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Resonating-Group Calculation of He'-He' Scattering*
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The He'-He' elastic scattering is considered in the c.m. energy range of 0-20 MeV using the resonating-
group method in the one-channel approximation. A two-body central potential of Gaussian form which
fits the low-energy nucleon-nucleon scattering data as well as possible is used. The saturation character which
is not contained in this potential is approximately taken into account by fixing the radii of the clusters
according to experimental data. Phase shifts up to l=6 are calculated, and a rather broad l=3 resonant
level in Be' with an excitation energy of about 25 MeV is predicted. Angular distributions are calculated
at ten energies. The agreement with experimental data in the range 1.5 to 6.0 MeV is excellent, while that
with the data from 6.0 to 12.0 MeV is somewhat worse, but still satisfactory. An optical-model analysis is
also performed at an energy of 12 MeV and a reaction cross section of about 450 mb is predicted. This indi-
cates that, at higher energies, channels other than the He'-He' channel should be included in the resonating-
group calculation to achieve a better agreement with experiment.

I. INTRODUCTION
' 'N this work the method of resonating-group struc-

ture' is used to study the elastic scattering of
incident He' particles from a He' target. The main
objective is to determine if the resonating-group
method in the one-channel approxiInation can give the
proper scattering cross sections for the He'-He' system.
So far, this method has been used to treat quite suc-
cessfully the scattering problems of e-d, ' e-t, ' e-He', ~

n-Q, ' d-d, ' d-t ' He'-Q, ' and e-0. ' The He'-He' case has
also been studied previously by Bransden and Hamil-
ton, ' but the results of that calculation showed marked
disagreement with the experimental data of Tombrello
and Bacher, " and Gammel et a/." This is rather sur-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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prising, since, because of the Pauli exclusion principle,
the two He' clusters are not expected to overlap with
each other strongly, which means that, at least in the
low-energy region, a calculation with the one-channel
approximation should yield results in reasonable agree-
ment with experiment.

Also, we hope to gain from this calculation some
information about the structure of the compound
nucleus Be'. Recently, Batty et al." have found from
experiment two excited levels of Be' above the He'-He'
threshold. If these levels should have predominantly a
He' plus He' cluster structure, then their presence
would be predicted from our results on the scattering
phase shifts. Indeed, in a similar calculation on He -n

scattering, ~ the presence of 'Il excited states has been
correctly determined in this way.

The main advantage of the resonating-group method
lies in the fact that a two-body potential is used in

the calculation. This avoids the difficulty of the optical
model, for example, which has a number of variable
parameters. Another advantage is that the indis-

tinguishability of the nucleons is taken into account
correctly. This latter feature is achieved through the
use of a totally antisymmetrized wave function in the
calculation.

To simplify the calculation, only the He'-He' channel
is considered in computing the elastic-scattering cross
sections. In particular, the open P-Li' and 2P-n reaction
channels will be ignored. This seems to be a reasonable
assumption especially in the low-energy region, since
it has been determined experimentally" that the total
reaction cross sections at incident energies less than 6
MeU "are rather small. On the other hand, for energies

greater than 6 MeU, the reaction cross sections begin
to increase quite rapidly, indicating that our assumption

may lead to less accurate results.

"C.J. Batty, E. Priedman, P. C. Rowe, and J. B. Hunt, Phys.
Letters 19, 35 (1965).

i'A. D. Bacher, Ph.D. thesis, California Institute of Tech-
nology, 1966 {unpublished).

'4 Unless otherwise stated, all the energy values referred to are
those in the c.m. system.
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RESONATING —GROUP CALCULATION

The potential used to represent the two-body inter-
action is assumed to have a Gaussian form and to be
purely central. It is chosen to fit the low-energy two-
nucleon scattering data as well as possible. The satu-
rating character, which is not contained in this po-
tential, is crudely accounted for by fixing the size of
the clusters according to experimental data. As for the
space-exchange nature, the nucleon-nucleon scattering
data requires that it should be close to a Serber type.
However, in this calculation, since a number of open
a,nd closed channels has been neglected, we shall vary
the exchange mixture to yield the best agreement with
experiment. If the resultant mixture should turn out to
be very different from a Serber mixture, this would
indicate that the approximations used in this calculation
are not too accurate.

