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The two-pion-exchange three-body A-nucleon force is considered in nuclear matter. The m-A interaction is
consistent with the known hyperon resonances, and contributions from the Z channel are included without
neglecting the Z-A mass difference. Nuclear correlations produced by tensor forces and hard cores are in-
cluded, as well as the exchange terms, which arise from the antisymmetrization of the nuclear wave functions.
The A and Z hyperons are also assumed to have hard cores. The contribution to the potential energy of a A
hyperon in nuclear matter is found to be 3.6 MeV (repulsion). This number is an overestimate since part of
the A.-N short-range correlations were neglected. Because of its strong density dependence, the contribution
in light hypernuclei is probably fairly unimportant.

l. INTRODUCTION

~ 'HERE have been several successful attempts to
understand the nucleon-nucleon interaction as a

one-boson-exchange mechanism. ' In particular, the
one-pion-exchange potential (OPEP) gives the long-
range part of the two-nucleon interaction. ' In 5-wave
scattering a short-range repulsion dominates at high
energies and this is believed to be the result of the
exchange of heavy vector mesons, such as the ~. The
relatively strong medium-range attraction which is
responsible for the nuclear binding is usually assumed
to be the result of the exchange of two pions in a reso-
nant or almost resonant 5 state. An enhancement of the
two-pion exchange also makes it possible to explain the
7r-S phase shifts including the nucleon isobars. ' Further
indications for a 7r-x attraction are found by analyzing
production processes and decays leading to 6nal states
with two or more pions, although the evidence may not
be quite conclusive.

The qualitative success of this model in the two-
nucleon problem makes it natural to use similar ideas
for the A-S interaction, ' Since the A hyperon is an
isospin singlet, T= 1 particles, such as pions, cannot be
exchanged in the usual sense, and the force does there-
fore not contain the OPEP. Instead, exchange of E
mesons becomes possible. Since we shaH deal mostly
with the long-range part of the interaction, the most
important qualitative difference between the E-S and
the A-E forces is the absence of the OPEP in the latter.
We assume that there is a strong short-range repulsion
(hard core) in both cases.

The number of A.-E scattering events measured so far
is not large enough to determine the interaction in any
detail. Most of the information has therefore been
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obtained from analyses of hypernuclei. 5-shell hyper-
nuclei (i.e. , with baryon number A(S) have been
extensively analyzed using variational methods. These
systems give reliable information only about the S-state
interaction. In order to obtain knowledge of other
angular momentum states it is necessary to investigate
heavier hypernuclei. It seems to be possible to under-
stand the binding energies of both 5- and P-shell
hypernuclei on the basis of a local two-body A-E
potential with a hard core. '

The other extreme, heavy hypernuclei, serves as a
test also of higher-partial waves in the A-E interaction.
As a simplified model, the case of a A-hyperon in nuclear
matter offer calculational advantages over finite hyper-
nuclei. The "experimental" value of the binding energy
8 of the hyperon must then be found by extrapolating
from actual experiments, Several estimates of this kind
have been made, a recent value of the binding is'
8=27+1 MeV.

Theoretical estimates of the binding of a A hyperon
in nuclear matter have also been made. '—"Since these
have a tendency to predict too much binding, it has
been suggested that there might be some suppression of
the higher-partial waves of the potential. s Another
possibility to explain the discrepancy is to introduce
many-body forces. ' A recent calculation by Clark and
Westhaus" indicates that the local two-body forces
obtained from light hypernuclei overbind the A particle
in nuclear matter by several MeV. Other authors have
found similar discrepancies. "

The longest possible range in a A-E force corresponds
to the exchange of two pions. Because of the enhance-
ment via the m-7r attraction, this process is likely to give
a significant amount of attraction. In a many-body
system these two pions might go to different nucleons,
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giving rise to a three-body force. That is the process we
shall consider, assuming that it corresponds to the main
part of the many-body forces.

