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Absolute diamagnetic susceptibilities for the alkali-halide crystals are obtained theoretically and com-
pared with the observed magnetic susceptibilities of these crystals in order to determine the crystalline
paramagnetic susceptibilities. The paramagnetic susceptibilities obtained in this way are found to obey
the linear relationship Xi,„=0.11 Xdi . Theoretical analysis confirms this relationship for the alkali halides
and indicates, in addition, that (1) Virtually all of the increased kinetic energy which the ions acquire in the
process of crystallization takes the form of rotational kinetic energy; (2) the angular deformations of the ions
in all the alkali halides are the same in that the average eigenvalue of the square of the angular momentum
operator per electronic orbital is constant for all these crystals; and (3) the general relationship between
Xd;, and X~„,for an ionic crystal is of the form Xp @=CXd'@ where Cis very nearly proportional to the average
cohesive energy per ion of the crystal. The last conclusion is confirmed in the alkaline-earth oxides where
C=0.5, in accord with the fact that the cohesive energies of these crystals are about five times those of the
alkali halides. Furthermore, this analysis indicates that an ionic crystal with a large enough cohesive energy
is paramagnetic, in agreement with observation.

I. INTRODUCTION

"AGNETIC properties of ionic crystals having a
nondegenerate ground state have interested

many investigators for several decades. However, there
has been, to date, little success in the d.evelopment of a
fundamental understanding of the nature of the feeble

magnetic susceptibilities which these crystals display.
The observation that the magnetic susceptibilities of
many materials of this type can be crudely approximated

by the diamagnetic susceptibilities of their separate
constituent ions has led to several attempts to inter-

pret the crystalline magnetic properties by means of the
additivity rule. These attempts have all clearly demon-

strated that even in the alkali-halide crystals, which

most closely resemble the ionic-model prototype, the
crystalline susceptibilities cannot be represented as the
additive sum of unchanging ionic diamagnetic suscepti-
bilities. The attempts to relate ionic and crystalline
magnetic susceptibilities in this manner have been
summarized in a review article by Myers. '

The analysis of the magnetic properties of these
materials is further confounded by the observation that
many of them, such as some transition metal oxides,

actually display a paramagnetic rather than a diamag-

netic susceptibility. ' This is a consequence of a fact
which has been recognized for some time, namely, that
the measured susceptibility of any such ionic crystal is

a sum of two components, the diamagnetic suscepti-

bility and the Van Vleck paramagnetic susceptibility,
which are opposite in sign. Moreover, since both com-

ponents are temperature-independent, there is no way
of experimentally determining their magnitudes separ-

ately. It is evident, therefore, that a fruitful analysis of

the magnetic susceptibilities of ionic crystals must pro-
* Present address: U. S. Naval Research Laboratory, Washing-

ton, D.C.
' W. R. Myers, Rev. Mod. Phys. 24, 15 (1952).
' See, for example, F. A. Grant, Rev. Mod. Phys. 31, 646 (1959).
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vide a thorough understanding of the nature of these
two components.

An analysis of this type must concern itself with the
nature of the deformations which the ions experience
when transported into the crystal. These deformations

may be placed into two diferent categories, namely,
the radial deformations and the nonspherical or angular
deformations. The deformation of the radial part of the
ionic wave function yields changes in the ionic diamag-
netic susceptibility; the nonspherical deformation of the
ionic wave function produces a nonvanishing Van Vleck
paramagnetism.

In the past, considerable attention has been given to
the radial deformations, particularly in their effect upon
the ionic polarizabilities and radii. A detailed analysis
distinguishing the refraction of ions in the free gaseous
state, solutions, and crystals was made long ago by
Fajans and Joos, ' who first suggested a contraction of
the halogen ions and an expansion of the alkali ions in

the alkali halides in passing from the free-ion state to
the crystal. These conclusions are directly confirmed

by comparison of the Pauling' free-ion polarizabi~ities

with those determined by the least-squares technique
from crystalline refractivities by Tessman, Kahn, and

Shockley. 5 Subsequent calculations' ' have more or
less established that the failure of the additivity rule for
the ionic crystals is a result of the corresponding in-

crease and decrease of the polarizabilities of the cations
and. anions, respectively, in the crystal brought about

by the inhuence of the Madelung potential. Similar

conclusions have been arrived at with respect to the

' K. Fajans and G. Joos, Z. Physik 23, 1 (1924).
'L. Pauling, Proc. Roy. Soc. (London) A114, 191 (1927).
5 J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92,

890 (1953).
6 K. Fajans, Z. Physik Chem. 130, 724 (1927).
7 A. R. Ruffa, Phys. Rev. 13P, 1412 (1963).
8 A. R. RuBa, Phys. Rev. 133, A1418 (1964).
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nonadditivity of the ionic radii. ' "Similar conclusions
with regard to the ionic diamagnetic susceptibilities
are made in the Appendix by an analysis which parallels
that of Ref. 7.

In contrast, the problem of developing an under-
standing of the ionic paramagnetic susceptibilities in
crystals requires a more detailed understanding of the
nature of the radial expansion and contraction of the
electronic charge clouds of the ions, as well as their non-
spherical deformations.

In this work, this problem will be attacked from two
different points of view. In Sec. II, a detailed calcula-
tional procedure for determining absolute values for the
diamagnetic susceptibilities of the alkali-halide crystals
from existing optical data is presented. These absolute
values are compared with the observed susceptibilities
of the alkali halides in order to obtain semi-empirical
values for the paramagnetic susceptibilities of these
crystals. The values of the paramagnetic susceptibilities
obtained in this way are found to display a simple rela-
tionship with the values of the crystalline diamagnetic
susceptibilities.