An optical-model analysis is also performed at an
energy of 12 MeV. The purpose of this analysis is to
see, in a crude manner, how the inclusion of the re-
action channels can affect the He'-He' elastic-scattering
cross sections.

A brief discussion of the formulation of the reso-
nating-group method, as well as an account of the
computational technique, is given in Sec. II. Sections
III and IV contain the results of the resonating-group
calculation and the optical-model analysis, respectively.
Finally, in Sec. V we summarize the results of this
investigation and discuss the various approximations
which have been made.

II. FORMULATION

Vsing only the He'-He' channel in the calculation,
one writes the wave function of the six-body scattering
system as

+=A {y~y2F (Rg—Rg) &(o.,r)),

is determined from the variational principle

@*(H F.'—)+dr =0,

where 8' is the total energy of the system and II is the
Hamiltonian given by

h 6

H= — Q V',2+ Q V;, .
2m i=1

The two-body interaction V;; is assumed to be purely
central and of the form

V;;= —Vo exp( —xr ')(w+mP "+bP '"hP ')—

+ , (6)

where P;;", P';, , and P;, are the space, spin, and
isospin exchange operators, respectively, and e;, is
equal to one if particles i and j are protons, and zero
otherwise. The constants m, ns, b, and h satisfy the
equations

w+m+b+h= 1,
w+m b h—=x—,

where x is the ratio of the e-p singlet to triplet
interaction.

By integrating over the internal coordinates of the
clusters, it is possible to derive an integrodifferential
equation satisfied by the scattering function F (r). This
equation has the form

~'+&—VD(r) —Vo(r) F(r)
31N

and

yg= exp[—-', n P (r,——R))'],
i=1

6

y2 ——exp[——',n P (r;—R2)'],

(2)

(3)

with R1 and R~ being the position vectors of the center
of mass of the two clusters, respectively. A Gaussian
form is chosen for these functions to facilitate the
analytical evaluation of the various integrals involved
in this problem. The scattering function F(R&—R2),
which describes the relative motion of the two clusters,

where the operator A signifies the complete antisym-
metrization of the wave function with respect to the
exchange of all pairs of particles and j(o,r) is a functi. on
describing the charge and spin of the system. The
functions p~ and &2 describe the spatial behavior of
the two He' clusters; they have the form

E (r,r')F (r')dr', (8)

where E is the relative energy of the two clusters in the
c.m. system. The potential Vn(r) denotes the direct
interaction between the clusters and is given by

y
i

Vn(r) = —V,
~

[9w—2~+4b —Sh]
3n+4x) 3nxr')—

Xexp(
~
. (&)

&3n+4~

The kernel E(r,r') represents the nonlocal interaction
between the clusters; it can be expanded in terms of
Legendre polynomials as

00

E'(r, r') = P (2l+1)h~(r, r')P~(p), (10a)
err' &=0

where p= r r'/rr'. With Eq. (10a), h~(r, r') can be
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obtained from the equation

The explicit form of ki(r, r') is

ki(r, r') = 27rrr' E (r,r')Zi(p)dp. (10b)

k' 27') 3t' 15n 45n 9n 81 f 9n 63 9n
ki(r, r') = — —

I
Ci exp — (r'+r") Si ————n'(r'+r")Sil ——+ n'rr—'Ti

2m 16vr~ 16 4 8 32 4 8 16 8

27n) 3i' ( n 9n) 15n n
I (—2~—'~)C~ (2b+2k)(3 —Ci) jSi ——

I
exp — (r'+r") +

16m.1 (n+ 2» 8 1 16 n+»~

9 o,'
X I

—4wCi+4m(2C& —3)—2b(2Ci —1)+2k(3Ci—4)7Si —— exp
8n+»

15n'+ 24n»
r2 r~2

16(n+»)

( 9n+36»)
+L9m —5b—wCi+k(Ci+2)]Sil —

I
exp

8

15n+36» l' 4n
(r+r') —

2l L (2m+ 2rN) Ci
16 (4n+5»