2. TWO-BODY GROU5D-STATE CORRELATIONS

We shall assume that most of the potential energy of
hypernuclei comes from two-body forces. It is then
sufhcient to evaluate the contribution from the many-
body forces in first order of their strengths. The pro-
cedure we have in mind is the following: We first solve
the many-body problem with two-body forces (at least
in some approximation). This corresponds to obtaining
a correlated many-body wave function which approxi-
mates the ground state of the system. We then evaluate
the contribution from the many-body forces by taking
their expectation value with respect to this wave
function. If the resulting energy is small, this procedure
is justified.

In order to obtain the approximate ground-state wave
function of the A+nuclear matter system, we shall have
to use the A-N as well as the N-N two-body forces. The
contribution from the many-body forces depends on
these. As a criterion on the ground state, we may
demand that it corresponds to approximately the
correct binding energy of the system. We shall use the
technique of many-body theory; the complete rnany-
body wave function will therefore never explicitly
appear in the calculations.

The contribution from the many-body forces should
be evaluated at least to the same accuracy as the calcu-
lations of the binding from two-body forces. At present
this would allow an uncertainty of 2 or 3 MeU. Assum-

ing that all of the difference between the theoretical
estimates and the experimental value is due to the
three-body force, the permissible uncertainty would
still be of the order of 30/q. It does therefore not seem
necessary to treat the nuclear matter part of the prob-
lem in its full complexity; we shall use a simplified
version of the Brueckner theory due to Moszkowski and
Scott."This method separates the two-body potential
into short- and long-range parts. The separation dis-
tance d is defined so that the inner part of the force
gives no contribution to the phase shift in the scattering
of free particles. Since the short-range part of the force
tends to scatter particles into intermediate states of
high momentum, it is not seriously affected by the
exclusion principle in nuclear matter. In a first approxi-
mation one can ignore this part of the interaction
completely, and the long-range part is weak enough to
be treated as a perturbation. It is possible to construct
correction terms to this procedure; for our purposes this
is not necessary. Strictly speaking, the separation
method can only be applied in cases where the force
outside the hard core is sufficiently attractive; the
separation distance will also depend on the relative

'3 S. Moszkowski and B.Scott, Ann. Phys. (N. Y.) 11,65 (1960).

energy and angular momentum of the two-body
system. Further, the existence of noncentral forces, such
as the OPEP, will make the definition of the separation
distance less obvious. We shall ignore these difficulties
and neglect the correction terms as well as the state
dependence of the separation distance. With these
approximations nuclear matter will still be bound with
a reasonable binding energy. The neglected effects are
mainly important for the nuclear saturation, and the
density dependence of our results will therefore not be
very meaningful. The separation method was first used
to explain nuclear spectra in a shell-model calculation
by Kallio and Kolltveit. '4

If we represent the N-N force by the Hamada-
Johnston" potential, the separation distance turns out
to be around d~~ ——1 fm, depending on the energy and
angular momentum of the two-body system. We use
that value throughout this paper.

The N-N and A-N interactions differ by more than
the OPEP. The spin-averaged A.-N interaction appears
to be somewhat less attractive than that of the short
and medium-range parts of the N-N interaction. We
assume the same hard core in A-N and N-N interactions,
and assign the difference to the medium-range inter-
action.

The A hyperon can emit a pion in nuclear matter and
become a virtual Z particle. It would therefore be
desirable to have data about the Z-N interaction. Un-
fortunately, there is little knowledge of this. It is not
possible to draw any conclusions about the short-range
part of the interaction from the available data on
Z absorption in hydrogen. "We assume it to be roughly
similar to the N-N interaction.

3. TWO-BODY AND THREE-BODY FORCES

Several authors have considered two pion exchange
three-body A-nucleon forces." A three-body force of
this kind arises when the A emits two pions which go to
different nucleons. Alternatively, we can look upon the
process as m-A scattering, the pions being virtual (off
their energy shell) and created and annihilated by the
nucleons. A general graph for this process is given in
Fig. 1, where the two nucleons are in the states ki and

FIG. 1. General graph for the
two-pion-exchange three-body A-
nucleon interaction. The ~-h. inter-
action is not speci6ed here.