In Sec. III, the problem is approached from a more
fundamental point of view. The relationship between
the crystalline cohesive energy and the rotational kinetic
energy of the ions brought about by their nonspherical
deformation is established. In particular, it is shown
that the change in kinetic energy in the alkali halides
produced by the radial deformation effects discussed
above cancel. This information is used to obtain a
theoretical equation for the paramagnetic susceptibili-
ties of ionic crystals which is used to estimate a quanti-
tative relationship between the paramagnetic and
diamagnetic susceptibilities of the alkali halides. The
result is found to agree favorably with the trend dis-
played by the semiempirically determined values ob-
tained in Sec. II. In addition, some general conclusions
are drawn regarding the paramagnetic susceptibilities
of other ionic crystals, and, in particular, isoatomic
sequences of ionic compounds. These conclusions are
confirmed in the case of the alkaline-earth oxides.

II. CALCULATION OF THE DIAMAGNETIC
SUSCEPTIBILITIES OF THE ALKALI-

HALIDE CRYSTALS

The starting point for our calculation is an equation
derived independently by Kirkwood and Vinti"
which relates the diamagnetic susceptibility to the
electric polarizability. The complete equation as given
by Vinti is

)Xs;, )
= (e as' /4mc )(Xn)' —(e I-/6mc )~ (1)

ll K. Fajans and H. Grimm, Z. Physik 2, 299 (1920).' F. G. Fumi and M. P. Tosi, J. Phys, Chem. Solids 25, 31
(1964); M. P. Tosi and F. G. Fumi, ibM. 25, 45 (1964). See also
M. P. Tosi, in Solid Sta/e Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc. , New York, 1964), Vol. 16."J.G. Kirkwood, Physik. Z. 33, 37 (1932); J. P. Vinti, Phys.
Rev. 41, 813 (1932).

)
= (e'ee'~'/4mc') +Ter) '~' (2)

which, incidently, can be obtained directly from Vinti s
derivation by using the sum rule (A4) in the Appendix
instead of (A1), and. assuming that E„=Et, instead of
E2=E3. The aim behind the use of this formula lies in
the expectation that the two errors inherent in it will
cancel to a great degree. To test this premise, and the
extent to which it fails, we now use (2) to calculate the
diamagnetic susceptibilities of the rare gases. Table I
displays the molar susceptibilities of 6ve rare gases
calculated by means of Eq. (2) together with the ob-
served susceptibilities. The experimental values for a
necessary to complete the calculation were obtained
from the mole refraction data of Cuthbertson and
Cuthbertson" extrapolated to in6nite wavelength by
Born and Heisenberg. "The mole refraction R~ is re-

TABLE I. Calculated and observed diamagnetic susceptibilities
g for the I-electron rare gases in 10 ' emu /mole. n~ is the molar
electric polarizability and E is a correction factor in ~xs;, ~,b,= (tacit„) X ~Xs;.~..(..

He
Ne
A
Kr
Xe

2
10
18
36
54

o~(A'l

0.203
0.394
1.636
2.475
4.023

Ixs' Io»o

1.97
6.14

16.76
29.01
45.50

lxs'. I.b,

1.88
6.74

19.57
28.83
43.85

—0.046
+0.098
+0.168—0.006—0.036

This is a result of the fact that the true energy of the system
always has a lower value than that obtained from the variational
procedure."C. Cuthbertson and M. Cuthbertson, Proc. Roy. Soc.
(London) A84, 13 (1911)."M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).

where 0. is the observed electric polarizability, S is the
total number of electrons, ao is the Bohr radius, and I is
Avogadro's number. The Kirkwood formula, which arbi-
trarily neglects the second term proportional to o (see
Appendix), was derived by the use of the variational
theorem, while Vinti derived (1) by setting the quantity
E2 discussed in the Appendix equal to E3 which appears
in the relation for the electric polarizability obtained
from second, -order perturbation theory. As Vinti pointed
out, the use of the variational procedure always yields a
calculated diamagnetic susceptibility which is larger
than the true susceptibility. "This is in agreement with
the analysis~ which demonstrates that E2 is always
larger than E3. On the other hand, since the electrons
repel each other, the average angle between any two
radius vectors r; and r, is greater than m/2, so that o is a
negative quantity. This means that the exclusion of the
second term in (1) results in an error which, because it
gives a susceptibility smaller than that given by the
complete formula, counteracts the inherent error in (1)
which is brought about by the use of the variational
procedure.

Therefore, the starting point for our calculations will
be the Kirkwood formula
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lated to n~ in a gaseous material by the Lorentz relation

R~= (4n.L/3)noir.

The observed magnetic susceptibilities, which, because
of the spherical symmetry of rare-gas atoms are all
completely composed of the diamagnetic component,
are taken from a compilation by I oex."These values
represent an average of all experimental values re-
ported, with the greatest weight given to the most
reliable values.

The last column in Table I gives the fraction E„by
which the calculated susceptibility of the n-electron
rare gas must be raised or lowered to make it corre-
spond to the observed value, i.e., ~Xd;a~nba=(1+En)
X

~
xa;a~ oai, . The sign and magnitude of K„ is a measure

of the degree to which the error in excluding the o.

contribution exceeds or is exceeded by the use of the
variational procedure, or equivalently, the E2=E3
approximation. A positive K„ indicates that the domi-
nant error results from the exclusion of the o- contribu-
tion, while a negative sign points to the E~——E3 approxi-
mation as the larger source of error.