9n n+2» ) 15n'+21n» 15n'+39n» 15n2+39n»—(b+k) (3—Ci) ]Sr ——
I

exp — r2 —r" +exp — r2

2 4n+ 5»/ 16n+20» 16n+20» 16n+ 20»

15n+21n» 16~ ( 3n» 27ni ' ' ( 9n)
r (b m)(2——Ci) expl "" b(r —r') +

16n+20» 27n+36» 3n+4» 16m J (, 8 I
i5a

X exp — (r'+ r") (11)
16

where Ci=2 —(—1)'." In the above expression, Si(X) To solve Eq. (8), F(r) is expanded as
and T&P,) are given by

fi(r)
F(r)=g Fi(cose). (16)

4vr-
T,P) = g„;()rr') ——pi+;(Xrr')

(12)

(13)

E r

Together with Eq. (10), this yields the equation

k' d' l(l+1) +&- I'n (r) —I'.(r) fi(r)3' dr

ki(r, r') fi(r')dr', (17)

which will be solved by a numerical procedure.
The scattering phase shifts can be found by solving

Eq. (17) with the boundary conditions

fi(0) =0

fi(r) sin(kr —~1~—q 1n2kr+o &+b&),

(18)
(14) and.

(19)

where g(x) is a hyperbolic spherical Bessel function.
For the computation of the Coulomb potential V,
between the clusters, only the unantisynunetrized part
of the wave function will be used. This is a reasonable
approximation, since the Coulomb interaction between
two protons is long-ranged. "Thus, with this approxi-
mation, we obtain

where C (u) is defined as

C (u)= exp (—P)dl . (15)

where g=4e'/hu, with e being the relative velocity of
the two clusters at infinity. The quantities f7& and 8&

are the Coulomb and nuclear phase shifts, respectively.
The differential cross section is given by

"Factors such as C& occur, since for the He'-He' system, the
total spin 5 and the orbital angular momentum / are correlated
by the equation 5=-,'j 1—(—1)'7.

"In a similar calculation on o,-n scattering t S. Okai and S. C.
Park, Phys. Rev. 145, 787 (1966)j, it has indeed been shown that
the exchange Coulomb potential makes very little contribution.

with

and

(20)

(21)
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In the above equations, the subscripts t and s refer to
triplet and singlet spin states, respectively, and the
scattering amplitude f(8) has the form

exp[—i' ln(sin'-', 0)j
2k sin'-'8

1
+P —(2I+1) exp[2i(rrt 0'p)+inst]

t~k

)&siniltPt(coso). (23)

As mentioned in the Introduction, the two-body
potential of Eq. (6) is chosen to give the best possible
fit to the low-energy scattering data. The parameters
for this potential are

I2-

6
~«4

Pa 0
I~

~O

-8

-IO

"12

REDUNDANT SOLUTION

L 0

Vp= 72.98 MeV,

~=0.46 F ',
x=0.63.

(24)

o, =0.36 F ', (26)

which corresponds to a rms radius of 1.67 F.
The quantities w, m, b, and b in Eq. (6) can be

varied, subject to the conditions expressed in Eq. (7),
to yield the best agreement with experiment. In this
calculation we have, however, not varied the two free
parameters in this way. Rather, we have expressed the
two-body potential in the form

&r'j = p&serber+ (1 p) l symmetric y (27)

where Us„b„ is a two-body potential given by Eq. (6)

'7 H. Pierre Noyes, Phys. Rev. 130, 2025 (1963).' Y. C. Tang, E. W. Schmid, and R. C. Herndon, Nucl. Phys.
65, 203 (1965)."B.K. Srivastava, Phys. Rev. 133, B545 (1964).

'0 H. Collard, R. Hofstadter, A. Johansson, R. Parks, M.
Ryneveld, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters 11, 132 (1963).

» L. I. Schi6, Phys. Rev. 133, 8802 (1964).

