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TAsI,E IV. Phase shifts at 27.6 MeV from the three leading models
and an energy-independent phase shift analysis {EIPSA).

Model

AMIV
YRBl (Kp)
CR21
EIPSA

'Sp

48.0
49.2
46.6
48.6%0.4

3Pp

8.2
12.1
8.7
7.6a0.6

—4.8—5.8—5.7—4.1~0.5

3P2

2.7
2.6
3.2
2.4+0.2

' P. Signell, Phys. Rev. 139. B315 (1965),

not be extended below 24 MeV was known to the
authors and was indicated in their paper. One way
they could achieve a good low-energy 6t would be to
add the effective-range contributions to their represen-
tation, '4 as was done in the CR21 representation.

Data which give large &' contributions to any one of
the three representations are shown in Table III.
Nearly half the high X' contribution to YRB1(KO) in the
second energy range is seen to result from the 25.7-MeV
measurements of A and 3». Since these are deter-
mined primarily by the 'P phase parameters, we com-

pare these parameters to the other models in Table IV.
It is seen that 'P0 is high and 'So is low both compared

to the other models and to single-energy phase-shift
analyses at that energy. Again, a correlated adjustment
of parameters should remove this difFiculty.

V. CONCLUSION

Examination of the existing fits to the best proton-
proton scattering data reveals discrepancies in the fits
which should be taken account of in any application
where these discrepancies are potentially important. If
this paper encourages more care to be taken in applying
these models in specific cases, we will have accomplished
our purpose.
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Equations for all the seniority-zero eigenstates of 2N nucleons in an arbitrary charge- and spin-independ-

ent potential well and interacting through charge- and spin-independent pairing forces are derived. These

equations are solved exactly for a large number of states of this system. The interaction in this Hamiltonian

is effective in the 1.=0 states of the two-nucleon system, and its strength is independent of the remaining

quantum numbers of the two nucleons. We solve our equations exactly for those states whose wave functions

are totally symmetric functions of the spin-isospin coordinates of the N L=0 pairs of nucleons in the state.
The wave functions of these states factor into a spin-isospin-dependent part and a spatially dependent part.
The spin-isospin-dependent part of one of these wave functions is an eigenvector of three tridiagonal matrices

which insure that the state is a spin, isospin, and supermultiplet eigenstate, respectively. Explicit expressions

are given for the eigenvalues of these three matrices in terms of the quantum numbers of the state. The
spatially-dependent part of one of these wave functions is given explicitly in terms of N parameters which

we call pair energies. These pair energies are shown to satisfy N coupled algebraic equations which depend

parametrically upon the supermultiplet quantum numbers of the state. An expression for the occupation

probabilities of the levels of the single-particle well is given. Throughout this work, an arbitrary splitting of

the single-particle levels is treated exactly.

I. INTRODUCTION

HE simplicity of the pairing Hamiltonian has made
it a fruitful model for the study of the approxi-

mation techniques used in nuclear-structure calcula-

tions. In addition to this, it has also proven to be a

*This research was supported in part by the National Science
Foundation.

j A. M. Lane, Nuclear Theory (W. A. Benjamin, Inc, , New York,
1964), Part I and the references cited therein.

useful model for the calculation of specific nuclear

properties. ' In its most elementary form, the pairing
model uses jj coupling single-particle states and a
pairing interaction that is effective between any two

identical nucleons that are coupled to J=O. The
neutrons and protons therefore act as two independent

systems. In this form, the model has been very success-

ful in representing the properties of heavy nuclei.

These properties have generally been calculated using



the approximations of the BCS theory of supercon-
ductivity. ' However, the model is an exactly solvable
many-body system' and it has been demonstrated' that
the agreement between the predictions of the model and
experimental observations can be significantly im-
proved by the use of the exact eigenstates of the model
Hamiltonian. The calculation of these exact eigenstates
is straightforward4 and it is, in fact, no more difhcult
than the calculation of approximate ones using any
improvement of the BCS theory that gives up the
assumption of completely independent quasiparticles.

A deficiency in this simple pairing model that be-
comes significant when it is applied to medium-weight
Duclcl ls its Ilcglcct of any DcutroD-plotoD interaction.
This deficiency may be removed by using the charge-
independent pairing Hamiltonian rather than the
charge-dependent one that we have been discussing.
The interaction in this Hamiltonian is CGective between
any two nucleons that are coupled to J=O and there-
fore to isospin 7= 1. This model has not yet received
the extensive treatment that the simple pairing model
with identical nucleons has been given. However, it
does promise to extend the utility of the pairing model
into the domain of intermediate-weight nuclei. Its
eigenstates may be calculated, for a small number of
nondegenerate single-particle levels, by quasispin
methods. ' ' In the more general case of many single-
particle levels, approximation methods have been
developed that are generalizations of the methods used
for identical nucleons. ' '0 However, these approxi-
mations are still in need of some kind of justification.
The exact eigenstates of this Hamiltonian have recently
been derived by a generalization of the same formalism
that led to the exact eigenstates of the pairing model
with identical nucleons. "' The calculation of these
states would not require any Inore work than the calcu-
lation of the states of a system of identical nucleons.

The charge-independent pairing Hamiltonian is
inappropriate for light nuclei due to the absence of any
T=O forces between the nucleons in its interaction.
This lack may be remedied by the use of the charge-
and spin-independent pairing Hamiltonian which is
the subject of this paper. In this model, LS-coupling
single-particle states and a pairing interaction that is
effective between any two nucleons that are coupled to
L=O are used. The states of this Hamiltonian have
been treated by group-theoretical methods for a single

' R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964).
3R. %. Richardson and N. Sherman, Nud. Phys. 52, 253

(1964).
4 R. W. Richardson, Phys. Rev. 141, 949 (1966).
5 M. Ichimura, Progr. Theoret. Phys. (Kyoto) 32, 757 (1964).' B. H, Flowers and S. Szpikowski, Proc. Phys. Soc. (I.ondon)

85, 193 (1964).' K. T. Hecht, Phys. Rev. 139, 8794 (1965).'3. Sredmond and J. G. Valatin, Nucl. Phys. 41, 640 (1963}.
9 M. Ichimura, Progr. Theoret. Phys. (Kyoto) 31, 575 (1964).
'0 A. Goswami, Nucl. Phys. 60, 228 (1964)."R. %. Richardson, Phys. Rev. 144, 874 (1966)."R. W. Richardson, Phys. Rev. 154, 1007 (1967).

degenerate level'" and by generalized BCS methods
for any arbitrary single-particle spectrum. "Kith this
paper, we show that many of the states of this Hamil-
tonian may be calculated exactly using the same
methods that have been successfully apphed to the
simple and charge-independent pairing Hamiltonians.

While it may be argued that these exactly solvable
many-body systems are not realistic, our point of view
is that they are realistic enough to provide a valid
testing ground for the various approximation techniques
in use and, in some cases, they may be used as models
of real nuclei. Furthermore, much insight into real
many-body problems may be gotten from the study of
exactly solvable models. For example, the structure of
these model wave functions may be generalized some-
what and the resulting state used as an approximate
eigenstate of a more realistic Hamiltonian. The details
of this generalization will be presented elsewhere.