"A. Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964).» T. Hamada and I. Johnston, Nucl. Phys. 34, 382 (1962)."W. M. Dante and E.M. Henley, Phys. Rev. 144, 1224 (1966).» J. D. Chalk, III, and B. W. Downs, Phys. Rev. 132, 2727
(1963) and references cited therein.
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FIG. 2. A contribution to the two-
body A-S force produced by the ex-
change of two pions. Since the two-
body force is dined to reproduce the
interaction between free particles,
there is no restriction on the summa-
tion over the intermediate states h2
of the nucleon.

k, k~

F»0. 3. This graph illustrates the
combined expectation value of the
two-pion exchange two- and three-
body A.-nucleon forces in nucleon
matter.

k~ before and k»' and k2' after the interaction. The
dotted line represents the pion. We assume the A to be
in a zero-momentum single-particle state since this
state has the strongest binding in the Hartree-Fock.
approximation. The model of the x-A interaction is not
specified at this stage, primarily we shall need the
forward-scattering amplitude.

When evaluating the contribution to the binding
from the three-body force in Fig. 1 in a many-body
system, it is necessary to make sure that the two
nucleons really are not the same one. Considering A-Ã

scattering in free space, which we defime to proceed via
two-body forces only, we note that there is a related
graph, given in Fig. 2. By comparing the contributions
from these two diagrams in nuclear matter, we will make
sure that there is no two-body component in the three-
body force.

Because the two-body force is defined to reproduce
the interaction between two particles in free space, it.

contains the diagram in Fig. 2 with an implicit summa-
tion over the states k2 of the intermediate nucleon. In
a field-theoretical treatment this summation would
reduce to a propagator and a projection operator for
positive energy states. The contribution to the binding
of the A. particle in nuclear matter from this process is
in lowest order obtained by equating k» and k»' and
summing over all states in the Fermi sea. In the Gold-
stone diagrammatic language this is denoted by joining
the two external nucleon lines. We thus get the nuclear
matter diagram in Fig. 3, where k» is restricted to within
the Fermi sea, and k~ should be summed over all values
without respect to the Pauli principle.

When evaluating the expectation value of the three-

body force, we also require the state after the inter-
action to be the same as before. This means that we

must put k»= k~' and k~= k»', because a nucleon cannot
emit even a virtual pion and remain in the same state.
Joining the lines, the structure of the graph will a,gain
be that of Fig. 3. This time, however, both the nucleon

lines correspond to states inside the Fermi sea. The
contribution from this graph will also differ by an
over-all minus sign. The three-body force therefore
cancels part of the two-body force, in fact it cancels
exactly the part which is forbidden by the exclusion
principle. It is essential to treat the three-body force as
such ratger than just as a quenching of the two-body
force, since it is then possible to discuss the influence of
the nuclear correlations in configuration space.

In the introduction it was noted that the enhanced
two-pion exchange can be assumed to be an important
source of binding for the A hyperon. Since the three-
body force can be thought of as a quenching of this
two-body force, w'e expect the three-body force to be
repulsive.

4. LOW-ENERGY e-A. INTERACTION

As mentioned above, the important part of the three-
body force is the vr-A. scattering amplitude. It is essential
to have a reasonably good model of this process in order
to be able to evaluate the strength of the three-body
force with any accuracy. There are not enough data on
total cross sections to make it possible to evaluate the
forward-scattering amplitude from a dispersion relation,
in contrast to the situation for z-A scattering.

An ambitious semiphenomenological study of low-

energy m-A scattering has been made by Martin. "He
uses the fact that there is a resonance, the I'~" (138&),
in the P3~2 channel. Contributions from Z and V»*

exchange and the exchange of a low-energy S-wave x-x
pair were evaluated to dispersion relations for the P3~2
m.-A scattering amplitude. It was possible to find an
amplitude which was self-consistent on the physical and
crossed physical cut simultaneously, provided the
coupling constant to the 2 has the value

Ggg '/4vr=10. 9.

