect to p; is illustrated in Table III.

The values given in Tables I, II, and III are inde-

pendent of the superQuid correction factor since it
divides out of the matrix element ratios.

The present results for the nuclear parameters for
the Tm"0 and Re'" P transitions apparently have no

relation to those obtained previously by Bogdan. ' ' This
indicates that the present use of two-particle intrinsic
wave functions for even mass nuclei rather than single-

particle intrinsic wave functions has a profound eGect
on the results. It appears that it is not possible to
formulate the total wave function for an odd-odd

nucleus such as Tm" with a single-particle intrinsic
wave function. In order to satisfy the condition
X=A=+, 0, for even mass nuclei it is necessary to sum

over an even number of particles since E is an integer.
Berthier and I,ipnik4 have computed values of the

nonrelativistic parameters only for the Tm'7 transition

by using two particle intrinsic wave functions. However,
for the Nilsson parameter p, they assume an initial value

of 0.75 and in the present work p, is initially assumed to
be 0.45. However, if the value of p; is changed to 0.75,
the present results for the nonrelativistic parameters

(x and u) agree with those of Berthier and Lipnik.
For both transitions under consideration, the Ahrens-

Feenberg" relation predicts that A. is approximately 1

and the conserved vector current relation developed by
Fujita" predicts that A is approximately 2.6. The
present results indicate that when A is evaluated for a
particular transition by using the Nilsson model a
value is obtained which is independent of the model

TABLE III. Nuclear parametels fol Tm'" and Re"' as a func-
tion of p,; for pf ——0.55. For Tm" and Re' the values are for g =6
and q=4, respectively.

Tm"0

Re186

0.45
0.70'

0.45
0.70

—0.032—0.353

—0.029
0.004

1.523
2.135

—0.223—0.293

0.966
0.966

0.890
0.890

a The values of x and u for p& =0,70 for Tm'~o are equivalent to those
obtained by Berthier and Lipnik. They are equivalent rather than equal
since different standard matrix elements are used,

between the present results and those determined

experimentally. According to Dulaney et al. , there is no

unique experimental solution for the Tm'" parameters.
For h.=1 as determined in the present work, Dulaney
et at."6nd no suitable solution for the nuclear param-
eters. However, for A in the range 2 to 3 as suggested

by Fujita the parameters x= —0.20 and u=0 provide
the only satisfactory solution. This disagrees with the
present result: x= —0.032, u=1.523. For Re'" there is

apparently good agreement between the present results

and those predicted experimentally. Again, there is no

unique experimental solution. However, for A. in the
range from 1 to 5 the parameters x=0, I=—0.21

provide a satisfactory solution. This is in good agree-
ment with the present results x= —0.03, I= —0.22.

An additional point of interest is that the Re'"
results are considerably less sensitive than the Tm'"
results to changes in either the value of g or p;.

' H. Dulaney, C. H. Braden, and L. D. Wyly, Xucl. Phys. 52,
79 I'1964).

For both the Tm' and Re'" transitions, S;—Ey
equals 1 and therefore the following values are obtained
for A: 0.966 for Tm'" and 0.890 for Re'" The factor
(W;—Wy) in Eq. (25) arises from the use of Eqs. (19)
and (20) in the evaluation of 1'in. Bogdan' has used
the total P energy Wo for W;—Wf instead of the
Nilsson-model energy difference (X;—X~)hero in
evaluating A. In the present work, if 8'0 is used for
(W;—Wg), the following values are obtained for A:
0.184 for Tm' and 0.181 for Re'"

Dulaney et ul." have determined what range of
nuclear parameter values are in agreement with the
available experimental data for the Tm'" and Re'"
transitions. For Tm'" there appears to be no correlation