With this potential, the values of the rs-p effective
range parameters are

ag ——5.36 F,
rp] ——1.70 F,
a,= —14.63 F,

rp, ——2.28 F.
These values are in fairly good agreement with those
determined experimentally. '7

The width parameter e of the He' cluster is chosen
to yield the experimentally determined value for the
rms radius of the nucleon distribution. This latter
value" of 1.70~0.10 F is obtained from the bare form
factor tabulated by Srivastava" for the three-nucleon
system using the experimental data of Collard et al."
and an expression derived by Schiff." With this pro-
cedure, we obtain

I

0 I

I I I I I I I

2 5 4
tF)

5 6 7 8

FIG. 1. Demonstration of the )=0 redundant solution with
+=0.50 F ', y=1, and a c.m. energy of 1.7 MeV.

with a=m, and b hp and ~symmetric is obtained from
Eq. (6) with m=2b and h=2w. The parameter y is
then varied. If the approximations used in this calcu-
lation are reasonably valid, then the resultant value
for y should not be too diferent from 1.

The solution of Eq. (17) is carried out numerically
in a manner similar to that used in other calculations
of this type. Briefly, what one does is to divide the
region of integration into two parts, separated at the
point r=R~ such that kt(r, r') has a vanishingly small
value for r&E~. In the region r&R~, the kernel is
tabulated in the form of a 40X40 matrix at intervals e

in r and r'. The integrodifferential equation is then
converted into a system of algebraic equations and
solved by a method described in a paper by Robertson. "
In the region r)E~, the kernel is set as zero and Eq.
(17) becomes an ordinary differential equation which
can be solved using a method of Fox and Goodwin. "
Since the kernel is fairly long-ranged and has a rapid
variation for small values of r and r',"care should be
taken in choosing a proper value for &. In this calcu-
lation it is found that values of e between 0.20 and
0.30 F yieM phase shifts which are equal to within 0.1
deg. Therefore, we have set &=0.24 F which corre-
sponds to R~ ——9.6 F in the calculations that follow.

It is a standard procedure in this type of calculation
to check the derivation of the kernel kt(r, r') by looking
for redundant solutions. 4 In our calculation, if the
Coulomb term in Eq. (17) is set equal to zero, re-
dundant solutions should appear for /&1." These
redundant solutions may be exhibited by plotting f&(r)
obtained by using different values of c. If the kernel is
derived correctly, the functions fr(r) for /&1 should
differ at small values of r but remain the same in the
asymptotic region. On the other hand, for /) 1, ft(r)

"H. H. Robertson, Proc. Cambridge Phil. Soc. 52, 538 (1956).'L. Fox and E. T. Goodwin, Proc. Cambridge Phil. Soc. 45,
373 (i949).

24See Ref. 2 and also J. W. Humberston, Proc. Phys. Soc.
(London) ?8, 1157 (1961).

25 The Coulomb term must be excluded, since it is derived using
an unantisymmetrized wave function,
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puted. A run for one incident energy value takes about
1 min.

III. RESULTS

A. Results of the Resonating-Group Calculation

bo

IOO—

IO
20 30

I I I I I

40 50 60 70 80 90
8~m (deg)

should be independent of e for all values of ~."Figure 1
demonstrates the t =0 redundant solution for ~= 0.21
and, 0.28 F. A similar behavior was also observed for
fr(r). Thus, we conclude that the kernel given by Eq.
(11) is indeed correct.

The problem is solved on a CDC 1604 computer.
For a given incident energy, phase shifts up to 3=6 and
differential cross sections at 5-deg intervals are com-

IOOO
I I I

RESONATING-GROUP

CALCULATION

He+He
E=6,l MeV

FIG. 2. DiRerential cross section as a function of y at a c.m.
energy of 3.95 MeV with +=0.36 F 2 and the potential of Eq. (6)
parametrized by Eq. (24). The experimental data are those of
Tombrello and Bacher (Ref. 10).

l 000 I I I I

RESONATING -GROUP CALCULATION

He+ He

E ~ 8.4 hleV

Using the two-body potential described in Sec. II
and the value of n given by Eq. (26), we have calculated
differential cross sections with y=1.0, 1.1, 1.2, and 1.3
at energies of 3.95, 6.10, and 8.40 MeV. The results are
shown in Figs. 2, 3, and 4, respectively. From these

figures it can clearly be seen that y= 1.2 yields the best
fit to the experimental data at each of these energies.