As can be seen from the values of K in Table I, the
differences between the calculated and observed sus-
ceptibilities are under 10%%u~, with the single exception
of the 18-electron argon configuration where the cal-
culated susceptibility is almost 17% too small. These
differences, while not excessively large, exceed in many
cases, as we shall see later, the magnitudes of the
paramagnetic susceptibilities that we wish to deter-
mine. It is evident that if we wish to ascertain these
relatively small paramagnetic susceptibilities of the
alkali halides to any degree of reliability by subtracting
the observed susceptibilities from the calculated dia-
magnetic susceptibilities the calculated values can con-
tain an error of a few percent, at most. Consequently, the
straight application of Eq. (2) is not sufficiently accur-
ate for our purposes, and a means of correcting the
values calculated in this manner is required. In order to
do this, one can use the values of E„obtained from the
rare-gas calculations to correct the calculated alkali-
halide diamagnetic susceptibilities, thus bringing the
final result within the desired degree of accuracy.
This may be accomplished after recognizing that the
correction factor K„associated with the m-electron
rare gas is essentially the same as that for the positive
or negative ion in the crystal having the e-electron
rare-gas configuration.

Let us examine in detail why this is true. As was dis-
cussed above, Eq. (2) is based upon the assumption
that E„=Ey. Consequently, the equation is in error by
the factor E,/Ei, i.e., E„/Ei (1+E ). Becaus——e the
various E's represent different averaging procedures for
quantum-mechanical sums involving a given electronic
configuration, it is concluded in the Appendix that ratios
of these quantities do not differ greatly from unity and

'~ G. Foex, in Tables de Constantes et Donnees ENmeriqles,
(Mason 8z Cie. , Paris, 1957), No. 7.

TABLE II. Calculated diamagnetic susceptibilities and ob-
served susceptibilities for the alkali halides in 10 emu/mole.
The number of electrons per molecule is n1+n2 and the molar
electric polarizability is n~.

LiF
LiC1
LiBr
LiI
NaF
NaC1
NaBr
NaI
KF
KC1
KBr
KI
RbF
RbC1
RbBr
RbI
CsF
CsC1"
CsBr'
CsI'

&t+ttc ~~(&'& Ixc I-i lxc I-i""' lx b I

12 0.909 10.2 11.1 10.1
20 2.903 23.5 27.3 24.3
38 4.138 38.6 38.3 34.7
56 6.226 57.7 55.6 50
20 1.163 14.9 16.4 16.4
28 3.263 29.5 34.1 30.3
46 4.388 43.9 44.1 41
64 6.264 61.7 60.0 57.0
28 2.008 23.2 26.5 23.6
36 4.173 38.0 44.4 39.0
54 5.293 52.2 54.7 49.1
72 7.388 71.3 72.0 63.8
46 2.572 33.6 34.4 31.9
54 4, 712 49.1 53.1 46
72 5.920 63.6 63.2 56.4
90 8.093 83.3 81.1 72.2
64 3.604 46.9 46.4 44.5
72 5.829 63.3 66.1 56.7
90 7.020 77.5 75.9 67.2

108 9.119 96.9 93.4 82.6

Xpara

1.0
3.0
3.6
5.6
0.0
3.8
3.1
3.0
2.9'
5.4
5.6
8.2
2.5
7.1
6.8
8.9
1.9
9.4
8.7

10.8

a CsC1 structure.

where the index i refers to the ith ionic species in the
crystal, and

~
x&;,

~
„i,is obtained directly from Eq. (2).

For binary compounds such as the alkali halides, this
formula has the simpler form

X&. anion+ anion+ X&. cationlt cation'Bla 74 I

gaia

n

~xd;. ~..i "= 1+
r

!
, anionx . cation

tria (i la

X ~xa. ~-i.. (&)

The results of the calculations on the alkali halides
are listed in Table II. The first column lists the total
number of electrons in the two-ion molecular group,
while the second column gives the molecular polariza-

should be slowly varying functions of any effects which
result from perturbation of the configuration. For this
reason, assigning the same value of Ei/E, to both a free
alkali or halide ion and the corresponding neutral rare-
gas atom appears to be a fairly good approximation.
However, it should. be an even better approximation
when considering the ions in the crystalline environ-
ment, since the Madelung potential has the effect of
counteracting the excess or deficiency of nuclear charge
in the cation and anion, respectively, as compared to the
corresponding neutral rare-gas atom. Therefore, from
here on, we will use the simplifying but fairly good
approximation that the K„for the ions in the crystal are
the same as those for the corresponding rare-gas atom.

The correction of the calculated diamagnetic sus-
ceptibilities of the alkali halides obtained from Eq. (2)
may be accomplished, then, by the use of the K„ in
Table II, weighted by the relative contribution of each

type of ion to the total diamagnetic susceptibility, i.e.,

~
xg;.

~
..i.-"——(1++xg;.'K„,./p xg;.')

~

xg;. [,.i„(4)



bility for in6nite wavelength listed by Tessman, Kahn,
and Shockley. ' The next column lists the molar crystal-
line diamagnetic susceptibility

l Xq;, l „~, obtained from
these polarizabilities and Eq. (2). The fourth column
contains the values of

l xq;, l „~,""calculated by means
of Eq. (5). The ionic diamagnetic susceptibilities neces-
sary to complete the calculation were obtained by sub-
stituting the ionic polarizabilities computed in Ref. 7
into Eq. (5) and correcting the result by means of the
appropriate E„'s in Table II. The next column lists the
observed magnetic susceptibilities which are again
taken from Ref. 15, while the last column gives the
values of the crystaQinc paramagnetic susceptibihties
where

& oI0 Q
V CP

a

I $ I I

9

0 /0

t}

I i

0

Og
r

0
Og

0

~ corr
"para=ot~l "dtal cate

Before analyzing the results, let us 6rst estimate the
degree of accuracy of the listed. crystalhne paramagnetic
susceptibilities. There are four major sources of error
in these values. They are:

i. The observed. magnetic susceptibilities. Since few
of the reported values of the crystalline susceptibilities
agree to within 1%, the errors in the observed values
listed in Ref. 15 are probably of the order of 2 to 3%;

2. The observed refractive indices. While refractive
lndlccs can bc measured to R high degree of accuracy,
the extrapolation procedure for obtaining the refractive
index at in6nite wavelength probably contains an error
of the order of 3% of the extrapolated value;

3. The correction factors K . These are strongly
dependent upon the observed diamagnetic suscepti-
bilities of the rare gases which display a considerable
spread in the reported values. Because of this, the E„
can be in error by as much as 20%, which could con-
tribute an error in a calculated ionic susceptibility
of as much as 3 or 4%. We assume that the errors
associated with the use of the rare-gas K 's for the ions
are of a much smaller magnitude and, therefore, do not
appreciably change this clI'oI' cstlmatc.