Ke begin our discussion of the charge- and spin-
independent pairing Hamiltonian in Sec, II, where we
set up our notation and discuss some of the general
properties of the Hamiltonian and its eigenstates. In
Sec. III, we specialize to the seniority-zero states of
the Hamiltonian, expand an arbitrary state in a com-
plete set of seniority-zero states and derive a Schro-
dinger equation for its amplitude. The solutions of
this equation are all the seniority-zero states of the
system and, in Sec. IV, we consider the special case of
all the seniority-zero states of four nucleons. This
section is meant to be an introduction to Sec. V, where
we consider the spin-isospin symmetric seniority-zero
states of 2X nucleons. By spin-isospin symmetric we
mean that the wave function of the state is totally
symmetric with respect to the spin-isospin coordniates
of the SL=O pairs in the state. We show that the wave
function of one of these states may be written as a
product of a spin-isospin part and an orbital part. The
spin-isospin part of the wave function is shown to be
a function of three indices and to be an eigenvector of
three tridiagonal matrices, each matrix operating on
one of the three indices. These three matrices insure
that our states are spin, isospin, and superrnultiplet
eigenstates, respectively, and their eigenvalues are given
in terms of the appropriate quantum numbers of the
state. The orbital part of the wave function is shown to
be a symmetrized product of X single-pair functions
with each pair function being determined by a single
parameter which we call a pair energy. The total energy
of the state is shown to be the sum of the Spair energies.
These pair energies are determined by a set of E coupled,
nonlinear, algebraic equations which depend upon the
single-particle spectrum, interaction strength, and
supermultiplet quantum numbers of the state under
consideration. The supermultiplet quantum numbers'5

"B.H. Flowers snd S. Sspikowski, Proc. Phys. Soc. (London)
84, 673 (1964).

j4 B.H. Flowers and M. Vujicic, Nucl. Phys. 49, 586 (1963).» E. P. signer, Phys. Rev. 51, 106 (1937).
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of the spin-isospin symmetric seniority-zero states
that we consider are (I'&1V,I"=O,I'"=0) with I' even
or odd as E is even or odd. The ground state as well
as many excited states of the system are included in
the supermultiplet with P=O or 1 and the states of a
system of identical nucleons are contained in the super-
multiplet with P=Ã.

In Sec. VI, we derive an expression for the occupa-
tion probabilities of the levels of the potential well.
This expression may be evaluated by solving an Ã)&E
system of linear algebraic equations. Finally, in Sec.VII,
we discuss some of the properties of our equations and
their solutions.

II. THE CHARGE- AND SPIN-INDEPENDENT
PAIRING HAMILTONIAN

E=Q e)Sg, (2 1)

We consider a system of nucleons in an arbitrary
charge- and spin-independent potential well and inter-
acting through pairing forces that are eRective in the
L=O two-body state and which are independent of
the charge and spin of the two nucleons. '""The levels
of the potential well are labeled by the single-particle
quantum numbers (e,l,))),o,r), where )) is the radial
quantum number, / is the orbital angular momentum
and m its s component, o. is the spin projection which
is +—', (—2) for spin up (down), and r is the isospin
projection which is +-,'(——,') for proton (neutron).
For brevity, we will denote the quantum numbers

(N, l) by X. The energy of one of these levels is denoted

by e), and each level is 4(2l+1)-fold degenerate. The
Hamiltonian for the noninteracting system of nucleons
Is

and

where (m)))'~ JM) is an abbreviation for the Clebsch-
Gordan coeflicient (-,')))-,')))'

~
JM). In contrast to previous

work on this Hamiltonian, '""we will use pair opera-
tors that are coupled to good spin and isospin. The
use of these coupled operators will lead to simple
equations that are easily interpreted in Sec. V. How-
ever, there are only six spin-isospin states for an L=O
pair of nucleons while there are 16 possible values of
the spin-isospin quantum numbers of a pair. To remove
this superfluity, we introduce a new six-valued label
for the spin-isospin state of a pair that retains the ad-
vantages of the spin-isospin quantum numbers. We
choose to label the spin-isospin states of an L=0 pair
by giving its spin 5 and the projection M of its spin
or its isospin. The relation between the spin-isospin
quantum numbers 5, 3fs, T, Mz and our new label
S, %is

s=5M
T=1—5, 3fg

——TM.
(2.6)

The values of 5 are 0 and 1 and the values of M are 0
and ~1, independent of the value of 5. The utility of
this choice will become evident in the succeeding
sections of this paper. We will write the pair operators
(2.4) and (2.5) as B),(SM) and Bq)(SM) always with
the relation (2.6) in mind in what follows.

The pairing interaction may now be written in
terms of the pair operators as

B),t(SMs, TMr) = Q (—)'-m(«'l SMs)
mo. ro' r'

&& (rr'~ T'M, )a,„....&a,=.,&, (2.5)

where
+ Xm, or&Amort

rN)o') r
(2.2)

V= ——,'gQ Q B),)(SM)B), (SM),
S,M X,V

(2.7)

is the occupation number operator for the single-

particle level X. In Eq. (2.2), at and a are nucleon

creation and annihilation operators satisfying the usual

Fermi commutation rules:

[Amrr)a X'm' 'r']rid''r)t)Lmma'~rr' (2.3)

X (rr'
~
TM r)a), „a). .. (2.4)

Before we write down the pairing interaction that is

to be added to (2.1) to complete our Hamiltonian, we

must de6ne some pair-annihilation and creation opera-
tors and introduce some notation. The pair-annihila-
tion and creation operators destroy or create a pair of
nucleons in the single-particle level X that are coupled
to a total orbital angular momentum L=O, spin and

spin projection 5Ms, and isospin and isospin projec-
tion TMz. These operators are given by

B),(SM's, TMr) = Q (—)'-"(«'~ SMs)
mo ro' r

where the sums on 5 and M are over their allowable

values and the sums on X and X' are over a finite set of
values of 'A which is chosen as part of the definition of
V. In what follows, all values of X will be assumed to
belong to this set since particles that occupy levels

outside this set do not interact. The pairing Hamil-
tonian E+V is then given by

II=+ e„X„,'g P P—B—),'(SM)B);(SM). (2.8)
SM XX'

It should be noted that here and throughout this work

the single-particle spectrum e), is completely arbitrary.

The Hamiltonian (2.8) is both spin- and charge-inde-

pendent. Its eigenstates may therefore be classified

according to the signer supermultiplet scheme. "That
is, the states may be labeled by the irreducible repre-

sentation of the four-dimensional unitary group U(4)
of unitary transformations among the four charge-spin

states of a single nucleon to which they belong. This
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group is generated by the 16 generators

(2.9)

for the seniority-7ero states of the Hamiltonian is
derived.

III. SENIORITY-ZERO OF 2N NUCLEONS

The irreducible representations of U(4) may be labeled

by the number of particles and the three supermultiplet
quantum numbers PP'P". However, for the states
that we will treat in this paper, the quantum numbers
P' and P" are zero and the representation is labeled

by 2N, the number of particles, and P. These quantum
numbers may be determined from the eigenvalues of
the number operator

In this section, we first expand an arbitrary 2E-
particle seniority-zero state in a complete set of states
and then derive a Schrodinger equation for the ampli-
tude of the state. Subsequent sections will deal with
special cases of this equation.

A complete set of 2X-particle seniority-zero states
is given by the set of states

(2 10)
B„t(S,M,) B„„'(S„M~)I 0) (3.1)

whose eigenvalues are 2E and the quadratic Casimir
operator

Q-,""Q"",- (2 11)

S,=Z Q'...'.„
(2.12)

whose eigenvalues are S'+P(P+4)+P'(P"'+2)+P"',
for arbitrary P, P', P".The construction of eigenstates
of n may be easily accomplished and the close relation-
ship between the problems of diagonalizing H and C2
for the states that we consider is demonstrated in
Appendix 2.

