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A simple cubic hydrogenic lattice with the Hubbard Hamiltonian is used as a model for Mott-type
insulators. A new self-consistent approximation is developed by the decoupling of four-particle Green's
functions, leading to a higher-order Hartree-like eigenvalue equation for electron-hole Green's functions.
This equation is an improvement over the previously used 0 approximation. The solution of the eigenvalue
equation leads to the conjecture that an exact solution (i.e., one without decoupling) would result in each
atom having exactly one electron.

I. INTRODUCTION

'HE properties of most insulators can be explained

by conventional energy-band theory. There are
some exceptions to this rule. In this paper another
model will be investigated.

Mott' has called attention to the fact that metal
atoms at large separations should constitute an insula-

tor. A model of these Mott-type insulators has been
investigated by Hubbard' and by Kemeny. ' ' Both
authors used Zubarev' two-time Green's functions.
Hubbard employed the one-electron, and Kemeny the
two-particle electron-hole variety. The latter approach
shows that under appropriate circumstances bound
electron-hole pairs appear, which is the original picture
of Mott.

In I we defined the retarded electron-hole Green's
function of the Zubarev type.

G,;,", (1—1')=((c,.t(1);.(&); c;..t(t,');..(1'))). (i.1)

' N. P. Mott, Proc. Phys. Soc. (London) 62, 416 (1949);Advan.
Phys. 13, 325 (1964).

~$. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1961);
A281, 401 (1964).' G. Kemeny, Ann. Phys. (N. V.) 32, 69 (1965), hereafter re-
ferred to as I.

4 G. Kemeny, Ann. Phys. (N. V.) 32, 404 (1965).' G. Kemeny, Phys. Letters 14, 87 (1965).
6 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) )English transl. :

Soviet Phys. —Usp. 3, 320 (1960)J.

The equation of motion for this Green's function
contained a higher-order correlation term

J(((m; .—rr, .)c,.tc,.; c;..'c; .)).
We incorporated ((m, ,—m;,)) into an effective po-

tential, still denoted by J, without giving a prescription
as to how it should be calculated. Thus the calculation
was not self-consistent.

The primary purpose of this paper is the derivation
and solution of a self-consistent equation valid in the
insulating range. This will be done using the Martin-
Schwinger7 many-time Green's-function technique. In
the insulating range, all electron-hole pairs are bound.
Such a situation can be treated by considering two-
particle electron-hole Green's functions. It is not even
necessary to solve for the entire electron-hole Green's
function; it is enough to obtain its homogeneous part.
This is obvious from I, where we found that bound
states were characterized by the homogeneous part of
the equation for the spectral representation.

II. TRANSFORMATION OF THE HAMILTONIAN

In I we used the Hubbard Hamiltonian'

II=g P T,,c;. c,.+J P rs, ,rr; .
7 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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ci+ =pi+ 1 ci =Pi-~ t=
c, +P;,+c, =P;~ ——

This yields

&'=P T,A ~t4,+ gT;A; —t4;= J P n„n

(2.3)

+J Q n;+ pQ n,++—p P n, (2.4)

apart from unnecessary additive constants, where n;
now is the number of holes in the negative-spin states.
Since we wish to calculate for the Mott transition, we
are only interested in the case where there is an average
of one electron per site with as many up-spin electrons
as there 'are down-spin holes. This implies that the
Hamiltonian must be symmetric with respect to n;+ and
n; . Consequently

p= J/2,
and the Hamiltonian becomes, to within a constant,

JJ'=Z T*~k'+'4~+ ZT'A' '4'—-
—JP n~n; +,'J P n,+-+ ',Jg n; -(2.5).

The repulsive electron-electron interaction has been
transformed into the attractive electron-hole interaction
at the cost of changing the one-particle energy.

III. GREEN'S FUNCTIONS

We introduce the Martin-Schwinger many-time
Green's functions'

G„(12 ~ n; 1'2' ~ n')
—= (—i)" ((4 (1)4 (2) 4 (n)0'(n')

X4'(2')4'(1')))+, (3 1)

where 1, 2 e stand for the space-time and temporarily
for the spin arguments of the fieM operators. The
positive subscript indicates the time ordering and e is
the antisymmetrical function of the time arguments.