4. The computed ionic diamagnetic susceptibilities
used. in correcting the calculated crystalline diamagnetic
susceptibility. The computed ionic polarizabilities fail
to reproduce the observed values by as much as 20%, so
that the similar failure of the ionic diamagnetic sus-
ceptibilities based on these values is as much as 10%.
However, only the relative values of the ionic diamag-
netic susceptibilities enter into the correction in Eq.
(5). Because of this, and the fact that the relative
values of the ionic diamagnetic susceptibilities are only
used to weight the correction factors, this is the smallest
of the major sources of error, and contributes no more
than 1 to 2% to the total.

The total of these errors can be as much as 10% of the
value of lxq;, l„~,"".As will be seen below, this is
equivalent to about a 100% uncertainty in X„„.
Fortunately, however, these errors are independent of
each other, and are therefore not strictly additive. In
most cases, they will partially or almost completely

Xppro (IO e m u. /mole)

Pro. j.. Theoretical diamagnetic susceptibility versus serni-
empirical paramagnetic susceptibility for the alkali-halide
crystals.

cancel. Consequently, there is a large uncertainty in
the precision of each individual value of Xp„„but be-
cause of the random nature of the above-discussed
errors, the over-all trend of the values can be established.

The over-all trend can be observed by comparing the
values of &»„and l &q;, l «~, "in Table II. First, from
the above discussion, one would expect the diamagnetic
susceptibility to be larger than the observed suscepti-
bility because of the canceling effect of the paramagnetic
susceptibility. This is invariably the case with the
single exception of NaF, where the two quantities are
equal and therefore yieM a vanishing Xp„,. Otherwise,
the values of Xp„, seem to be approximately propor-
tional to the values of lXq;, l„q,"", their ratio being
about 1/10. A plot of X„„versus

l Xq;.l,.~,
-" in Fig. 1

con6rms this conclusion. Although there is considerable
scatter in the points, they seem to be best represented
by the linear relationship X~„,=0.11

l xq;, l
««'"'.

This conclusion contains the implicit assumption that
the curve must pass through the origin, i.e., that the
deformation effects which produce the paramagnetism
do not vanish for some nonvanishing value of the dia-
magnetic susceptibility. The null value of X~„, in the
case of NaF seems to correspond to the case of the
10% error in the values of lx&'~l«&:"' »d IXI»»
while the large scatter in the points is another mani-
festation of the inherent errors in the results.

Through the process of inference, we have arrived at
what appears to be the 6rst demonstration of the para-
magnetic properties of the alkali-halide crystals. In the
next section, a theoretical analysis will be made in an
attempt both to understand this result and to generalize
upon it.

III. THE NATURE OF THE PARAMAGNETISM
OF IONIC CRYSTALS

According to a detailed discussion given previously, s

the paramagnetic susceptibihty of an ionic crystal can



be expressed in the form The integration over coordinate xi in (8) is omitted.
Defined in this manner, y*(xi)y(xi) represents a num-
ber density, which means that y*(xi)y(xi)dii= number
of particles times the probability of 6nding a particle
within a volume de~ about x~ when the coordinates of aH

the other particles remain arbitrary. This definition of
y(xi) requires that

where E~ is the magnetic mean excitation energy de-
6ned in Ref. 8, and

where L; operates only on electron j. The system of
separated ions displays no paramagnetism since aH of
the ions have spherically symmetric probability ampH-

tudes, and consequently all the (y ~
L,'~y) vanish. The

crystalline environment, in contrast, imposes a per-
turbation upon the ions which has symmetry properties
more restricted than those of the full rotation group, so
that the complete spherical symmetry of the ionic
probability amplitudes is destroyed. The paramagnetism
then arises from the nonvanishing (p I L )y).

In this section, we mill examine the nature of the
paramagnetism from a theoretical point of view. The
aim of this analysis is twofold. First, we wish to quanti-
tively verify by theoretical means the relationship be-
tween the diamagnetic and. paramagnetic susceptibili-
ties of the alkaH haHdes obtained semiempiricaHy in
the previous section. Second, we wish to generalize

upon this result for application to other ionic crystals.
To accomphsh these aims, we mill at.tempt to examine
the form of the ionic wave function in the crystal and
the manner in which the paramagnetic susceptibility
given by Eq. (6) arises from it. Because of the com-

plexity of the problem, the analysis will rely upon. a
physical model which is necessarily approximate. How-

ever, it is hoped that the model wiH be suKciently
reabstic to yield the main features of the paramagnetism
of ionic crystals which have been determined from the
examination of experimental data.

Our analysis will again be made within the framework.

of the product approximation. Let us denote by %';&0)

and +; the wave functions for the ith free ion and the
corresponding ion in the crystal, respectively. It is
convenient in examining the nature of 0', and its rela-

tionship with +;(0) to de6ne a one-particle probability
amplitude y(xi) given by

where y(xi
~
xi) is a diagonal element of the one-particle

density matrix given by

It is evident that the properties of X '~'y(xi) are
analogous to those of a one-particle wave function nor-
malized to unity.