On restricting the group U(4) to its (spin) X (iso-
spin) subgroup, we obtain total spin and isospin quan-
tum numbers for the states. These groups are generated
by the operators 8 and T, the components of which are

where ~0) is the vacuum state and the X,S,M, range
over all their allowed values. We may expand an arbi-
trary state in the set (3.1) as

I 0)=& 0'(1 &)B~' B~'I o) (3.2')

Note that the amplitude P must be a totally symmetric
function of the variables 1 E.

We determine the amplitude f in (3.2) by substituting

~ g ) into the Schrodinger equation H
~ f)=E

~ P), for
which we need to calculate the quantity H

~ P). After
some commutator algebra, this may be written as

HIP)=24(1" &)(Z II Bo"[H,B"j

~g)=P P(Z)S)M), . ,)gSyM~)
XB&i'(S~M~) ' '%N'(S~M~)

I 0) (3.2)

In order to condense some overly long equations,
we will use the notation i=XJ,M;, o;= oq, , and B;t=
B&,,t(S,M,) when it does not obscure the meaning of
the equations. Thus, Eq. (3.2) becomes

and.

2+=2 Q~+k, ~+i~
+o 2' ll Bo'LLH B"j,B'j) Io), (33)

ij kgij

&o=Z rQ.„., (2.13)

The eigenstates of S' and T' are treated in Appendix 1.
The Hamiltonian (2.8) also conserves the total

number of pairs of particles that are coupled. to I.=O.
The explicit demonstration of this peoperty is given in
the following section. Since the Hamiltonain also con-
serves the total number of particles, its eigenstates
may be labeled by the number of particles that are not
in pairs that are coupled to I.=O. This number is the
seniority quantum v of the state. In this paper, we will

only be concerned with the m=0 states of H. A com-
plete set of these states may be formed by adding X,
I.=O, pairs of particles to the vacuum state in all
possible ways. This observation is the starting point
of the next section, where the Shchrodinger equation

[N)„B,t]= 28),y,.Bt . (3 4)

The commutator of Bl with B~~ may be evaluated

where the prime on the sum on i and j will always be
taken to mean that the terms with i=j are excluded.
There are no triple or higher commutators of H with
three or more Bt's in (3.3) because these all vanish. To
proceed further, we need to evaluate the single and
double commutators of H with one and two 8~'s.
Recalling the form of H (2.8), we see that this will
involve the single commutators of an E~ and a 8
with a 8~ and the double commutator of a 8 with two
8~'s. We now turn to the evaluation of these
commutators.

The commutator of Eq with 8;~ follows immediately
from the interpretation of Eq as a number operator
and is
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using (2.3), (2.4), and (2.5) with the result that

L81&82 ] 2biyi2 ( (211+1)bsJs2b3flM2 2Z &0ini I S1Msg) (tirl I T1Mrz)

X &0 2ni'
I S~s,) (r2ri'

I T2Mr, )ai-.v2"ai-...), (3 5)

where the sum is over all the a's and r's and the quantum numbers S,Ms, Ter. , are r.elated to S,M; by (2.6). The
double commutator of Bi with 82" and 83t may be evaluated using (3.5), (2.5), and (2.3). We write the result as

I L81&82 ]188 ] 8bi, i4bx&xs 2 oR(siMsi&s2Ms»s4Ms„saMs, )
S4M4

XOR(T/Mr»T2Mr»T4Mr„T&Mr, )Bi„(S4M4), (3.6)
where the matrix 5K is defined by

R(an bP c7 db) 2 &nln2
I
an)&n2n3

I
bP)&nan4

I
cv)&n4ni I

db)
g r ~ ~ A@4

= &4+r, s+& 2 &n~n nI an)&n n~P n+n
I bP)&P n+n~v 0+n—OIc7—)X.

&y
—p+n —n, ~ Idb). (3.7)

Using the symmetry properties of the Clebsch-Gordan coeKcients and the fact that 5R is the trace of a matrix
product it can be shown that 5K is invariant under a cyclic permutation of its arguments and that it satisfies

OR (an, bP, cp,db) = ( )'+'+'+—'OR (cy,bs, an, db)

= (—) +'+'+ "OR (an, db, cy, bP)
= ( )'+'+'—+'OR (a n, d b—,c y—,d —b)— (3 8)

These symmetries plus the values

OR(11,11,11,11)=1, OR(11,11,c0,d0) =OR(11,b0, 1—1,d0)= —'(—) +' OR(a0, b0,c0,d0) =4I (—) +'+(—) +"] (3 9)

determine all the nonzero elements of the matrix 5K.

Having determined the necessary commutators of the Ã's and 8's we may now return to the evaluation of the
single and double commutators of H with one and two B~'s. Using Eq. (2.8) for the Hamiltonian, we have

PI,B,t]=Q e), I A'i„B,t]——,'g Q Q Bit(SM)kg. (SM),8,~].
SM XX'

Since this is going to be applied to the vacuum state when it is substituted into (3.3), we do so here with the result
that the operator part of the commutator (3.5) can be ignored. We then have, using (3.4) and (3.5),

LII8,t]I0)=(2eB,t (2l~+1)gg B—it(SM, )) IO). (3.10)

For the double commutator of II with two 8~'s, we have

I LII,B,t] 8,']=—lg 2 Z B„t(SM)LI8,, (SM),B,t],B,t]
SM XX'

Ss'Ms'Sg'Mg'
C(S,M;,S,M, ; S,'M, ',S,'M, ')Q Bit (S,'M,')8)„t(S,'M,'), (3.11)

where we have used (3.6) and have defined the matrix C by

C(S~a,SiMi; S''Mi', Sg Mi ) =4OR(Si'Ms, S~s;,Si Ms,',SiMs, )OR(Ts'Mr )TaMr;, Ti'Mr, ',TiMr, ).
From the symmetries (3.8) of the matrix OR, the following symmetries for the matrix C can be derived:

C(i j;i',j')=C(ij;j ',i') =C(j,i; i'j') =C(ji;j ',i') =C(i',j', i j)=C( i, j;——i', ——j'),

(3.12)

(3.13)

where we have written i for S M; and —i for S;—M;. Furthermore, it follows from (3.7) that C is diagonal in

the spin and isospin projections M s,+Ms, and 'Mr, .+M. r, , which implies that C is diagonal in the quantities

M;+M, and S,M;+SKI; in terms of the new variables. All the nonzero values of C may be obtained from those

values given in Table I by using the symmetry relations (3.13).
Having evaluated the necessary commutators of II and the Bt's, we may now substitute the results (3.10) and
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(3.11) into (3.3) in order to obtain a Schrodinger equation for the amplitude iP. The resulting equation is

(2pi+ +2pg E—)iL(1 1V)—g Q Q (2L+1)f(1 XS,M," N)
i=1

+kgb'
i,j 8;rM;~, SjrMjr

C(S;M,,S,M, ; S,'M,',S,'M )1L (1 X,S,'M,' X,S,'M,' E)=0, (3.14)

where we have defined the components of P that violate the Pauli principle by ignoring the fact that the corre-
sponding state (3.1) vanishes. ' "

The solutions of Eq. (3.14) are all seniority-zero states of the Hamiltonian H. The remainder of this paper is
devoted to the study of some solutions of (3.14) that can be written down in a simple analytical form. In Sec. IU,
we consider the special case of four nucleons (1V= 2) for which we can write down all the solutions of (3.14).Then,
in Sec. U, we consider the spin-isospin symmetric solutions of (3.14) for arbitrary iU. By spin-isospin symmetric
solutions we mean those solutions of (3.14) that are totally symmetric functions of the spin-isospin variables
5~M~. S~M~ or equivalently of the orbital variables X~

IV. THE SENIORITY-ZERO STATES OF FOUR NUCLEON'S

As an introduction to the structure of Eq. (3.14), we will consider the seniority-zero states of four nucleons in
some detail. For iU=2, Eq. (3.14) becomes

(2pi~+pi2 E)lp(XlSiM1, X2SpM2) g Q(2L+1)[p(XSiM1,XpSQMQ)+lp(A1SiMl))LSQMp)]

+-',g Q C(SiMi)SpMp, Si Mi, Sp Mp)[iL (XiSi'Mi, XiSp Mp )+f(XpSi Mi, l~pSp M,')]=0. (4.1)
~1 ~1 82 ~2

We lose no generality by studying the Sp = Tp =0 solutions of this equation, i.e., those states which satisfyMi+Mz
=SiMi+S&Mp ——0. There are eight spin-isospin states of two pairs that satisfy this requirement and we now turn
to the corresponding eight classes of solutions of Eq. (4.1).