The first term describes the hopping motion of the
electrons from atom to atom. The second one is the
repulsion of two electrons on the same atom.

However, when dealing with Martin-Schwinger
Green's functions it is customary to work with a slightly
modified Hamiltonian

P'=P P T;,c;.tc;.+JP n;.n; . Ii P—P n... (2.2)
i 0'

where we have added the chemical potential term to the
original form (2.1).This is done in order t.o ensure the
proper boundary condition on the Green's functions.

In order to go into the electron-hole representation
which is best suited for this problem, we introduce a
transformation' into this Hamiltonian. The positive-
spin electron operators are left intact, but the negative-
spin electron operators are transformed into hole
operators:

d3d4v(13)v(24)Gi(1234; 1'2'3+4+). (3.2)

For the present problem

n(12) = —Jb(1—2),
hggG2(12; 1'2') =

~JGg(12; 1'2')

&Q TgrGg(I2; 1'2'), (3.4)
I

where 1 and I have equal-time components. In the 0
approximation, introduced by Martin and Schwinger,
the right-hand side of Eq. (3.2) is neglected. This
corresponds to the procedure adopted in I. The self-
consistency requirement means that G4 is to be retained.

Specializing Eq. (3.2) to the model at hand leads to

(Gi+') '(G2 ')—'G2(1+2; 1+'2 ')
+iJ5(1—2)G2(1+.2; 1+'2 ')
= —J'Gi(1+2 1 2~; 1+'2 '1 +2++), (3.5)

(G') '=i—h.
Bt

(3.6)

If G2(1+2; 1+'2 ') indeed expresses a bound state, a
stable 6nite solution is expected even if the temporal
separation of the primed from the unprimed indices is
very large, provided that the primed indices, and also
the unprimed ones, are near each other in time. '
Utilizing this idea for decoupling G4, we infer

((Gg~')
—'(G, ')-'+iJ5(1—2)}G2(1~2;1+'2 ')

= —J'(Gg(1+2; 1+'2 ')Gg(1 2+ i 1 +2++)
+G2(1+2; 2++1 +)Gg(1 2+, 2 '1~')
—G2(1+1; 1+'2 ')G2(2 2+; 1 +2++)

—G2(1„1;2~+1 +)G2(2 2~; 2 '1+')}. (3.7)

The right-hand side of this equation describes a Hartree-
Fock—type approximation for two particles. An electron
and a hole proceed from 1+'2 ' to 1+2 directly in the
first term, with one particle exchanged in the last two
terms each, and both particles exchanged in the second
term. A straight Hartree approximation would neglect
all but the direct term. This would, however, violate the
condition inherent in Eq. (3.5) that the right-hand side
should vanish for 1=2. It should be recognized that the
last two terms should be partially retained in the
Hartree approximation since only one of the particles is

L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).

As we have mentioned in the Introduction, we need
an equation only for the homogeneous part of the
electron-hole Green's function. An equation containing
also the inhomogeneous terms was given by Martin and
Schwinger. Omitting these inhomogeneous parts, this
equation appears in the form

8 8
i—hg i—hg Gg(12; 1'2') —in(12)G2(12; 1'2')

Bty Bt2
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exchanged. II ccausc of syIIllTlctry of i RQd 2, oDc mRy
retain either of the last two terms. The Hartree ap-
proxlmatloQ thus glvcs

{(G ')-'(G -')-'+»(1-2) }G (1.2-; 1.'2-')
= —Js{Gs(1+2;1+'2 ')Gs(1 2+; 1 +2++)

—Gs(1+1; 1+'2 ')Gs(2 2~; 1 +2~+)}. (3.8}

I et us examine the homogeneous part of

G (1+2- 1++2-')= —(L (1+)—{ (1+))j
&&L.(2-)—(.(2-)}3), (39)

or Inore specihcaHy of

Gs(1+1- 1++1-+)= —{f~(1+)—(~{1+)}3
XL (1-)—( (1-)}j} (3 1O)