The one-particle probability amplitude y, &'&(ri)

associated with 0',"' is spherically symmetric, while

y, (xi) associated with @; is not. Instead, y;(xi) must
have the point symmetry of the crystaHine environ-
ment surrounding the ion. Accordingly, y;(xi) can be
written in the form

where the bi (i) are normalization constants. The spin
coordinates are ignored in (10) since the total spin for
each of the ions is zero. The number of spherical har-
monics Fi~(gi, C i) which appear in the sum is restricted
by the condition that each of them must be consistent
with the required point symmetry.

The determination of the analytical form of the
y;(xi)'s in Eq. (10) is extremely dificult since neither
the y, &"(ri)'s nor the detailed form of the crystalline
perturbing potential have been determined to any de-

gree of accuracy. Because of this fact, we will. try in-
stead an alternate mode of theoretical analysis. By
relying heavily upon inferences drawn from the physical
nature of the ionic crystals, we will attempt to ascertain
those features of the y, (xi)'s which are important to the
determination of the paramagnetic susceptibilities
without resorting to detailed studies of their complete
analytic properties.

%e begin by writing the S-particle Hamiltonian for
the system in the following manner:

+V(rir2 r~), (11)

where the 6rst two terms are the radial and rotational
or angular kinetic-energy operators, respectively. Since
the potential-energy term includes only Coulombic
interactions, the virial theorem is applicable. Therefore,
the change in the total energy of the system brought
about by the crystallization of the free-ion system, i.e.,
the cohesive energy E„ is equal to the negative of the
change in the total kinetic energy. Based upon the form
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of the Hamiltonian (11), this may be expressed as

E.—=Zr..ayar-„ (12)

ions is conserved. Consequently, the normalization con-
dition (9) yields the relations

where hT„~ and ~T, ,=T, , are the changes in the
radial and angular components of the kinetic energy.

Because we wish to eventually develop a mathema-
tical relation between T,„, and X„„,it is necessary to
make a quantitative estimate of the relative magni-
tudes of AT„d. and T, g. This requires that we know
something about the radial dependences of the angular
deformations of the ionic probability amplitudes, which
in turn requires a more detailed picture of the crystalline
interaction than is available. Because of this, we pro-
pose a simple model in order to obtain the desired rela-
tionship. Because of the extreme simplicity of the
model used, the result will not be presented as a rigor-
ously proven fact, but rather, one which will be used
for calculational convenience.

Previous calculations' have linked the change in the
ionic polarizabilities in the alkali halides with the
Madelung potential. The discussion in the Appendix
does the same in the case of the ionic diamagnetic sus-
ceptibilities. This suggests that a simple discussion of the
egect of the crystalline environment upon the ionic
radial wave functions can be made in terms of the point-
charge potential of the surrounding charged ions.

Such an approach presents many problems, the most
important of which is the fact that the integrated aver-
age potential of an assembly of point charges over the
surface of a sphere is independent of the diameter of
the sphere, as long as the charges remain outside the
sphere. Under this condition, on the average, there
would, be no radial force on the ionic electrons under
consideration, so that the radial expansion and contrac-
tion of the anions and cations discussed above could not
be accounted for by this model unless the probability
amplitude of the ion in question extends appreciably
beyond the nearest-neighbor distance. The results of
later calculations indicate, however, that this does
happen. Therefore, we will assume at this point, in
accord with the simple model, that the extension of the
ionic probability amplitudes beyond the nearest-neigh-
bor distance is the Inechanism by which the point-
charge potential contract or expands the radial prob-
ability amplitudes of the ions.

This leads to two conclusions. First, only the tails of
the outer orbitals of the ions are appreciably perturbed
according to this model. Second, the perturbation
should be produced primarily by the nearest neighbors,
since the next nearest-neighbor positions are presumably
too far away for the probability amplitudes to have any
appreciable magnitude there.

In order to make detailed evaluation of AT„~,
AT,„g, and ultimately, the crystalline paramagnetic
susceptibility, we must translate these ideas into specific
analytic properties of the y, (xi) in Eq. (10). To begin
with, we assume that the number of electrons in the

and

ly ~»(r, ) I'r, 'dri ——n,

lp, (x,) I'dxi ——ii;,

(13)

(14)

where e; is the number of electrons in the ith ion. If we

make use of (13) and the specific form of y, (xi) in Eq.
(10), then the norma]ization condition (14) reduces to

+2boo fi(ri)y, &o&(ri)riodri ——0. (15)
0

l, tn

+2b(i)f, (ri')y, &o&(ri'). (16)

The constant factor rio=(r,')' in the integrand is
not included in (16). To a first approximation, the
radial function g, (ri') is an odd function, i.e., g, (—ri')
= —g, (ri ). If an ion is subject to a positive Madelung
potential, for example, then g(ri') is positive for nega-
tive values of r&' signifying that the electron density of
the ion is increased for r~gr,' and decreased for ry& r .
The reverse is true for a negative Madelung potential.
Consequently, we conclude that the sign of g, (ri')
for r~'&0 is the same as the sign of the Madelung po-
tential acting upon the ion in question.

%e now wish to estimate what fraction of the kinetic
energy of crystallization should be attributed to its
angular component. This can be done within the frame-
work of our model if certain additional assumptions are
made. These will be detailed as they become necessary.