(This was not possible without the ~-~ pair. ) A constant
related to the P3~2 scattering length was also evaluated.
One may therefore hope that continuing this scattering
amplitude below the vr-A. threshold will indeed estimate
the actual contribution from this state. Ke represent
the P»~& amplitude by the Z pole, using the coupling
constant given above. This may be a good approxi-
mation, since the point at which we shall use the ampli-
tude is close to this pole.

There is little knowledge about the 5-wave x-A
interaction. No resonance has been found in this state.
The polarization due to final-state interactions in the
weak decay —+h.'+m. gives information about the
S-wave scattering length, Ref. 17 obtains the value
ao ———0.08+0.20 in units of the pion Compton wave-
length. Since the sign is not determined and the magni-
tude is small, we neglect the S-wave contribution. For

» B. R. Martin, Phys. Rev. 138, B1136 (l965). %e neglect the
fact that later experiments have indicated a smaller width of the
P'~* than assumed by Martin.
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lack of data we shall also neglect partial waves higher
than I' waves.

The pions involved here are virtual, having a space-
like four-momentum. Different models for estimating
possible changes in the amplitude for this reason are
considered for the m-E case."It seems that corrections
of this kind are not large, the distance to the mass shell
is only one pion mass.

We have split the x-A scattering amplitude into two
parts. One is the Z pole, the other could in principle be
evaluated from a dispersion integral, and most of the
contribution here is due to the first hyperon resonance,
the Fr~(1385). The situation is somewhat similar to
~-1V scattering, where the corresponding particles are
the nucleon itself and the 3,3 resonance. These two
states do indeed dominate the low-energy x-E inter-
action.

The pions in question here are produced by the long-
range part of the OPEP, and in the complex plane of the
total pion lab energy co we are there close to the origin.
The nearest singularity of the vr-A. scattering amplitude
is the Z pole, and the distance to it is 75 MeV, the Z-h.
mass difference. The kinetic energy of a nucleon on the
Fermi surface in nuclear matter is 40 MeV. We shall
therefore not neglect the single-particle energies of the
nucleons compared to the Z-A. mass difference nor vice
versa when evaluating the contribution from the
coupling to the Z hyperon. On the other hand, the
distance to the I'~* is 270 MeV, and in this case it seems
safe to neglect the kinetic energies. This we denote in
the diagrams by drawing the pion lines at equal times.
The fact that the pion lines are horizontal indicates that
we make the usual static approximation; i.e., neglect
the kinetic energies of the nucleons compared to the
pion mass. This approximation also allows us to use the
standard local form of the long-range part of the OPKP.
The separation of the three-body force into two parts
is illustrated in Fig. 4; we treat the two parts separately.

5. THE CONTRIBUTION FROM THE
Pzi2 SCATTERING AMPLITUDE

We shall for a moment ignore the A-X correlations
completely, and make sure that the E-E correlations

Fxo. 5. General graph for the
contribution to the binding of the
h. from the exchange of two pions
in the absence of A.-E correlations.
The box symbolizes the sum of all
linked nucleon clusters with two
external pion lines.

ee
II+ ~

are properly included. The general graph for the
contribution from the three-body force is then given by
Fig. 5, w'here the box symbolizes the sum of all linked
graphs with two external pion lines. Because of the way
we continue the m-A scattering amplitude, it has the
structure of a contact interaction; we ignore the kinetic
energies compared to the 4-Y~ mass difference. This
approximation makes it possible to reduce the problem
to that of ending the total-binding energy of nuclear
matter.

The trick we shall use amounts to noting that a
diagram part corresponding to a pion line with a contact
interaction is simply the (negative) derivative of the
pion propagator without the interaction. This equality
is very similar to Ward's identity, ' except that the
derivative in our case is to be taken with respect to (the
square of) the pion mass. This is an operation which
gives the number of pions. The contribution from any
diagram of the form in Fig. 5 is then proportional to the
derivative of a diagram contributing to the potential
energy in nuclear matter. Taking all graphs and in-
cluding the complete nuclear force gives the total
potential energy in nuclear rnatter. The factor of
proportionality is the scattering part of the S matrix for
s.-A scattering excluding E/M factors associated with
the external ines (i.e., the T matrix).