Since the interaction is attractive, the correlation is
positive, i.e., G, (1+1;1+'1 ') is real and negative.
Using the Gor'kov factorization' ' formulas

P(1.2-)= —' Q(1.)~(2 )}, (3.11)

P"(1+2-)= —se(4'+(1+)4+(2-)), (3.12}

Gs(1+1 1++1+)=—P(1+1 )P+(1+1 ). (3.13)

Since the left-hand side is real and negative,

F'(1+1-)=F*(1+1-) (3 14)

ThcI'cfoI'c thc G-OI'kov fRctoI'lzcd Gq should have thc
folm

G,(1,2; 1+'2 ')= —P(1,2 )P'(1+'2 '). (3.15)

Using this factorization procedure in Eq. (3.8), we get

{(Gr+') '(Gs-') '+s»(1 —2)}F(1+2-)
=~'{F(1+2-}F(1-2+)

—P(1+1 )P(2 2,)}F*(12,). (3.16)

We seek a solution of these equations which corresponds

to thc gI'oUnd state of R boUDd pai. Kc wish to coDvclt
these equations into eigenvalue equations with a time-
lndcpcndcnt cIITcctlvc potcntlR1 foI' $]= I2. Thus wc
require

F(1+2-)=F*(1-2+), (3 17)

%'hlch. lQ vlcw of thc lRttlcc- Rnd time-translational
invariances leads to

f:{Gr+') '(Gs-') '+s»(1 —2)V'(1+2-)
=J {fP(1,2 ) f

—fP(1,1 ) f'}P(1,2 ). (3.18)

Following Martin and Schwlnger' vre utlllze the
operator identity

Gr+'Gs-'=L(Gr+') '+(Gs-') 'j '(Gr+'+Gs-')- (41}

The unperturbed electron Green's functi. on is

Gr+'(Rrir, Rr'rr') =-',{tan{hr+r/2) —ie(ir —ir') }
Xe-'"+&'i-'i'~8R R ' (4 2)

where
(43)

e(tr —ir') = 1 for

= —1 for tr& fr', (4.4)

and a slmllR1 cxpI'csslon stands for G2 . Wc Rlso note
that

(G ')—'+(Gs '}-'=i —+——hr+ —hs (45)
8/y 8)2

Equation (4.1) can be transformed into

L(Gr+') '+ (Gs ') ']Gr+'Gs '=Gr~'+Gs '. (4.6)

This expression can be utilized for the integration of

Eq. {3.18) and leads to

L{Gr+') '+ (Gs-') 'jP(Rr+&rRs-& )= dId2LGr+'(1 —I)+Gs-'(2 —2)l

&&{—s»(1—2)+~'LIP(Rr+'Rs-') I'—IP(Rr+'Rr-) I'j}F(1+2-} (4 7')

Substituting the Fourier-senes expression with the required periodicity property

P(Rr+frRs ts) =—Q e' "'l'&+'»~'F(Rr~Rs p'), (4.8)

into Eq. (4.7) and using the expression. for the unperturbed electron Green's function in Eq. (4.2), we get

i —+——hr~ —hs e' "'l'~+'»~'F (Rr+Rs v')
Bfy 8/2

dld2{-'Ltan(h r/2) se(l —tr')je —'—"'+&'a '&'&8RrRrb(2 —2)+-'Ltan(hs r/2) —se{4—4')$

Xe-'s -~'-' '&8RR8(1—1)}{—s»(1—2)+Z L f P(RR)
f

—F(RR)
f j }e'-'&'+&' ~ P(R+Rs .').

' L. P. Gor'kov Zh. Eksperim. i Teor. Fis. 84 755 (1958) [English trsnsl. : Soviet Phys. —JETP 7 505 (1958)g.