The finding that the optimum value of y is 1.2 means
that the two-body potential in odd orbital-angular-
momentum states required in the case of He'-He'
scattering is somewhat stronger than that of an isolated
nucleon-nucleon system. Qualitatively, this can be
explained by remembering that a number of open and
closed channels has been omitted in this calculation.
Thus, the polarization potential arising from the mutual
distortion of the He' clusters has not been taken into
account. Since it has been shown in the related case of
n-n scattering that this latter potential is weakly
attractive, '7 its omission can be compensated for by
using a value of y slightly greater than 1. '

If the above argument is indeed correct, one would

expect that in similar calculations on e-o. and He'-o.

scattering, where the n cluster involved is not as easily
distorted, the value of y should be less than 1.2. This,

IOO

~ IOO
E

b&

~ ~ W
O

IP I I I I I I

20 30 40 50 60 70 80 SO

c.m.t g I

FIG. 3. Differential cross section as a function of y at a c.m.
energy of 6.10 MeV with 0,=0.36 F ' and the potential of Eq, (6)
parametrized by Eq. (24). The experimental data are those of
l,eland et al. (Ref. 30).

"K. Wildermuth and T. Kanellopoulos, CERN Report No.
59-23, 1963 (unpublished).

IO
20 40 80

8~~(dog )
80

FIG. 4. Differential cross section as a function of y at a c.m.
energy of 8.40 MeV with a= 0.36 F ' and the potential of Eq. (6)
parametrized by Eq, (24). The experimental data are those of
Leland et al. (Ref. 30).

27 A. EIerzenberg and A. S. Roberts, Nucl. Phys. 3, 314 (1957)."The omission of the Coulomb exchange term in our calculation
also slightly overestimates the value of y.
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He+He

LSI MW

2$S MeV

for E(6.0 MeV, the total reaction cross sections deter-
mined. experimentally by Bacher" are rather small

(—100 rnb), while for E)6.0 MeV, where the He'+d
+p channel is also open, the reaction cross section
begins to increase fairly rapidly with energy, reaching
a value of about 300 mb at 9 MeV. Thus, the lack of a
close agreement between the calculated and experi-
rnental values for the He'+He' elastic-scattering cross
section at higher energies is very likely due to the one-
channel approximation. In Sec. IV, we shall attempt to
see the inhuence of the reaction channels on the elastic-
differential cross sections by making an optical-model
analysis where these channels can be crudely incor-
porated, into the calculation by the introduction of an
imaginary optical potential.

Figure 7 shows the behavior of the calculated. phase
shifts up to l=5 as a function of the c.m. energy. "

K9S MeV IOOO

IO„-

RESONATING-GROUP

CALCULATION

He+He

10,

96 MeV
~ ~

100—

~ 6.I MeV~ ~ ~ ~ ~

II96 MW
~ ~

IO,

8A MeY
~ ~

I I I I I I

20 50 40 50 60 70 80 90
8 (deg)

FIG. 5. Differential cross sections in the c.m. energy range 1.5—
5.96 MeV with y=1.2 and n=0.36 F &. The experimental data
are those of Tombrello and Bacher (Ref. 10).

Jh
E

IO, ~
E
b
El ~

9.85 MeV

~ ~

in fact, was found to be the case. In a recent calculation
on o.-o. scattering by Okai and Park, ' the optimum value
of y was close to 0.9, while in the calculation of He'-n
scattering by Tang et al. ,

29 a value of y equal to 1.02
was required. .

In Figs. 5 and 6, the values of the calculated diGer-
ential cross sections with y=1.2 are compared, with
those determined experimentally" "at 10 energies from
1.5 to 12.0 MeV. From these figures, it can be seen that
for E(6.0 MeV, the ht is excellent. On the other hand,
for E&6.0 MeV, the fit becomes progressively worse as
the energy increases, although the general features of
the experimental data are still reproduced quite
correctly. To understand this behavior we note that

"The value of y given in Ref. 7 was obtained with a value of
0.43g F 2 for the width parameter of the He' cluster, while that
given here is for a width parameter equal to 0.36 F ' PY. C. Tang
(unpublished) g.