Inspection of Eq. (4.1) shows that we may factor f as

iL (~1S1M1~pS2M2) n(S1M1 SpM2)%L (1~11~2)

where n is determined. by the eigenvalue problem

C(SiMi)SpMp, Si Mi, Sp'Mp )n(Si Mi, Sp Mp )= iin(SiMi, SiMp),
SI'M I',S2' M2'

(4.2)

(4 3)

and iL (XiXp) is determined by the eigenvalue problem

(2pz,+2p&„—E)P(Xihp) —
g P (2l+1)[f(M,p)+f(XiX)]+ p ~g[f(Xllil)+ill(XQXp)] =0. (4.4)

The matrix elements of C needed for (4.3) may be
obtained from Table I. When (4.3) is written out in
detail, it becomes clear that its solutions fall into two
classes —three antisymmetric solutions and hve sym-
metric solutions. The orbital part of the wave function
must of course have the same symmetry that o. has in
order to maintain the total symmetry of the wave
function (4.2). We will first consider the antisymmetric
solutions of (4.3) and (4.4) after which we will turn to
the more interesting symmetric solutions.

For the antisymmetric solutions of (4.3), we have n
given by

and (4.3) is satisfied identically with ~=0. The corre-
sponding orbital parts of the wave functions of these
states are the antisymmetric solutions of (4.4) with
z =0. These solutions are just antisymmetrized products
of single-pair functions and the corresponding energy
is the sum of the two single-pair energies, i.e.,

iL (&iX,)=A (2pi,—Ei) '(2 p)„—Ep) ' (4 6)
and

E=Ei+Ep, (4.7)

where A is an antisymmetrizer and the pair energies
E& and E2 are distinct roots of the equation

n(11; 1 —1)= —n(1 —1,11)= a,
n (01,0 —1)= —n (0 —1,01)=c,

n(10,00) = —n (00,10)= b,

n(10,10)=n(00,00)=0,

(4.5)

1/g=g(2L+1)/(2pg —E), i=1, 2. (4.8)

If we further require these states to be spin and isospin
eigenstates, then only one of the quantities u, b, and
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TABLE I. The elements of the matrix C from which all nonzero
elements may be obtained by use of the symmetries of C given in
Eq. (3.13).

TABLE II, The solution o.'(nnanz) of Eq. (4.11)
with an arbitrary normaliza tion.

SiM;

11
01
11
11
11
10
00
11
10
10
00
11

10
01
11
10

11
01
01
10
00
01
01

0 —1
10
00
00

1 —1
1 —1

10
0 —1
1 —1

10

S 3f
11
01
11
11
11
10
00
11
10
10
00
10
01
00
00
00
01

S,'M

11
01
01
10
00
01
01

0 —1
10
00
00
10

0 —1
00
00
00

0 —1

2
2
1
1
1
1
1
1

1

1
1
1
1—1—1

(pp/p//)

(000)
(200)
(200}
(200)
(200)

2
2
2
2

S T
nrssnp

220 200 000 002 100

1 —1 1 —1 0
1 —1 —1 1 0
0 0 0 0 1
1 2 0 0 0
0 0 2 1 0

sponding solution of (4.11) with an arbitrary
normalization.

The symmetric solutions of Eq. (4.4) have been
derived elsewhere. ' "We list here only the results, which
are

p(hih2) =S(2ei, —Ei) (2ei2 —E2) (4 12)
and

El+EH (4.13)

c of Eq. (4.5) can be different from zero. If we label the
corresponding spins and isospins with a subscript a, b,
or c, we then have 5,=1, T,=O; S~——1, T~——1; and
5,=0, T,= 1. Using the results of Appendix 2, it can
be shown that these states belong to the supermultiplet
whose quantum numbers (P,E',I'") are given by
(1,1,0).

For the symmetric solutions of (4.3), we use a nota-
tion that will be used in the next section for arbitrary
E. In this notation, we have o. given by

n(11,1 —1)=a(1 —1,11)=n(220),

n (10,00) =n (00,10)=n (100),

n(01,0 —1)=n(0 —1,01)=a(002),
n (10,10)=n (200)n (00,00)n (000) . (4.9)

The three variables n, es, and nr in a(n, ns, nr) on the
right-hand side of (4.9) are defined by

n=Si+S2, Ns=SiIMiI+S2IM2I,
»= (1—Si) IMiI+(1—S~) IM~I (4 1o)

Equations for n(m, its, iver) may be obtained from (4.3)
using Table I with the results that

—sn (220) +n (200)—a (000)+2n (002) =0,
2n (220)+ (1—~)n (200)+n (000)—2n (001)=0,
2n (220)—+n (200)+ (1 «)n (000—)+2n (002) =0, (4.11)

2n (220)—n (200)+n (000)—i' (002) =0,
(2—s)n(100) =0.

This system of equations has one eigenvalue A:= —4 and
four eigenvalues ~=2. If we further require our states
to be spin and isospin eigenstates, using the methods of
Appendix 1, then we obtain the solutions listed in Table
II for Eqs. (4.11).In Table II, we have listed the super-
multiplet quantum numbers, the eigenvalue ~ of (4.11),
the spin and isospin quantum numbers, and the corre-

where 5 is a symmetrizer and Ej and E2 are distinct
roots of the equations

1/g+~/(Ep —Ei) =Q (2l+1)/(2cg —Ei),
(4.14)

1/g+i~/(Ei —E,) =P (2l+1)/(2~i —E,).

This completes the solution of the four-nucleon system.
We will show in the next section how the results for the
symmetric states can be generalized to an arbitrary
even number of nucleons.

V. SPIN-ISOSPIN SYMMETRIC, SENIORITY-
ZERO STATES OF 2N NUCLEONS

We now generalize the results derived in Sec. IV for
the symmetric states of 4 nucleons to the states of 2'
nucleons. We will consider the states of 2E nucleons
that are totally symmetric in the spin-isospin variables
5;N;. It will be shown that the wave functions of these
states can be factored into a product of a spin-isospin-
dependent part times an orbital part as was done in

Kq. (4.2) for X=2. Equations that are generalizations
of Eqs. (4.11)—(4.14) will then be derived. Again, as in

Sec. IV, no generality is lost by considering only the
5()——T()——0 states of the system.