The left-hand side term is then equal to

Q(—2m v'/r —hg+ —h2 )e' "('&+'»'F(Rg+R2 v'). (4.10)

Integration of the J term on the right-hand side yields

—iJ P(-'Ltan(h+ /2) —i (/ —/)]e-'"+(' —')+-'Lt n(h /2) —i (/ —/ )]e '"-{' '')}
pv

Xe' "'('&+'»/'F(R)pR2 v')i)R(+R2 v {4.11)
whereas integration of the J' term on the right-hand. side gives

(e i(rv'+/—vr+r) 1} (ei{rv'+/vx+r) 2ei(rrv'/r+Ar+) i+1)-
~'LIP(R)R2) I'—IF(R~R)) I'] Z — (t»(h~+r/2)) +

)/ i (m v'/r+hg+) (m v'/r+h)+)

(e i(r v'+/—vr r) 1 )—
Xe i(Ai+—rv'/r—) i+ (tan{h ~/2))

2 i(m v'/a+he )
(ei{rv'+/vr r) 2ei(—rv'jr+/vr —) i+1)-

e i(jvr=rv'—/r) i eiv v'(i)+ir)jrp(R R vv) (4 12)

(4.13)

argument arises here from the G . These describe the motion of particles in the unperturbed, system, i.e., electrons
above and holes bdow the Fermi level. For both particles h&0. Moreover, since we seek the solution only for
/~= f~=/, Kq. (4.9) becomes at T=O

g(—2m v'/r —h)+—h2 )e" ""/'F(R)+R, v')

= —J Q e'"""/'F(R)+R2 v')l)R)~Rp —J'Ll P(RgR2) I'—
I
P(RgR)) I']

xZ + e" "'"'F(R)+Rm v'). (4.14)
(harv'/r+hg+) (n.v'/r+h2 )

Mult1plylng by v' 8 ' ~" i' RIll 1ntcgrat1ng over f, we gct

{—2+v/r —hg+ —h2 )F{R(+Rp v)= —JF(R)+R2 v)l)Rg+R2 —J LIF(R)R2)I2—IF(RgR)}l ]
X F(Rg+R2 v). (4.15)

{)rv/r+h)+) (m.v/r+h2 )

Replacing 2~v/r by the continuous variable co we obtain the eigenvalue equation

(0)+h(++h2 )F(R)+R2 {e)=JF(Rp R2 o))i)R(+R2 +J'I IF(RgRg) I'—IF(R)Rg) I']

x + P(R)+Rm a&) . (4.16)
((0/2+hgp) (co/2+h2 )

Since this is a nonlinear equation, the normalization of
its eigenfunction is very important. The normaHzation
can be determined from the case in which J is the
dominating inAuence in the energy. In that. case only
F(1+1 ) is different from zero in the ground state be-
cause of the extremely strong binding of the pair. From
Kqs. (3.10) and (3.15) we find that

IP(1+1 ) I
=(.(1+).(1 )}-(.(1,))(.(1 )}. (4.17)

The probability of having any particular state occupied
is -', .Thus (N(1~)}=(e(1 ))= -', , Because of the extremely

IF{1+1-)I'=-'.
%e conclude that

(4.18)

2 IF(Ri+R2-) I'=2 IF(Ri+R~) I'=4 {419)

is the correct normalization. If F(R)+R2 ) is to be
considered the wave function of the pair, it is preferable

strong binding, thcrc ls either Rn electron ln thc posi-
tive-spin state and a hole in the negative one, or vice
versa. Thus (e(1+)e(1 ))=-', and
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to normalize it to unity, Adopting this normalization, as in I, a simple cubic lattice and the extreme tight-
we write the equation as binding approximation:

L~+h1 +h2 —JSR,R2$$(21+82 )

= a J'L I4 (R1R2) I

'—
I 0(R1R1) I

'j
T(h)= —2T P cosh, R.

Introducing the dimensionless variables

(5.2)

X tt (R1+R2 ), (4.20)
(co/2+h1+) (co/2+h2 ) one may write

y.=h.R, (5 3)

with the conventional notation for wave functions. This
is a self-consistent field equation to determine the pair
wave function and eigenvalue. In contradistinction to
the conventional situation, it is quadratic in the
operators and in the eigenvalue. This is due to the fact
that the potential field felt by a pair depends on the
motion of another pair governed by the same dynamics.