"W. T. Leland, J. E. Brolley, Jr., and L. Rosen, Bull. Am.
Phys. Soc. 10, 51 (1965); also W. T. Leland (private communi-
cation).

IO,

.IS MeV
~ ~ ~

IO

"The phase shifts for /=6 are less than 2' for E(20 MeV;
hence, they are not shown.

IO . I I I I I I
20 30 40 50 60 70 80 90

~~.IIL~&8g ~

FIG. 6. Di6'erential cross sections in the c.m. energy range 6.1—
12.0 MeV with y=1.2 and +=0.36 F 2. The experimental data
are those of Leland et al. (Ref. 30).
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150

-30-
I I I I 1 I J I I 1 I I I I I I I I I

5 10 15 20
E I@IV)

FIG. 7. Calculated phase shifts as a function of c.m. energy
using y=1.2 and o.=0.36 F '

B. InQuence of Exchange Mixture, Cluster
Size, and Potential Range

To examine the sensitivity of our results on the
exchange character of the nucleon-nucleon potential,
we have made calculations with a pure symmetric
force (y=0) and a force obtained by setting m=k=0
in Eq. (6). The results at 6.1 MeV are compared with
those obtained with y=1.2 in Fig. 8. From this figure
it can easily be seen that the curve with y=1.2 fits the
data much better. This is gratifying, since it means
that the exchange nature of the two-body potential
must indeed be nearly Serber to yield a good agreement
with experiment.

Figures 9 and 10 show the dependence of the differ-
ential cross sections on the width parameter o, at
energies of 3.95 and 8.4 MeV, respectively. In these
calculations, the value of y is chosen as 1.2. Here, we

Here it is seen that the 3=3 phase shift exhibits a rather
interesting feature. It begins to rise quite rapidly at
about 5 MeV and reaches a value of 71' at 20 MeV.
This indicates that there is a rather broad l= 3 resonant
level with an excitation energy of about 25 MeV in
Be'."In the region where the levels reported by Batty
et al."are located (E(6 MeV), there is, however, only
a very broad bump in the curve for the /=1 phase
shift. If this should correspond to a resonant 3=1 level,
then its width must be very large.

IOOO I I I I I

RESONATING-GROUP CALCULATION

He+ He

E ~ 3.95 MeV

IOOC

RESONATING-GROUP CALCULATION

e
~ego aeagas e&

L

~a
40

w IOO—

IOi
2O

8~«o& ~

I

80

Frc. 9. Differential cross section as a function of n at a c.m.
energy of 3.95 MeV with y = 1.2. The experimental data are those
of Tombrello and Bacher (Ref. 10).

~ e ~
a

IO
20

I

40
e~~~d9 &

FIG. 8. Comparison of the differential cross sections obtained
using different exchange mixtures at a c.m. energy of 6.1 MeV
with n=0.36 F '. The solid curve is calculated with y=0, the
dotted curve is calculated. . with ns =8=0 in Eq. (6), and the dot-
dash curve is calculated&with y=1.2. The experimental data are
those of Leland et al. (Ref. 30).

"This level will be split if a noncentral force is included in our
calculation.

note that the curve obtained with n=0.438 F ', corre-
sponding to a value of 1.51 F for the rms radius of He',
fits the experimental data somewhat worse than the
curve obtained. with o.=0.36 F ', but the fit can be
improved, slightly by varying the parameter y. For the
cases where o.=0.18 and, 0.72 F ', it is, however,
definitely not possible to fit the experimental data
even if one allows y to tak.e on values very diferent
from 1. Thus, from this study, we conclude that the
results of the resonating-group calculation do depend
in a fairly sensitive manner on the size of the clusters,
and agreement with experimental data can be obtained
only when the rms radii of the clusters are chosen to
have values close to those determined experimentally.
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A study to see the inhuence of the range of the
nucleon-nucleon potential has also been made. For this
purpose we have examined the scattering cross sections
with a potential used by Laskar et al. ' (to be referred
to as the London potential). This potential has the
parameters