It is straightforward to check this prescription to any
order of perturbation theory. If we use perturbation
theory in the strict sense and represent the pion lines
by the complete OPEP, the contribution to the energy
density from the simplest diagram, Fig. 6(a), is given by

d'kr d'ks (kr —k )'
g, 1 ) —6

ki (kr, ka(k» (2S)' (2')' (lr&—k&)'+p'
(2)

We take M~ and p to be the masses of the cha, rged

I i jl

FIG. 4. The Z pole is extracted from the ~-A scattering
amplitude and will be treated separately.

» L. Resnick, Nuovo Cimento 39, 641 (1965); M. L. Thiebaux,
Jr., Phys. Rev. 144, 1224 (1966).

FIG. 6. Part of the linked cluster expansion for the density of
energy in nuclear matter. The dotted lines represent the long-
range part of the OPEP; the direct term in first order is not shown
since it gives no contribution.

"J.Ward, Phys. Rev. 84, 8K (1951).
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FIG. 7. These are some of the diagrams which are obtained when
the general graph in Fig. 5 is expended into a series of linked
clusters. The contributions to the potential energy of the A.

particle from these diagrams can be written as derivatives of the
corresponding terms in Fig. 6.

states of the nucleon and pion, respectively. The con-
tribution from the corresponding diagram with the
three-body force [Fig. 7(a)] is found to be:

E,&'&=6T ~l
(2CVN

(kr —k~)'d'kg d'k2

),&),p, &&, (2~)' (2m)' [(k),—k2)'+ p']'

relates Eqs. (2) and (3), and it takes the Pauli principle
into account; both nucleons in Fig. 7(a) correspond to
states inside the Fermi sea.

The relation GNN /2k' N f/», in—t—roduces some

ambiguity via the p, dependence of the 7f-E coupling.
These possible additional powers of p should be regarded
as constants when the derivative is evaluated; this is

equivalent to using the pseudoscalar coupling constant,
as we have done.

The 8 function in the central part of the OPEP may
be excluded or included at will, it gives no contribution
in (4), since it does not depend on the pion mass.

The formula (3) reduces the problem to that of

estimating how the binding energy of nuclear matter
depends on the pion mass. As stated in Sec. 2, this will

be done using the Moszkowski-Scott separation method,
which amounts to perturbation theory on the long-range

part of the potential. We need only keep those diagrams
where at least one interaction is due to the OPEP. The
first few diagrams in the linked cluster expansion for the
binding energy are given in Fig. 6. The first-order

direct term is not included since it gives no contribution
from the OPKP. In case of the exchange term in this
order only the central part contributes.

In the second-order direct term, we may assume one
interaction to be the OPEP, whereas the other in

where T„~ is the part of the m-A. T matrix which is

approximated by a contact interaction. As expected, the
formula

8
gc.'3) = 2' ~ g(2) Q9)

Bp

principle is the long-range part of the total two-nucleon
interaction. In this case, also the tensor part of the
force contributes. Since it is an order of magnitude
stronger than the central part of the OPEP, we need
only keep the tensor force. Once we have decided,
however, that one interaction takes place via the tensor
force, the other interaction must be a quadratic spin-
orbit or another tensor interaction. Looking at the
values of the parameters of the Hamada-Johnston
potential, "we find that the quadratic spin-orbit term
is numerically weaker than the tensor force at large
distances, we shall therefore neglect it.

The fact that we include more than the lowest
diagram corresponds to evaluating the expectation
value of the three-body force in the presence of ground-
state correlations. The most important correlations are
those produced by the tensor force, these correlations
are so strong that the second-order term [Fig. 6(b)] is

larger than the first-order one for the OPEP. We
emphasize that this does not mean that the perturbation
expansion diverges; it is the result of the fact that terms
linear in the tensor force average out. We shall include

only the first- and second-order terms, which might be
thought of as working to lowest nonvanishing orders of
the central and tensor forces separately. The second-
order graph, Fig. 6(b), will be evaluated with the tensor
part of the static OPEP, ignoring the fact that the
tensor force of the Hamada-Johnston potential is

weaker than that of the OPEP. This could be corrected
by increasing the separation distance somewhat.