According to the assumption in Eq. (4.19),

IP(R1„R2 ) I'= IP(R1 R2+) I'. (4 21)

This is the reason for omitting spin indices in the self-
consistent potential of Eq. (4.20). If the spin indices are
chosen here as on the right of Eq. (4.21) a physical
interpretation emerges. Equation (4.20) is a Schrodinger
equation for the (R1+R2 ) pair. The effective attractive
interaction between the members of this pair depends on
the correlated opposite spin populations on these atoms,
i.e., on the (R1 R2+) pair. If the latter pair is concen-
trated on one atom, i.e.,

l~(R1-R1+) I'=1 ly(R1-R2+) I'=0 (4 22)

Ala+4'2a
hr+(y1)+h2 (y2)=J+4T p sin-

g=i 2

Ala 42a
)&sin , (5.4)

2

t'4 ra+4&2ah, (~.)-h. (~,)= 4T ~ --.
I

a=1

&& cos . (5.5)
2

The quantity called difference of momentum in I,

C a ala 42a yl (5.6)

can be considered also as the center-of-mass momentum
of the electron-hole pair. In I, it was found that the
pair energy is smallest if 4 =~ for all three of its
components. This is then the only case we shall treat
here, for which

(5 7)h1+(y1) —h2 (y2) =0.the interaction is the strongest. If this pair is weakly
bound, i.e.,

IP(R1 R1+) I'= IP(R1 R2~) I',
The solution of Eq. (5.1) is greatly simplified. It can be

(4 23) written in the form

the interaction is weak. The two pairs are in a mutually
symmetrical situation and both are either strongly or
weakly bound in their ground states. If a pair is
concentrated on one atom, the intrusion of either mem-
ber of another pair requires the expenditure of potential
energy to drive one member of the first pair off this
atom. This can be accomplished only if sufficient band
energy is gained in the process.

V. SOLUTION OF THE EIGENVALUE EQUATION

The eigenvalue equation (4.20) can be brought to the
form

(~+hl++ h2— J~R&R2)4'(R1+R2—)

P(R1„R2 )=J'I If(R1R2) I'—Ilt (R1R1)
I

'] . (5.8)
((u+hr~+h2 )

The left-hand side here is written in the form called
"first formulation of the eigenvalue problem" in I
while the right-hand side corresponds to the "second
formulation. "

Now, this last equation is valid in the insulating range
in which we expect the electron-hole wave function to
be reasonably well localized on one atom, i.e., we expect

~~RIRg1— P(R1+R2 )
(a&+hr„+h2 )

I 4(R1+R2-)
I

'
1+2.

I 0(R1+R1-) I

' (5.9)

=J2LIP(R1R2) I'—Ig(R1R1) I'j

P(R1+R2 )
X

(~+h1++h2 )'—(h1~—h, )'
(5 1)

Looking at the right-hand side of Eq. (5.8), we then see
that the If(R1R2) I' coeKcient will only contribute a
third-order term to the equation. We could then
approximate

I4 (R1R2) I'—
I 0(R1R1) I'

by simple algebraic transformations. We shall use again, =
I P(R1R1) I'PR, R,—1j (5.10)
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in Eq. (5.7), and get

(~+~1++~&2— J~R)R2)4'(Rl+R2 —)

0 .I

CM

.4

p(Rg+R2 )=J'[P(RgRg) ['P„,„,—1] (5 11)
((o+hgi+kg )

Hopefully, the solution to this last equation should
verify condition (5.9). Without expanding again the
details of the transformation between Wannier and
Bloch representations we only set forth the Anal result:

Fxo. 1. Eigenvalue 0
as a function of c and
their critical values.
Solid line—self-consist-
ent; dashed line —non-
self-consistent.