We seek the solutions of Eq. (3.14) that are totally
symmetric functions of the variables P i and the variables
5,Mi separately. In order to determine the value of a
totally symmetric function of E six-valued variables
such as the S,Mi in the wave function of one of these
states, one only needs to know six numbers that specify
how many of the variables have each of the six possible
values. Therefore, let us introduce the six numbers

Ã(SM) which are functions of S;M," .S~Ms and which
are defined as the number of SiM; in the set SiM~
5~35~ that satisfy Si=S and M, =M, i.e.,

&(SM) = g ~ss,~~i/;.
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Then, from the preceding remark, we know that the
dependence of the wave function P on the spin-isospin
variables SiM; S&M& can only be through a de-
pendence on the six numbers N(SM) for the totally
symmetric states. Furthermore, since we know the spin
and isospin projections and the total number of par-
ticles of the state, we have the relations

Sp ——Q S;M,=N(11)—N(1 —1),

To——Q (1—S,)M, =N(01)—N(0 —1),

and
N=Q N(SM), (5.1)

n =P S,=N (11)+N (1 0)+N (1 —1),

ns=P S, ~M,
~
=N(11)+N(1 —1),

which must be satisfied by the N (SM). Therefore, only
three of the N(SM) are independent. In order to de-
scribe the dependence of a symmetric state on the three
independent N(SM), we introduce the variables

and

n =Q (1—S,)iM, i =N(01)+N(0 —1). (5.2)

These variables are the generalization of the variables
introduced in Sec. IV in Eq. (4.10). The interpretation
of these variables is as follows: n is the number of spin-

one, isospin-zero pairs and therefore E-m is the number

of spin-zero, isospin-one pairs in the component of the
state; e8 is the number of spin-one, isospin-zero pairs
that have

~
Ms~ =1 and nr is the number of spin-zero,

isospin-one pairs that have
~
Mr

~

= 1 in the component
of the state. The variables e8 and eT are analogous to
the variable m introduced in Ref. 11while e or E-m plays
a role similar to that of the total number of pairs in

that paper. The inverse relations to (5.1) and (5.2) are

N(00) =N n nr—,
—N(0 &I)=-,'(nr&Tp),

(5.3)
N(10) =n —ns, N(1 ~1)= o(ns~So) .

Having defined the variables n, e8, and szT that de-

termine the spin-isospin dependence of the symmetric
wave functions, we now look for solutions of (3.14) of
the form

p(1 N) =8(p S;M;,o)b(g(1—S,)M, ,O)Q(p S,, ps, ~M, ~, g(1—S~) ~M, ~)p(Xy X~), (5.4)

where the first two factors are Kronecker deltas which insure that Sp= Tp=0, 0. is the spin-isospin wave function
depending upon n, ns, and nv, and P(X~ . X~) is the orbital part of the wave function. We obtain equations for u
and by symmetrizing Eq. (3.14). This is done by multiplying the equation by

8(P S,M, ,O)5(g(1—S;)M,,O)8(g S,,n)5(g S,~M'~, ns)&(g(1 —S') ~M'~, nr)
'e 'C

(5.5)

and summing over the variables S»M» S~M~. Before doing this, however, we will derive a combinatorial result
that is needed in order to carry out this program.

In symmetrizing Eq. (3.14), we will have to evaluate many expressions of the form

Aw(So, Tp,n, n„nr) = g 5(E S,M, ,So)5(Z(1—S,)M, ,To)&(g S;,n)
81M I' ~ S~M~

X8(P S,~M, ~,ns)8(g(1 —S,) ~!M, ),nr). (5.6)

This is most easily evaluated by introducing the generating function

G&(uvxys) =
Sp, Tp, n8, n, nT

A~(SoTonnsnv)u 'v yp"x~s,s (5 7)

which can be easily evaluated using (5.6). The result of this evaluation is

G~(uvxys) = (1+s/v+x+xy/u+vs+ uxy)". (5.g)

Expanding this expression, using the multinomial theorem, and identifying the resulting expansion with (5.7)
yields the result

A~(SpT pnnsnr) =
(n —ns)!(N n nv) tP (—ns —Sp)]G(ns—+So)]![', (n& Tp)]!L--', (nr—+To)]!

This expression will be used many times in the symmetrization of Eq. (3.14).

(5.9)
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The symmetrization of (3.14) is carried out by multiplying it by (15.5) and summing on SiMi S~M~. Using
(5.4), we have for the 6rst two terms of (3.14):

L(2(x,+ +2~&„—Z)y(4 .»)—
g P P(2l+1)P(Xi" & ) n)]A)r(ooeeser)~(eeser).

In order to symmetrize the third term of (3.14) we need to evaluate expressions of the form

b(g SM;,0)b(g(1—S,)M;,0)5(P S;,n)5(g S, IM, l,e)sg(P(1 —S,) IM, l,nr)
81MI - ~ 8~M@ 81'M1', 8g'Mg'

)(Q(SiMi, S2M2; Si'Mi', S2'M2')~(m+Si'+S2' —Si—S2,ms+Si'
I
M i'

I
+S2' IMq'

I

—Si IMi I,
—S2IM2lmr+(1 —Si') IMi'I+(1 —S2') IM2'I —(1—Si) IMil —(1—S2) IM21) (5 11)

vrhere the arguments of n are those appropriate for the spin-isospin variables 5&'3/I~', 52'M2', 53M3, . ,5~%~. The
sums on S~M~ SivM~ in (5.11) may be performed using (5.6) with the result that (5.11) becomes

81M I82MPSI'MI'8g'Mg'
A~ 2(—SiMi —S2Mg, —(1—Si)Mi—(1—S2)M2,e—Si—Sg)ms —SilMil

(1—Si) I
Mi

I

—(1—S2) IM& I)c(S&M&,S&M2, Si'Mi', S&'M2')~(e+Si'+S2' Si—
—S2,ns+Si' IMi' I+S2' IM2'I —SilMil —S2I M2l, mr+ (1—Si') IMi'I+ (1—S2') IM ~'

I

—(1—S,) IM, I

—(1—S,) IM, I). (5.12)

The evaluation of (5.12) is rather long but it is completely straightforward. using the values of C given in Table I.
We vrill not reproduce the details of this evaluation here since it vrould, take about as long to read, it as it vrould to
redo it. Rather, we will record here the result of (5.12), which is

[4A & 2(2)0,e 2)es —2)er)+—SA~ 2(1,1)n 1,ns —1)nr 1)+4A—+ 2(0—,2)e)ms, er 2)+SA + 2(1—,0&n 2,es—1&er)—

+SA ~ 2(1,0,e—1,ns 1,er)+—SAir 2(0,1,e l,ns, e—r 1)+SA~ —2(0,1,m, ns, nr 1)—
+SA~ 2(1,—1,n —1,es—1,er —1)+A~ 2(0,0,n 2,es,nr)+—4A~ 2(0,0,n 1,es,er)+—A~ g(0,0,m, es,er)]
Xn(e, ms, mr)+A~ 2(0,0,e 2,es,n—r) [n(e 2,es,e—r)+2n(e, ms+2, er) 2a(n —2,ms, e—r+2)]
+2As 2(0,0,n —2,ns —2,er)Ln(n, ns —2,er) —n(n —2,es —2,nr)+2u(n —2,ns —2,er+2)7
+2A~ 2(0,0&e,ns, nr 2)[n(n, ms, e—r 2) n(m+2,—es,e—r —2)+2m(e+2, ms+2, er —2)]

+A~ 2(0,0,n,ns, nr)[n(n+2, ns nr)+2n(e, ns, mr+2) 2n(e+2—,ms+2, er)]. (5.13)

A further simplification of (5.13) can be accomplished by using (5.9) to express all the As 2 s that appear in (5.13)
as numerical factors times A~(00nesnr) Substitutin. g these results into (5.13), we obtain

{I$($—1)+2(n—ms) (7—n —nr)+ (21V—1—2ns —2mr) (ms+mr)+2nser]o(ens nr)+ (m —n s) (n —n s—1)

XL (n —2,es,er)+2 (n,ms+2, mr) —2 (e—2,ns, m +2)]+-'ns'I (e,ns —2,e )—(n —2,n —2,m )
+2~(m 2,n, 2,n,+—2)]+ ,'—er'C~(n, es,er-2) o(e+2,n—s,mr—2)+2~(e+ 2,—ms+2, mr 2)]-
+ (N ner) (E e—m.