In the a1kali halides, where the positive- and negative-
ion sites are geometrically equivalent, the perturbing
inQuence of the point-charge potential should be nearly
equal in magnitude but opposite in sign. This should

The physical meaning of (15) is simple. Since the
total number of electrons is conserved, any increase in
the ionic electron density at one point brought about

by the crystalline potential must be compensated for

by a corresponding decrease in the electron density at
some other point. %e concluded earlier that only the
outer portion of the outermost s and p orbitals of the
ions were appreciably perturbed in the crystal. This
means that f;(ri) is nonvanishing only at the tail end of

y;(xi). If we de6ne a characteristic radius ri ——r,'
about which the electron-density perturbation effects
for the ith ion are centered, the integrand in Eq. (15)
can be expressed in terms of a new radial variable
r~' ——r~—r;, where r~'((r .
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be approximately true in all ionic crystals, since charge
neutrality requires that each ion has nearest neighbors
(or approximate nearest neighbors) such that the pro-
duct of the total number of such neighbors and their
net charge be constant. Ke label the magnitude of the
point-charge potential acting in the region of apprecia-
ble ionic perturbation as V~. %e assume further that
the radial region over which the potential acts is suf-

6ciently localized so that V~ may be expressed as a
sum of two potentials: the average over angular varia-
bles which wiH be designated as V(R), and another
potential V(tI,C) which superimposes on V(R) the re-

quired angular dependence of V~. Since the behavior of

V(R) is essentially the same for both cations and anions

with the exception of the sign difference, it shouM pro-
duce virtually no net change in the internal potential
energy of the ions since the decrease in potential energy
of the cations will be counterbalanced by a corre-

sponding increase in the case of the anions.
The connection between this conclusion and the

change in the radial kinetic energy is rather straight-
forward if, in addition to assuming that the ions main-

tain their individual identities„we also assume that all

the potential-energy contributions in the system not
included in the self-energy of the ions correspond to the
cohesive energy of the crystal E,." In that case, the
virial theorem requires that the total kinetic energy of

the ions in the system must increase by an amounts„
while the internal potential energy of the ions must be
lowered by an amount 8,. According to this restriction,
the fact that V(R) produces no net change in the inter-

nal potential energy of the ions leads to the conclusion

that it produces no net change in their kinetic energy as

well. Since V(R) only deforms the ions radially, this

means that its action on the ions produces no net change

in their radial kinetic energy.
The process of separating the Madelung potential into

a sum of the two potentials discussed above is equivalent

to expressing (10) in the form

where y, "'&(r~) is the one-particle probability amplitude

produced by the action of V(R) upon the free ion. We

have seen that the radial kinetic energy of the system

described by the y, "&(rr) is the same as that of the

free-ion system described by the y;"'(rq). It is evident

from the normalization condition (15) and the form of

g(rq') in (16) that Eq. (17) requires that

"The individuality of the ions is equivalent to the product
approximation. This approximation results in the energy of the
system being expressible as a sum of ionic self-energy terms and
ionic interaction terms (Ref. 7). The above assumption is equiva-
lent to equating the ionic interaction terms with the cohesive

energy of the crystal.

It follows from the condition (19) that the expectation
value of any purely radial operator evaluated by means

of either y;(xg) or y;&' (rg) must be the same. From this

we conclude that the expectation value of the radial

kinetic energy is the same when the system is described

by either the y;(x~) or the y;"&(r~). Therefore, there is

no change in the radial kinetic energy of the system

produced by the point-charge potential.
The use of this model has led to a very simple con-

clusion, namely, that the angular component of the

kinetic energy of crystallization, which because of the

spherical symmetry of the free ions must represent the

total angular kinetic energy of the system, is equal in

magnitude to E,. It is evident, however, that the model,

itself, is a great oversimphhcation of the actual situa-

tion. The use of the point-charge potential alone to rep-

resent the interaction of the crystalline environment

upon an ion completely overlooks both the short-range

exchange potential between ions and the short-range

correction to the Madelung potential. The latter, in

particular, would appear to be important, since such

extreme penetration of the surrounding electronic

charge clouds of the surrounding ions by the probability

amplitude of a given ion to the extent postulated by the

model wouM appear to raise considerable doubt as to

just v hat the eRective charges of the surrounding ions

really is. In order that the point-charge model be

reasonably valid, it is necessary that the short-range cor-

rections to the Madelung potential cancel on the

average. It is not immediately apparent why they

shouM do this, but the success of the earlier analysis of

the ionic polarizabilities in terms of the Madeluog

potential suggests that the associated radial deforma-

tions may indeed result from such a mechanism.

%e will proceed from here on the assumption that the

magnitude of the angular kinetic energy of the system

is equal in magnitude to the crystalline cohesive energy.

%e have already noted that there is a close relationship

between the ionic paramagnetism and the angular

kinetic energy of the ions in the crystal. Consequently,

this assumption implies a relationship between the

ionic paramagnetic susceptibility and the cohesive

energy. Subsequent calculations wiH be seen to be not

inconsistent with this assumption. Because the de-

velopment of an approximate form of this relationship

is somewhat involved, we wiH 6rst briefly sketch the

argument.
The paramagnetic susceptibility {6) contains the

quantity

which we would like to connect with the angular part
of the Hamiltonian (11).To form the connection, it is
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most convenient to relate both to a third quantity

&vl 2 L'lv&

it has been demonstrated'7 that when the cosines of the
correlation angles discussed in the Appendix are small,
then

We first obtain a useful expression for this quantity.
By reference to earlier work and using Eqs. (6) and
(AS) in the Appendix, we can then write the paramag-
netic susceptibility in terms of this quantity and the
diamagnetic susceptibility. Turning next to the cohesive
energy, we obtain an expression for it in very similar
but not quite identical form. Several simplifying assump-
tions are needed to reduce this expression to a form
which can then be inserted into the equation for the
ionic paramagnetic susceptibility. This yields, anally,
the desired theoretical expression for the paramagnetic
susceptibility of an ionic crystal.

We begin by obtaining an expression for

&vl 2 L'lv).