Vo= 46.80 MeV,

~=0.2669 F—'
x=0.60,

(2g)

which yield the following values for the e-p effective
range parameters:

IOOO

C IOO

b

P CALCULATION

He

5 MeV

POTENTIAL)

a]——5.68 F,
ra~=208 F
a,= —39.0 F,

ro, ——2.86 F.
(29)
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FIG. 11. Differential cross section as a function of y at a c.m.
energy of 3.95 MeV using the London potential and ~=0.36 F '.
The experimental data are those of Tombrello and Bacher (Ref.
10).
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nating-group calculation are not overly sensitive to the
range of the nucleon-nucleon potential. This is un-
fortunate, since, otherwise, one could use the low-
energy scattering data where both the incident and
target particles are light nuclei to determine accurately
the range of the two-body potential.
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He + He

E ~ 8.4 MeV
(LONDON POTENTIAL)

Fzo. 10. Differential cross section as a function of n at a c.m.
energy of 8.4 MeV with y=1.2. The experimental data are those
of Leland et al. (Ref. 30). ~~ IOO
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This potential does not fit the two-body scattering
data very well; in particular, the effective ranges are
about 20%%uz too large. The calculations using this
potential are made at energies of 3.95 and 8.4 MeV
with +=0.36 F ' and y=0.8, 0.9, and 1.0. The results
are shown in Figs. 11 and 12, where it is seen that the
optimum value of y is 0.8. Comparing these results
with those obtained using the two-body potential
pararnetrized by Kq. (24) (see Figs. 5 and 6) we note
that the fit obtained here is worse, but not to a large
extent. " This indicates that the results of the reso-

33 The potential used by Bransden and Hamilton (Ref. 9) has
also been considered. With their value of u, we have obtained, by
varying y, a fairly good agreement with experiment. Comparing
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FIG. 12. Differential cross section as a function of y at a c.m.
energy of 8.4 MeV using the London potential and «x=0.36 F '.
The experimental data are those of Leland et al. (Ref. 30).

our values of the phase shifts with theirs, we note that there is,
in particular, no agreement at all for the odd phase shifts.
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TAal, z I. A comparison of resonating-group and
optical-model phase shifts at 12,0 MeV.

Phase shifts
Resonating-group

calculation

66.3'
—5.2
j.69.6'
32.j.'

3Q

Optical-model
analysis

30.6'
5 40

148.9'
46.8'

2 )0

and surface-absorption potential of the form

~8~= —iS"exp
1+expI (r—E)/a]

where Vc,„l is the Coulomb potential calculated. from
a uniformly charged, sphere of radius E.The parameters
which give the best 6t to the data are as follows:

In Sec. III, it has been found. that at. higher energies
where a number of reaction channels are open, the
I'csults of the I'csonRtlng-gI'oup CRlculatlon do not RgI'ec

with the experimental data too well. In this section we
shall perform an optical-model analysis to determine
how a crude inclusion of these channels by means of an
imaginary optical potential can lead to a better agree™
ment, The analysis will be done only at 12 MeV, since
it is here that the 6t obtained. Using the resonating-
group calculation is least satisfactory. Also, at this

energy, there is a large number of open channels so that
the compound, elastic cross section need, not be
considered,

The analysis is done with a volume-absorption
potential of the form

general agreement between these two sets. This indi-
cates that the phase shifts from the resonating-group
calculation can be used, as a starting set for a detailed
phase-shift analysis when more d,ata becomes
available.

The total reaction cross sections using the volume-

and, surface-absorption potentials are equal to 471 and
422 mb, respectively. The fact that this cross section
is rather large indicates quite clearly that an one-
channel assumption is only approximately valid, at 12
MeV. If one wishes to obtain a better agreement with

experiment, it is necessary to include more channels in
the resonating-group calculation. This is, however, not
a simple procedure in this particular case of He'+He'
scattering. For example, even the inclusion of the Li'+p
channel is a dificult problem, since the I i' nucleus is

not bound, . One could. account for the reaction channels
in a crude manner by introducing a phenonlenological
local imaginary potential into Eq. (17). Although this
method, would introduce a number of variable param-
eters into our calculation, we couM at least estimate the
relative importance of the reaction channels in this way.