—r 1)(e(—e+—2,ns—,nr)+2n(e, ms, mr+2) —2n(m+2, ms+2, nr)])
XA~(00neser)(&(Ã 1) (5.14)— .

Following the development of Sec. IV, we determine n so that the curly brackets in (5.14) equal 1V($—1)x
Xo(nesmr). When this is satisfied, the third term of (3.14) becomes

—xgP'y(Z, X;. X," X )A (Oonn e ) (ne e ). (5.15)

Combining (5.10) and (5.15), we obtain the equation

(2~„+" +2~,„—Zg(X, " X )—g g P(21+1)y(~," X" »)+-,"gP'P(~," X,""X;".»)=0 (5.M)
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fol' thc orbltRl pRlt of tllc wave fullctloll. Tllls cqllRfloll, togcflMI wlfll tile cqllatloll fol Q dcllvcd flolll (5.14),

LN(N —1)(1—«)+2(e—ns) (N—n —er)+ (2N —1—2es—2er) (ns+ez)+2eser jn(n, ns, nr)
+ (n —ea) (e—na —1)Ln(e —2,ns, nr)+2n(e, ns+2, er) —2n(e —2,ea,er+2) j+-,'es'fn(e, ns —2,nr)

~(e 2—,e8 2—,er)+2n(e 2—,ns 2—,nr+2) j+2er-'fu(e, es,er 2—) a—(e+2,es,er 2—)
+2 (e+2,n,+2,e, 2—)j+(N n—n—,){N n—n—, 1—)P (n+2,e„n,)

+2n{n,es,er+2) —2n{n+2,ns+2, er) j=o, (5.17)

determine the wave function (5.4). The remainder of this paper is devoted to the properties of the solutions of
Eqs. (5.16) and (5.17).

We first consider the solutions of (5.17). From their definitions (5.2), the ranges of the variables e,nz, and nr
are given by

0&e&E, 0&e8&e, 0&my &X—n. (5.18)

Furthermore, e8 and e~ must be even numbers. If we require the states to be spin and isospin eigenstates, then we
have two additional equations to be satisfied by e. These equations determine the N8 and ep dependence of a
and are derived in Appendix I, where it is shown that if the state is an eigenstate of S' and T' with eigenvalues
S(s+1) and T(T+1), respectively, then a must satisfy the equations

—,'na'~(e, es—2,er)+$2e+ (2n —1)ea—2ns' —S(S+1)]n(e,es,er)+2(e —ns)(e —es—1)~(n,ms+2, nr) =0 (5 19)

—,'»1~(e,e„e,—2)+L2N —2n+(2N —2n —1)»—2e&'—T(T+1)j~(e,e&,e&)

+2(N —e er) (N n—ez —1—)n(—e,es,ez+2) =0. (5.20)

Thlls, If I«(e,o,o) ls kllowI1, Eqs. (5.19) Rlld (5.20) call be used fo dctcl'Illlllc II (n,ns, er) fol' Rll valllcs of ns Rnd nr.
Conversely, if S and T are known, then {5.17) can be written for ns=er=o and (5.19) and (5.20) can then be
used to eliminate a(n02) and II(e20) from it. The result of this is a single equation for n(noo). We will now carry
ollt tllls reduction. Wc first wl'ltc Eqs. (5.17), (5.19), Rnd (5.20) fol" ns=nr=o, l.c.,

fiV (N 1)(1 —«)+2—n(N n)]n(—n,o,o)+e(e 1)$n(—n 2,0,0)—+2n(e, 2,0)—2n(e —2,0,2)j
+ (N —e) (N —e—1)Ln(e+2,0,0)+2II(e,0,2)—2e(e+2, 2,0)j=0, (5.21)

L2n —S(S+1)ln(e, 0,0)+2n(n —1)~(e,2,0) =O, (5.22)

L2N —2e—T(T+1)jn (n,o,o)+2 (N—n) (N —e—1)II(e,0,2)=0. (5.23)

Solving (5.22) and (5.23) for II(n20) and a(n02) in terms of 0;(eoo) and substituting the results back into (5.21)
ylcw. s the cquatIon

e(n —1)I (N —e+3) (N—n+2) —T(T+1)j
n(e —2,0,0)+LN(N —3)+S(S+1)+T(T+1)

(N e+2) (N —n+1)—
(N—){N—e—1)f(n+3) (e+2)—S(s+1)]

X 2e(N —e)—N (N —1)«la(n, o,o)+ e(e+2,0,0)=0 (5.24)
(n+2) (e+1)

for a(noo). We thus have n {nesnr) as an eigenvector of
three tridiagonal matrices, one in each of its three
arguments.

Wc hRvc cxpliclt cxprcssions for tIIc clgcnvRlUcs of
(5.19) and (5.20) 111 tclllls of 'tlM spill Rnd lsospln of flic
state. H0%'ever) %'c hRvc not yct dcrIvcd Rn expression
for the eigenvalue «of (5.24). We will give a simple
derivation of this expression after we consider the
orbital part of the wave function. A detailed algebraic
derivation of a in terms of the eigenvalucs of the Casimir
operator CI, (2.11), is given in Appendix 2. The result

of these dcrlvations 18

N (N 6)+P (P+4)+P'—(P'+ 2)+P"'

N (N—1)
(5.25)

%'herc thc P s Rrc thc supcrmultlplet quantum DUIIlbcrs
of the state. %C now turn to consider the orbital part
of thc wave function.

The orbital parts of the wave functions of these sym-
metric states are given by the totally symmetric solu-
tions of Eq. (5.16). These solutions have been derived
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elsewhere'" and we list here the results of this deriva- where I'0 is the space-exchange operator
tion. The function f is given by

(s.34)

(5.26)

and the energy of the state is given by

jv=Q g, (5.27)

where 5 is a symmetrizer and the pair energies E;satisfy
the system of coupled algebraic equations

Therefore, all the states have the same space exchange
quantum number, I'0=0. The values of P and I"foBow
from the spin-isospin symmetry. Eq. (5.33) may be
checked by counting states and verifying that all the
spin-isospin symmetric states are included in the super-
multiplets (5.33). In order to count the number of spin-
isospin symmetric states, we use the result" that the
allowable values of S and T, which are obtained from
Eqs. (5.19) and (5.20) for 6xed e and E I, are—

1 n 1 (21+1)-+.Z' =E, i=1" x, (s.28)
=' (& &') i —(2 i—~')

plus the subsidiary conditions

5=m, m —2, 0or 1

T=E—m E—e—2 ., Oor 1,
(s.3s)

E;4E;, for all i&j. (5.29)

Thus, these states have the structure of the states of a
system of independent pairs with all the many-body
effects included in the coupling term of (5.28). It should
be emphasized that the single-particle spectrum eq in
(5.28) is completely arbitrary.