-4—

c
[
0+1+—Q e"' P(k) —S 'Qf(k')

2 1 k'

4()= —[p(RgRg) ['
(0+1+-',c Q) e'k')

point (c~,Q~) the value of

[p(R,R,) ['
&0.01

[p(RgRg)['
(5.19)

where

P(R R ) Q—1/2 Q e/k (Rz—R2)P(k)

Q=(o/J,
(5.20)c~——0.42 or T/J =0.105.

was found to be at its maximum. This then justi6es our
assumption in Eq. (5.9).

(g+],I lc 'li elk ~ ls
'

Since the eigenvalue equation (4.20) was derived for
the insulating range, it follows that the system under
study is an insulator for 0&c&c~ but is not for c)c~

(5 13) since there is no longer a solution to (4.20) for those
values. The Mott transition then occurs at a critical

(5 14) value of

c=4T/J, (5.15)

and where the summations 1 have to be extended over
the six nearest neighbors. Using Eq. (5.12) itself to
evaluate the summation terms which appear in it, we

get the eigenvalue condition
w~„,/J = —3c=free bandwidth. (5.21)

Now, physically, one would expect the Mott transition
to occur when the energy of the bound-electron —hole
pair becomes equal to the energy of the free-electron—
hole pair with the same center-of-mass momentum, i.e.,
when

[P(RgRg) ['+0+1+-',c Q) e'"'
(5 1g) Looking at our effective Hamiltonian (2.5), we see that

(0+1+~cP& e'"')'+ [P(R&Rz) [' the energy of the pair is given by

which must be solved self-consistently with the re-
quirement that

[lt/(RgRg) ['= [P lt (k) ['= [A [' or

or

J
m p„.,——cV

—' II'—— e;+ e;
2

m „;,=(o ',J((n,+—)+-(e; )),

0+1+-,'c P) e'k'
(5.17)

(0+1+-2cP~ e'k')'+ [P(RqR~) ['

where [A [' is the normalization constant determined by

P fg(RgRg) ['= [A ['
R2

0+1+-',c Q) e'k'
xP = 1. (5.18)

(0+1+~~c P ~
e'k') 2+

I tt (RqR&) I

2

The self-consistent solution of the set of equations
(5.16)—(5.18) by a trial and error iteration procedure
yields the eigenvalue curve of Fig. 1. At the cutoff

(5.22)

This normalized energy of the pair is plotted in Fig. 2.
It is immediately apparent that Eqs. (5.20) and

(5.21) give the same result at c= c~, as required.
The critical value of c in the non-self-consistent

calculation, i.e., with the omission of the quadratic term
in the potential in Eq. (3.5), turned out to be 0.5 in I.
The decrease of the critical value was to be expected on
physical grounds. In the non-self-consistent calculation
the depth of the potential well and its width for a pair
are independent of the motion of the other pairs. This
means that the members of the selected pair, when they
make excursions to neighboring atoms And exactly one
electron and one hole on these atoms. In reality the
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FIG. 2. Pair energy
as a function of c.
Solid line —self-con-
sistent; dashed line-
non-self-consistent;
dotted line —free
PMl.

pair occurs at smaller band energies if this effect is
taken into account.

Equation (5.19) shows that the pair is almost entirely
concentrated on one atom. The self-consistent calcula-
tion requires better concentration for binding than the
non-seIf-consistent one. So it appears that the better
approximation yieMs better localization. One may con-
jecture that an exact solution would result in a pair
completely localized on one atoIn.

The study of Fig. 2 suggests that the exact solution
would yield w„;,/J= —1 with the critical value of
C~= 3. ACKNOWLEDGMENT'8

neighboring atoms are subject to the saxne dynamics and
if the selected pair can make excursions, so can the
others. Thus the selected pair is not certain to And a full-
fledged pair on the neighboring sites and this makes the
effective potential well shallower. The dissociation of the
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. erratum

Exchange Model of Zero-Bias Tunneling Anomalies, JOEr. A. APPELBAUM LPhys. Rev. 154, 633 (1967)].
The captions associated with Figs. 7 and 8 should be interchanged.