V. CONCI USION

The results of this investigation indicate that the
resonating-group calculation with the one-channel

approximation can be used quite successfully to explain
the features of the elastic scattering of He' by He'. The
differential cross sections calculated, at energies up to
about 6 MCV are in excellent agreement with those
determined experimentall. The 6t to the higher-energy
data is somewhat worse, hut this is more or less expected
since, for energies greater than about 6 MeV, the He'
clusters can be easily d,issociated and many reaction

OOOO.

OPTICAL MODEL CALCULATION .
He + He

l2.0 MeV VA

Volume RbsoI'ptlon: /=52. 53 MCV )

kg=1.75 MeV,

Surface absorption: V=53.71 MeV,
8'=0.81 MeV,

E.=2.49 F,
a=0.45 F,
8=2.46 F,
a=0.45 F,
b=1.15 F.

IOO-

Cb

b"

Thc optical-model 6t to the experimental dRtR using

these parameters is shown in Fig. 13 where it can be
seen that both potentials yieM a very good 6t.

In Table I, a comparison is made between the phase
shifts obtalncd with the lcsonatlng-gloUp cRlculRtlon

and, the real part of the phase shifts obtained in the
optical-model analysis with the volume-absorption
potential. From this table, it is seen that there is a

1O

FIG. I3. Optical-model calculation of the differential cross
section at a c.m. energy of 12.0 MeV using a volume absorption
potential (VA) and a surface absorption potential (SA). The
experimental data are those of Leland et ul. (Ref, 30).
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channels are open, which means that, at these energies,
the one-channel assumption is only an approximately
valid. one.

The eBect of mutual distortion of the He' clusters
seems to have some importance. This is exhibited, in
our calculation by the 6nding that the two-body inter-
action in odd angular-momentum states necessary to
yield a good agreement with the experimental data on
He3-He' scattering is slightly stronger than that deter-
mined from the nucleon-nucleon scattering data. The
reason for this is again that we have adopted. a one-
channel approximation, and, hence, the polarization
potential, being weakly attractive, is not taken into
account.

From the behavior of the calculated phase shifts,
the presence of a rather broad l=3 resonant level in
Be' with an excitation energy of about 25 MeV is
predicted. Aside from this broad resonance, the only
other interesting feature we have found is that there
is a broad, bump in the curve for the l=1 phase shift
as a function of energy. Whether this broad bump
corresponds to the two levels reported by Batty et al'. '
is not too clear at this moment. For a further clari6-
cation, it is necessary to make a calculation with a
noncentral component in our two-body potential.
Meanwhile, of course, more detailed experimental
studies to determine the nature of the resonant levels
in Be' would be highly d,esirable.

The dependence of our results on the cluster size,
the exchange mixture, and. the range of the two-body
potential has also been studied. From this study, the

interesting finding is that, to obtain a good agreement
with experiment, it is necessary to choose a near-Serber
mixture and a rms radius for the He' cluster close to
the experimental value. As for the range of the two-body
potential, we have found that its effect is relatively less
important. Indeed, this latter feature seems to be a
general one in scattering problems where light nuclei
are involved. In a similar calculation on He'-0. scat-
tering~ the same conclusion has also been reached. .

An optical-model analysis is also performed, at a
c.m. energy of 12 MeU. From this analysis, we 6nd that
the reaction cross section is about 450 mb. The fact
that this cross reaction is not too small compared, with
the elastic-scattering cross section supports our asser-
tion that the one-channel assumption is only approxi-
mately valid at higher energies.

The fact that the resonating-group calculation in the
one-channel approximation yields a good. result in the
case of He'-He' scattering gives a strong indication
that it should also work in the case of He'-H' scattering
with a similar exchange mixture for the two-body
potential. This latter case is now being examined in
detail and the results will be reported in a further
publication.
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