If we compare the results of (5.27) and (5.28) for a
single degenerate shell with those of Flowers and
Szpikowski, ia then we can derive the expression (5.25)
for ~. For a single degenerate shell, whose single-particle
energy we set equal to zero, Eq. (5.28) becomes

P (2S+1)P(2T+1), (5.36)

where the sums are over the values given in (5.35). The
total number of states is then found by summing (5.36)
over the possible values of e, i.e., m=0, 1, Ã.
Carrying out this program; we have

where the alternatives 0 or 1 are taken as e or E—e
are even or odd. The total number of states, for 6xed
e and E, is then

1/g+~ 2' 1/(&,—&') = —(21+1)/&;,

i= 1 X. (5.30)

If (5.30) is multiplied by E; and then summed on i, the
expl esslon

E/g = iV (2l+1)+-',—iV (Ã 1)x (5.3—1)

for the energy is obtained. Comparing this with the

expression

F//g = —iV (23+1)+-,'[$(X—6)+P(P+4)
+P'(P'+2)+P'" j (5 32)

obtained from Eq. (26) of Ref. 13, we get the desired
result (5.25). This result is rederived in Appendix 1,
where the eigenvalue a is related to the eigenvalues of
the Casmir operator Cg defined in Eq. (2.11).

The values that ~ may take on can be given more
explicitly by specifying which supermultiplets occur in
the set of spin-isospin symmetric states. The values of
the supermultiplet quantum numbers I', I", and I'"
that are compatible with spin-isospin symmetry are

P=1V, 1lt —2, , 0 or 1, P'=0, P'=0. (5.33)

The fact that I'"=0 follows from

LI"O,B),t(SM) J=0,

Q P (2S+1)(2T+1)=-,' P (n+1)(n+2)

/X+5~
X (X—~+1)(X—~+2)=

~hs i'
where the erst equality is the result of doing the sums
on S and T over the values given in (5.35) and the final

expression, given in terms of a binomial coefficient,

may be obtained by doing the sum on e explicitly. To
check this number with the number of states in the
supermultiplets (5.33), we use the result"

d-«P00» = —:,(P+3)(P+» (P+1) (5.38)

for the number of states in the supermultiplet (P,0,0).
Summing (5.38) over the allowable values of P given
in (5.33) gi's Eq. (5.37) for the total number of states.
Thus, all the spin-isospin symmetric states are con-
tained in the supermultiplets (5.33) and a complete
set of spin-isospin quantum numbers for these states
is the set (PSSOTTO).

We conclude this section by summarizing its results.
The wave functions of the seniority-zero, spin-isospin

~6 H. A. Jahn, Proc, Roy. Soc. I,'London) A201, 516 (1950).
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symmetric states of the Hamiltonian (2.8) are given by

$(1 ~ 1V)=8(g S;M,,So)&(g(1—S')M', To)n(P S;,P S,~M, ~, P(1—S,) ~M, ~)il'(lii Xiv) ~ (5 39)

The spin-isospin-dependent part of the wave function o. is determined by the three eigenvalue problems

n(n —1)[(N—n+3) (N —n+2) —T(T+1)]
n(n 2,—0,0)+[N(N 3)—+S(S+1)+T(T+1)

(N —n+ 2) (1V n—+1)
(N —n) (1V—n —1)[(n+3) (n+ 2) —S(S+1)]

+2n(N —n) —N(N —1)ii]n(n, 0,0)+ n(n+2, 0,0)=0, (5.40)
(n+ 2) (n+ 1)

benson(n, ns 2,nr)+ [2n+ (2n —1)ns 2n—s' S(S+1)]a(n,nsnr)+2 (n n—s) (n n—s 1)—n(n, ns+2, nr) =0, (5 41)

,'nr'n (-n, n s,nr 2)+—[2N 2n+—(21V 2n—1)—nr —2nr' —T(T+1)]a(n,ns, nr)

+2(1V n nr—)(N—ns n—r 1—)Xn—(n,nsnr+2)=0, (5.42)

for So=To=0. The eigenvalues K of (5.40) are given by

N(N 6)+P(P—+4)

N(N —1)
(5.43)

(6 1)

where P=N, N —2, , 0 or 1. The eigenvalues of single-particle energy ~q and the theorem states that
(5.41) and (5.42) are given by S=n, n —2, , 0 or 1

and T=N —n, N —e—2, 0 or 1. The orbital part
of the wave function is given by

¹=
86

PP, i l~o ) = Sg (2ei —E;)-', (5.44)

where S is a synUnetrizer and the pair energies E;
satisfy the system of equations

1/g+i~ Q' 1/(E, E~) =Q (2l+—1)/(2ei, —E,) 1

N

Ni, = Z
i=1

(6.2)

This may be easily verified by using the stationary
property of the expectation value of the Hamiltonian
in one of its eigenstates. Using (5.45) and (5.46) for
E in (6.1), we get

i =1 . N, (5.45) where the partial derivatives BE;/BE& satisfy the
system of linear algebraic equations

which depend upon the value of I~:. The energy of these
states is given by the sum of the E;:

E—Q E,
i=1 2(2l+1)

X i=1 N, (6.3)
(2eg —E )'The states are labeled by the spin-isospin quantum

numbers PSSoTTo and by the root of Eq. (5.45) to
which they belong.

We will return to these equations in Sec. VII, where

we will discuss some features of their solutions. In
Sec. VI, we give a brief derivation of the occupation
probabilities for the single-particle levels X.

obtained by differentiating Eq. (5.45) with respect to
ei. In Eq. (6.3), C; is defined by

C;=Q (2l+1)/(2eg —E~)'. (6.4)

1 BE&', N 1 BEy
C,—~ Q' +s Q'

i=i (Ei—E;)' Beg ~=i (E, E)' Be), —
(5 46)

VI. OCCUPATION PROBABILITIES

The occupation probabilities for the levels X of the
potential well, ¹=(lt ~N&, ~P), may be derived using a
general theorem applicable to Hamiltonians that are
linear in a parameter. In this case, the parameter is the

Ni, ——2(2l+1) Q a;/(2e), —E;)',
i=1

(6.5)

Equation (6.2) may be further simplified by using
Cramer's rule to solve (6.3) and substituting the results
into (6.2). The result of this substitution is

N
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C,—K p'
~=1 (E—E)'

Since (6.5) implies

E a,
a,+s P' — =1,

i=i (E;—E;)'
0 = 1 1V. (6.6)

where the coefFicients a; satisfy the system of equations I et ~ST) denote a seniority-zero state with total
spin S, total isospin T, and 5o ——To=0. This state may
be expanded in the set of states (3.1) as

n(stM1 .Sir3fy)
8IMI ~ ~ 8@M~

and (6.6) imphes that

P u;c, =E,

it may be easily shown that the relation

Q ¹=2$
ls satis6cd.

Algebraic techniques for calculating the expectation
values of other operators, similar to those used in the
case of J=O pairing between identical nucleons, " can
now be developed. However, we will not do this here
since it leads to a long calculation that does not shed
much light upon the structure of the eigenstates.

VII. CONCLUSION

Ke have derived equations for the seniority-zero
spin-isospin symmetric states of 2E nucleons in a
potential well with an arbitrary splitting of the single-
particle levels. These states have the feature that the
spin-isospin dependence of the wave function is com-
pletely separated from the orbital dependence. Thus, the
calculation of one of these states is in two separate
pRrts. First) thc spin-lsospln wRvc function ls cRlcu-

lated and then the orbital wave function is calculated.
The only coupling between these two calculations is
through the eigenvalue ~ whose value is given by Eq.
(5.43). Thus, if only energies and occupation probabil-
ities are wanted, then the spin-isospin problem can be
ignored and Kq. (5.45) solved for the pair energies E,
and Kq. (6.5) evaluated for the occupation probabili-
ties. The existence of real and complex pair energies as
roots of Kq. (5.45) may be studied using the methods
of Ref. 17. That this is a practical solution has been
demonstrated by some extensive numerical calcula-
tions for J=O pairing between identical nucleons, '
where the equations to be solved are the same as Eq.
(5.45) with it=2. If, in addition to the orbital part of
the wave function, the spin-isospin part is needed, then
it may be obtained from Eqs. (5.40)—(5.42) with
relative ease, since the eigenvalues of all three equations
are known.