Using the results of Dahlblom et al. ,
" it is straight-

forward to write down the contributions to the binding

energy per volume from the diagrams in Fig. 6. The
graph in Fig. 6(a) gives

GNNn)
(&) = —6

235~)

d'kq d'k2 cos(qd)+ ()&/q) sin(qd)
(5)

i (2~)' (2~)' q'+~'

where the volume Vq of integration is ki(kg, k2(kp
and q= irr —k, . Eq. (5) does not reduce to Eq. (2) in the
limit d —+ 0. The reason for this is that the separation ex-

cludes the zero-range 6-function singularity of the cen-

tral part of the OPEP. The 6 function gives repulsion,
whereas the rest of the central part gives attraction in

this order.
The contribution from the second-order direct graph

can be written in the form

1 G~g„'
Eq&') = —— — )), 3II"e '" dq[T(q)]'I(q), (6)

8w' 2M~ 0

"T.Dahlblom et at. , Nucl. Phys. 56, 177 {1964).



159 THREE —BOD Y A —NUCLEON I NTERACTION

where

q cos(qd)+p sin(qd) 1+pd
T(q) =— —3 j&(qd)

q2+~2 ~2d

d'kid'kg
I(q) =

v, q (k&+kp+q)

nuclear three-body correlations. "Pll our contributions
are finite even in the absence of:the A.-S short-range
repulsion, ignoring this means that the contribution is
somewhat overestimated (possibly as much as 40—50%).

We use the values

p=1.36 fm

d=1.00 fm, T g= —0.79@, '
The nucleons are taken to have an effective mass,
M~=0.75M~ in the intermediate states. The integral
in (8) is over the volume U2, given by

~
k& ~, ~

k2~ (k»
~k, +q~, ~k, +q~ &kp, and can be evaluated analyt-
ically. "

The exchange term in second order, Fig. 6(c), is more
complicated. Using the results of Dahlblom et at. ,"the
contribution to the density of binding energy can be
obtained from the following expressions:

p4Ã*e '&" q'dq Izx(q),
32m' 2M~ 0

3 1
IF =—

4 v, q (kp+k2+q) qq'

d'kid'k2

&& [(2A —B)(2A' —B') cos'(q, q') —2AA' BB'j, (10)—

where q'= q+kx —k2 and

q cos (qd)jp sin(qd)
A =A(q) = —B(q), A'=A(q'),

q2+~2

1+pd
B=B(q) = jg(qd),

p d
B'=B(q') .

The formulas (5) and (10) give the contribution from
the complete OPEP. We evaluate the integral in this
exchange term by the same Monte Carlo method as the
above authors. The contribution to the binding of
nuclear matter is attractive and roughly one quarter of
that of the direct term in second order.

The formula (4) gives the contribution from the
three-body force in the absence of A.-N correlations. It
corresponds to the case when the A is in a true plane-
wave state in a correlated system of nucleons. The
two-body A-N interactions produce correlations which
are not accounted for by this formula. The dominant
feature is that the hard cores make "holes" in the wave
function, and part of the three-body force is therefore
lost. Because of the outer attraction the two-body wave
function is enhanced outside the core of the A particle,
The latter effect is not so strong as in the nuclear case
since the force is weaker.

An ambitious treatment of this part of the problem
would necessarily have to include three-body correla-
tions. It seems that any simple calculation would
overestimate the repulsion. This is the case for the

"H. Euler, Z. Physik 105, 553 (193/).

GNN. '/47r = 14.6,
T q being obtained from Ref. 18. We 6nd

Z.(~= —0.5 MeV,

Et,» =+1.3 MeV,

E„"'=+0.3 MeV,

(12)

which gives a net contribution of 1.1 MeV from the
three-body force. (We have defined repulsive contri-
butions to be positive. )

In obtaining these numbers we have ignored the
p dependence of the separation distance (which is quite
weak) as well as the fact that the It Ecorrela-tions
introduce nonforward parts of the m-A. scattering
amplitude.