&v I
2»'I v&/&v I (E»)'I v&

=&vl 2 ~'Iv&/&vl(Z ~ )'lv), (23)

where A and 8 are two different and arbitrary opera-
tors. By taking the ratios of Eqs. (A1) and (AS), one
6nds that

&vl 2 r'Iv&/(vl(Z»)'Iv&=E2/E'

Earlier calculations indicate that the ratio E~/E„does
not di6er greatly from unity. Therefore, we conclude
that the approximation (23) is valid in the cases under
consideration here and that

In the product approximatiOn, , the one-particle e6ects
for the ions are strictly additive. Therefore,

&v I Z L,'Iv)= 2 v'*(xi)4'v'(»)d»

&vl 2 L'lv&/(vl(Z L)'lv&=E/E' (2S)

If we now compare Eq. (2S) with (22), (6), and (AS),
we see that the crystalline paramagnetic susceptibility
can be written in the form

M
v,*(xr)LPv, (x~)dx~, (20)

where 3 is the number of different ionic species in the
crystal or, more generally, the number of ions com-
prising the crystalline molecular group. If we now make
use of (10), Eq. (20) becomes (~,(Z,+1)&,= g ~;X,(~,+1)/P ~, (2&)

X„„=(e'/6m'c') (E„/Eg~)Nh'&X, (X;+1)),
= —(2p/3) xg;,&X,(X,+1)). , (26)

where P=E,'/E+~, and &X;(X;+1)&, is an average
value of the X,(X,+1) for the different types of ions in
the crystal given by

&vl 2 L'Iv)= —2 2 I&~ (~)l'
i=1 l, m

Xl(3+1)h'

In order to introduce the cohesive energy, we must
relate it in the form of the angular component of the
kinetic energy of the system to the quantity

For simplicity, we may rewrite (21) as

N

(vl g L,'Iv)= —P ~,~,P.;+1)h .

&vl 2 L'Iv).

Again using (10), the expectation value for the operator
(L '-/r') is found to be

The relationship between &vl 2(L'/r') Iv)

and

&vl E L'Iv& M
v;*(x~)(L~'/rr') v, (x,)dx,

&v l(Z L~)'Iv&
M

=—O'P
1 0

I f'(ri) I'«i 2 I
&i-(~) I'I(~+I) (28)

l, m

which appears in Eq. (6) is not a simple one. However, '7 A. R. Ruffa, J. Res. Natl. Bur. Std. (U. S.) 69A, 167 (1965).
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If we let where

r~'I f'(r~)
I

'«~ If,(r~)I'd~~,

then it follows from (21), (28), and (32) that

hl Z. {&%')Iv&

t ni t ni
n= 2 n, E(v li»'I v&/2 Z(v I'r'Iv&

%e saw earlier that the angular component of the
kinetic energy of the system is very nearly equal to

E,. C—onsequently, Eq. (29) can be written as

—2mE '= O' Q e A P +1)((r'))—' (30)

ni

where

where E,' is the lattice energy for the crystalline mole-
cular group. In the alkali halides, E', t is simply the
lattice energy per cation-anion pair.

In order to relate the result (30) to the crystalline
paramagnetic susceptibility, we must perform the
indicated summation —a task which presents grave
difficulties. Consequently, we will make use of several
simplifying approximations. First, let us rewrite (30)
in the following form:

Making use of (26) and (34), we obtain a theoretical
expression for the paramagnetic susceptibility of the
crystalline system:

x,...= (2&PE, '/~E, ) I
X„.l . (3S)

In the alkali halides, 3= 2, so that (3S) reduces to

x,...= (npE'/E. ) I x.;.I

Let us now examine the quantity gpss, '/E„ in detail.
The lattice energies of the alkah halides are well known
and vary between a minimum value of 6.2 eV per ion
pair for CsI and a maximum value of 10.5 eV per ion
pair for I iF. The quantity E„can be determined from
the calculated diamagnetic susceptibilities for the alkali
halides in Table II. One may observe from this table
that the numerical value of IXq;, I

in units of 10 '
emu/mole is approximately equal to m&+m&. Making
use of Eq. (A6), one can conclude that E. is nearly con-
stant for these materials and is approximately equal to
32 eV. The quantities g and p are much more diKcult to
determine. Because of this, we will only attempt to
make crude estimates of their values here.

In order to estimate the value of q, we must make an
examination of the physical nature of (r 2). Since

f,(r~') is centered about a radius r;))r~',

Taking advantage of Kq. (AS), (31) can be re-expressed
»'If'(r~')

I
dr~'=(r, )' If'(r~') I'd»'

(32)

where

(33)

one obtains the following expression for (X,(X,+1)&, :

(X;(X;+1))..= 3~x. /~E. ,
— (34)

It was stated earlier that the E's for the different ions
are made to converge to values which are not greatly
different from each other by the action of the Madelung
potential. This suggests that we may replace the E,i in
(32) with their composite average for the crystal. If
one makes the further simplifying assumptions that the
pi for the diRerent ions are essentially the same and
equal to their composite average value g, and that

so that (r 2) = (r,)'. Because the perturbation effects are
concentrated in the outer parts of the outer electronic
orbitals, (r,)' is grea, ter than the expectation value of
the square of the electronic radius vector for any one of
the outer orbitals. However, because these expectation
values are nearly the same for each of the outer eight
orbitals, and the sum of these is nearly equal to

2"' =~(~l'r 'l~),
the values of q should be between 1.0 and 0.1.The value
of (r,)' increases with decreasing lattice energy because
a smaller perturbing potential in the crystal influences
the electronic orbits of an ion less, and therefore, the
perturbation eRects occur further away from the
nucleus. Consequently, g increases when E.t decreases,
and vice versa, so that the product of these two quanti-
ties shouM vary little over the range of lattice energies
in the alkali halides.