APPENDIX 1. SPIN AND ISQSPIN EIGENSTATES

In this Appendix, we derive Eqs. (5.19) and (5.20)
for the spin and isospin eigcnstatcs. The methods used
are the same as those that were used in Ref. 12 to
calculate isospin eigenstates.

» R, &. Richardson, J. Math. Phys. 6, &034 (&96&)

where we have suppressed the orbital quantum numbers
X. In what follows, we will denote 5;M; by i when this
notation leads to no confusion. Two equations may be
obtained for n by operating on (A1.1) with S' and
T' and equating the results to S(s+1)

~
ST) and

T(T+1)~ST), respectively. For the spin eigenvalue
equation, we have

S' I ST)=S+S
i
ST)

= g n(1" X)S+S at(1)" at(X) ~0)

= 2 n(1 "&)(Z(II &'(&))Ls+,Ls-8'(i)]]
g e ~ eg

+z (n ~ (~))
', j Ig~, j

In order to evaluate {A1.2) w'e define the matrices
C8p by

Ls+,&'(1)]=v2 Z C8+(i,i')&'(i') (A1 3)

These matrices may be evaluated by standard tech-
nlqUcs with thc lcsults that

C8+(S~;s'~') =414 1(&M0&M i+4r 14m o),
(A1.4)

C8—(SÃ, S~ ) ~81~8'1(~Mt~M'0+5M04I' —1) ~

If (A1.3) is substituted into (A1.2) and the result
equated to S(s+1)

~
ST), then the equation

2(p Q n(1 i' iV)C8 (i' i".)C8+(i" i)
s=l 8 M 8;"3f;"

N

+ p' p n(1 i' J' 1V)C8 (i', s)C8+
s, j=l 8;M;8)ref;~

X(j' j)}=S(S+1)n(1"AT) (A1.5)

ls obtained for o.. Thc lsospln clgcnvR1Uc problem yields
a similar equation in which the matrices C8~ have been
replaced by Cpg on the left-hand side and 5 has been
replaced by T on the right-hand side. The matrices
Cr~ are defined by Eq. {A13)with S~ replaced by Tg
and are given by Eq. (A1.4) with the 6rst two factors,
~8i~8 i, replaced by ~8o~8 o

Fol' tile spill-isosplll syrlliiietllc states, Eq. (A1.5)
takes a particularly simple form in terms of the variables

e, 08, and nr defined by (5.2). In this case, substitution
of (A1.4) into the terms of (A1.5) yields



159 PA I RI NG HAM I LYON IAN. I 805

u(1 i' N)Cs (i',i")Cs+(i",j)
i=1 Ssf M S)'M~'

These matrices may be evaluated using Eq. (2.5) for
Bt and Eq. (2.11) for Q, with the result that

= (n —-'ns)u(nnsnr), (A1.6) q ... , (SM,S'M') =2 P (Oio'ISMs)(rim'I TMp)

i, j=l S M Sg'Mg'
u(1 i' j' N)Cs (i',i)Cs+(j',j ) X (uiuIS'Ms')(&i7'I T'Mr'). (A2.4)

,'ns'u-(n, ns 2,n—r)+ns(n ns)—u(n, ns, n, )

+ (n n—s) (n ns—1)—u(n, ns, nr+2) . (A1.7)

Substitution of (A1.6) and (A1.7) into (A1.5) then

gives

', ns'u(-n, ns 2,nr—)+[2n+ (2n —1)ns 2ns' —S(S+—1)]
Xu(n, ns, nr)+2(n —ns) (n —ns —1)

Xu (n,ns+ 2,n&) =0, (A1.8)

which is the Eq. (5.19) that was to be derived.
The isospin eigenvalue equation may be derived in

the same way or it may be obtained from Eq. (A1.8) by
interchanging ns and e~ and e and X—e. The resulting
isospin eigenvalue equation is

,'nr'u(n—,ns, nr 2)+I 2—1V—2n+ (2N —2n —1)nr
2nr' T—(T+1—)]a(n,ns, nr) +2 (N n nr)— —

X (1V nnr —1,)—u (n, n—s,nz+2) =0, (A1.9)

which is Eq. (5.20).

APPENDIX 2. CASIMIR-OPERATOR
EIGEN STATES

In this Appendix the value of s, Eq. (5.25), is derived

by relating ~ to the eigenvalues of the Casimir operator
C2 which. is defined by Eq. (2.11).

We denote a 2S-particle seniority-zero eigenstate of
C2 by INPP'P"). The corresponding eigenvalue of C2
is N'+P(P+4)+P'(P'+2)+P"'. Expanding this state
in the set of states (3.1), we have

I
NPP'P")= Q a(1 1V)Bt(1) B"(N) IO), (A2. 1)

l r ~ e N

where again the symbol i stands for the spin-isospin
variables S;M; and the orbital quantum numbers X

have been suppressed. Operating on this state with C2
which is defined in Eq. (2.13), we have

Consider the first term in Eq. (A2.2). Using Eq.
(A2.3), this term may be written as

Z LQ- "",LQ. . .-,B"(')]]
o ro'r'

g q......, (i,i")q„„...(i",i')B'(i") . (A2.5)
o ro'r' i',i"

Using Eq. (A2.4), the matrix product of the two q's

in (A2.5) may be identified as a product of two matrices
SK of Eq. (3.7) which in turn may be identified with
the matrix C of Eq. (3.12). Thus, (A2.5) may be
written as

Z IQ...., ,IQ. . ..„B"(')»
o ro'v'

= P C(i,j; i', j)Bt(i') (A2.6)

= 6Bt (i),

where, in the last equality, we have used

C(S M', Spl, ; S''M'', S~M~) = 6&sf;sf &~i;~;, (A2. 7)

which may be derived from the de6nition of C. The
second term of Eq. (A2.2) may be written as

LQ-,"",B'(i)]LQ"","B'(j)]
o' r, o' r

q-.""(i,~')q"",-(i,i ')B'(~')B'8')
i'j' rr, o' r'

=P C(ij;i'j')Bt(i')B"(j'), (A2. 8)

where the second equality follows from the expressions
for q in Eq. (A2.4) and for C in Eqs. (3.7) and (3.12).

Substituting Eqs. (A2.6) and (A2.8) into Eq. (A2.2)
and equating the result to [N'+P(P+4)+P'(P'+2)
+P'"]

I
1VPP'P") yields the equation

C INPP'P")= r, Z a(1 N){Z(II B"(&))
l ~ N rrro'r' i=l kgi

XLQ..,....,IQ.... ,.„B(')»+ Z (II B (~))
i, j=l kQi, j

x I Q.„...B"(i)]LQ"".-,B'(j)]}I
0&.

In order to evaluate the commutators in (A2.2),
we introduce the matrices q„... (SM,S'M') which are
defined by

LQ.„...»(SM)]
q, ,;;(SM,S'M') Bi (S'M') . (A2.3)

S'M'

N

C(i,j ~' j')u(1
i, j=i S;~M;rS;rM;~

= LN (N 6)+P (P+4)+P—(P'+2)+P'"]
X a(1 N) (A2 9)

for n. However, in Sec. V, the eigenvalues of the matrix
C were denoted by N(1V 1)i~. Comparison w—ith (A2.9)
then yields the value

N (N 6)+P (P+4)+P'(P—'+2)+P"'
K= (A2. 10)

1V(N —1)

for s, which is the value (5.25) that was to be derived.