6. THE COUPLING TO THE X CHAlVNEL

It now remains to evaluate the contribution from
processes where the Z hyperon appears as an inter-
mediate state. This is essentially a two-body process,
treating it as such will allow us to keep both the Z-A

mass difference and the single-particle energies in the
intermediate states.

The coupling to the Z channel may be introduced by
the following nonrelativistic interaction Hamiltonian
density:

GN~
IINNw [PN &' (+'V~ )fN] )

2M~
(14)

which gives the OPEP. Because of the similarity of
these interactions, the pion-exchange processes to be
considered here are essentially the same as the exchange
of pions between nucleons. This means that the struc-
ture of the expressions for the graphs is going to be the
same as for diagrams with the OPEP. We shall intro-
duce an additional 75 MeV in the energy denominators
because of the Z-h. mass difference.

In this case the tensor-like property of the pion-

'3 H. Bethe, Phys. Rev. 138, B804 (1965).

in an obvious notation, the same as in the erst paper in
Ref. 17. This may be compared to the corresponding
operator for the m-N interaction
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FIG. 8. Lowest-order contribution from the couphng between
the A and Z channels, This graph is related to the Z pole in the
~-A scattering amplitude. For the three-body part of this process,
both nucleon lines correspond to states inside the Ferm' (
1' ) The dashed fines are taken to be the long-range tensor part
of the one-pion-exchange interaction.

exchange mechanism appears already in lowest-non-
vanishing order, which corresponds to the exchange of
two pions. We shall therefore only evaluate the graph

F' 8 The net combinatorial factor of the cor-
responding diagram for the binding of a nucleon ( ig
is twice that of this graph because the A is different from
a nucleon. For the same reason there will be no exchange
term.

In this case we can include the short-range correla-
tions by inserting Jastrow-type correlation functions.
For simplicity, we take the correlation function to be
exactly zero inside a correlation radius ro, and unity
outside. We use the value ro ——0.9 fm, which is the
average between the hard-core radius and an approxi-
mate A-E separation distance. We assume that the Z
has an effective mass 3IIq* in nuclear matter,

The vo]ume Vr, of the integration &s ~+~&~ l~+ql ~
for the three-body part of this interaction. The total
two-body contribution is obtained by restricting the
integration only by the condition k &k p and inserting a
negative sign (cf. Sec. 3). The function T(q) is the same
as in Eq. (6) (with d replaced by ro), and corresponds
to the contribution from a tensor interaction„ the
central part is negligible.

Using the value ro ——0.9 fm, we And that the three-
body part of the graph in Fig. g gives 2.6 MeV (re-
pulsion), the two-body part of the contribution is—9 MeV. The net contribution from the 5 channel is
the algebraic sum of these. The contributions from the

raphs in Fig. 10 were also evaluated as a check on theglap s i
convergence of the perturbation expansion; w en
long-range part of the E-Ã potential was approximated
by the OPEP, the contribution from each of these was
found to be less than 0.5 MeV. (They are attractive. )

Finally, we remark that the Z admixture in the wave
function of the A is roughly 2% for the values of the

=0.75.
Sf' 3Eg

~&)5&
FIG. 10. Higher-order contributions from the coupling between

~ ~

the A and Z channels. These graphs are neglected.

The contribution from the graph in Fig. 8 now takes the
form parameters we have chosen; treating it as a pertur ation

is therefore quite appropriate.

Sz' 2M~ My Sf'

where

»(v) =

0

Fxo, 9. Second-order contribution to the
single-particle energy of a nucleon in nuc e1 ar
matter. The dashed lines represent the long-
range part of the OPEP.

. (17)
r~ q. (lr+q)+ (Mg —Mg) (M*—q'/23IIp)

/. CONCLUDING REMARKS

Summing up the results of the preceding sections, we
find that the contribution to the potential energy of the
4 from the three-body forces is 3.7 MeV (repulsion).
This is the contribution in in6nite nuclear matter of a
density corresponding to the Fermi momentum p
= 1.36 fm—'. lt is likely that this number overestimates
the contribution since we have not extracted the
rearrangement energy, and because the hard core of the
4 was neglected in Sec. 5. An idea of the contribution of
actual hypernuclei can be found by using a lower value
f k corresponding to some average nuclear density.o pq 0

0 0 ~ ~

1 bThis reduces the contribution significantly, rough y y
a factor 2 for, say, &He'.

The best knowledge of the A.-E two-body force is
obtained from light hypernuclei, and it is therefore an
effective force, corrected for a small amount of repulsion
from three-body forces. When this effective two-body
force is used in nuclear matter, the three-body force



will cause an error, since it is more sensitive to the
density than the two-body force. From simple estimates
it seems that calculations of this kind should be cor-
rected for the three-body force by reducing the binding
by 1 or 2 MeV. At the moment this number is of the
same order as both the experimental and theorteical
uncertainties in the binding of a A. hyperon in nuclear
matter, and does not account for the apparent dis
agrccmcnt bctwccn thcoI'y and experiment. Reasons for
introducing suppression of the odd-state 4-E force
therefore still remain.

The main part of the three-body A.-nucleon force was
due to the coupling to the Z hyperon, and m'ould

therefore not be present in the nuclear case.
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The predictions of 12 proton-proton models and phase-shift representations are compared to a selected
but comprehensive set of 9—330-MeV scattering data. The best fit was found to be produced by a quadratic
interpolation of Amdt and Macoregor's phase-shift table, with a ratio of g' to its expected value of 1.4, The
best potential is that of Hamada and Johnston, with a ratio of 3.1.The ratio for the Tabakin potential is 28.

I. I5TRODUCTION
' 'N this paper we bring up to date the comparison' —'
s ~ of published proton-proton models and energy-de-
pendent phase-shift analyses with data that, in our
opinion, represent the most accurate experimental in-
formation currently available on proton-proton scatter-
ing between 9 and 330 MCU. The models we consider
were constructed for a variety of purposes and were
fitted to various other selections of the data, so that a
simple X' listing does not necessarily serve as a 6gure
of merit as to how well the original authors' purposes
were served. However, these models are often used for
other purposes, accompanied by some statement to the
CBect that "this model agrees with existing scattering
data. "To the best of our knowledge, this is not true for
existing models according to the usua1ly accepted

* Supported in part by the U. S. Atomic Energy Commission.' P. Signell and N. R. Voder, Phys. Rev. 132, 1707 (1963).' P. Signell and N. R. Voder, Phys. Rev. 134, 8100 (1964).
3 A preliminary version of this paper was presented at the New

York meeting of the America, n Physical Society in January, 1967
I N. R. Voder and P. Signell, Bull. Am. Phys. Soc. 12, 50 (1967)g;
numerical results given here supercede that report.

statistical criteria'; on the other hand the discrepancies
may be irrelevant for some applications. This point
obviously should. be investigated in each case. For
example, a small adjustment of the parameters might
improve the fit to the data without aRecting the calcula-
tion at hand; but it also might be extremely significant.
In other cases, the model d,oes provide a good 6t over
some energy ranges, but might be applied in an energy
range where it is in violent disagreement with the data.
Clearly this point should also always bc investigated,
and one of our purposes is to make this more obvious.
Another is to give some indication of where the best
existing models should be corrected. A third is to point
up the fact that many popular models which are often

4 Since this work was completed, work by both the Vale and
the Livermore groups as reported at the Special Topics Conference
on the Nucleon-Nucleon Interaction, Gainsville, Florida, March,
1967 (unpublished) is in much closer agreement with the data and
with each other than any phase representation discussed in this
paper. Also a new potential model was reported from La Jolla,
and a new revision of the boundary condition model from M.I.T.
For this recent work the reader should consult the abstracts in
the Bull. Am. Phys. Soc. (to be published), and the appropriate
papers in the July, 1967 issue of the Rev. Mod. Phys. ito he
published) .