%e estimate the average value of g in the following
manner. The perturbation of the electron density
associated with an outer orbital is assumed to take
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place beyond the outer point of inAection in the radial
electron-density function. The average value of r;
is taken to be that point on the r axis where the electron-
density function wouM intersect if it continued linearly
from the point of inQection with the slope at that point.
In order to evaluate these quantities, we make use of
the electronic orbitals of the form proposed by Slater. "
The result is

MgO
CaO
Sro
BaO

+~+&2 ~~(&') l«. lo.~ I« l-~."" Ix.b. l

20 1.74 18.2 20.0 10.2
28 2.84 27.5 31.5 15
46 3.44 38.8 39.5 35
64 4.56 52.8 52.0 29.1

9.8
16.5
4.5

22.5

TABLE III. Calculated diamagnetic susceptibilities and ob-
served susceptibilities for the alkaline earth oxides in 10 ' emu/
mole. The number of electrons per molecule is NI+e~ and the
molar electric polarizability is e~.

Here we have assumed that only the outer eight orbitals
contribute appreciably to the diamagnetic suscepti-
bility. The values of rl obtained from (36) vary between
0.34 for m*= 2 and 0.31 for m*=4, which, according to
Slater's rules, correspond to the principal quantum
numbers v=2 and n=5, respectively. The case e= j.
is not included, since the Li ion does not contribute
appreciably to the susceptibilities of the lithium halides.
The e=5 value is the maximum quantum number which
need be considered for the alkali halides.

Because the mean excitation energies vary in nearly
the same manner the quantity p, which is a ratio of E's,
should remain virtually constant and near unity in
value for all the alkah halides. This means that since
qE, varies little for the alkali halides and E, remains
virtually constant, the quantity tlpE, '/E„should also
bc virtually constant foI' aO these materials lIl accord
with the observation made in the last section. We can
now make a quantitative estimate of the value of this

ua11'tlty 111 tile Rlkall halldes by llslllg the value p= 1,
and the median values for E,'/E„and II of 0.26 and
0.33, respectively, to obtain the result ICE, '/E, =0.09.
This numerical value agrees favorably with the value
O.I1 obtained in the last section.

The results of the last section and the above theoreti-
cal calculation agree on the approximate validity of the
relation xp„,———0.11Xg;, for the alkah halides. Accord-
ing to (26), this conclusion means that for these crystals,
(2P/3){X;{X;+1)),=0.11, and furthermore that if P is
essentially constant for all of these materials, {y~

Lls
~ y)

must also be. In this sense, the average deformation
per electronic orbit is the same in all of these materials.

Because the above numerical estimate is quite crude,
a more important test of the theory lies in its applica-
tion to other ionic crystals. A natural set of materials
to study in this connection is the alkaline-earth oxides.
These materials have the Nacl structure (with the
exception of BeO) and otherwise are similar to the alkali
halides in many respects. In applying (35) to these
materials, we would expect that I1P/E, behaves in a
manner similar to its behavior in the alkali halides,

"J.C. Slater, Phys. Rev. 36, 57 (1930).

i.e., increases with decreasing lattice energy, but other-
wise has roughly the same range of values. Prom this
we conclude that the dominant factor in determining the
ratio Xv„,/Xa;, for this series of compounds is the aver-
age magnitude of the lattice energy per ion.

Table III lists the relevant magnetic data for testing
this conclusion. The values of crier and

~
X,b,

~

were again
taken from Refs. 5 and 15, respectively, while

~
Xs;,

~
„1,

was again calculated by means of Eq. (5). The cor-
rection of Kq. (5) was made by assuming, in accord
with the observations made earlier with regard to the
alkali halides, that ~Xd;,

~
X10s/Is has a magnitude of

approximately unity for each of the ions. (Xs;,I„I,""
was then obtained from

~
Xs;,

~
„1,by multiplication by

the factor L1+(Is,K,+IsjC,)/(Is, +Is,)j. When used in
the alkali halides, this correction procedure reproduced
the more complicated procedure described in the last
section to within a fraction of a percent in most cases
with none of the results diGering by more than about
2s%.

The lattice energies of the alkahne-earth oxides are
on the average about 6ve times as large as those of the
alka, li halides. If our theoretical conclusions are correct,
then X,.„=0.5~XR;.

~

for these crystals. In Table III,
v e see that this is indeed the case with the single excep-
tion of Sro, where the paramagnetic susceptibility is
much smaller than expected. This exception may well
be due to an inaccuracy in the observed susceptibility,
since it is unlikely that SrO divers appreciably in its
properties from those of the other compounds in the
scqucncc.

It is apparent, then, that the factor which deter-
mines the ratio Xv„,/Xd;, for an ionic crystal is E,'/f, or
the average la,tticc energy per ion. If the lattice energy
per ion is large enough, the crystal displays a paramag-
netic susceptibility. This is apparently the case in some
of the transition-metal oxides, which have a large aver-
age lattice energy per ion because of the large va, lences
of the constituent ions. We will consider one such ex-
ample in numerical detail here, namely, that of rutile,
about which a considerable amount of information is
available. The lattice energy of rutile, as determined by
means of the Born-Haber cycle is about 2900 kcal/mole,
which is about ten times the lattice energy pcr ion
calculated for the alkali halides. According to the above
theory, this should result in a slightly paramagnetic
crystal, in accord with the observed result. '
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IV. ANALYSIS GF RESULTS Am CONCLUSIONS

In this work, we have presented what appears to be
thc 6I'st dctclmlnRtloQ Rnd theoretical RQRlysls of thc
paramagnetic susceptibilities of ionic crystals. The
trend of the paramagnetic susceptibilities of the alkah
halidcs wRs 61st determined in R semlcmpilical fRshion

by comparing calculated diamagnetic susceptibilities
with the observed susceptibilities. This trend suggested
a theoretical analysis which predicted, in addition, that
the paramagnetic susceptibilities of ionic crystals with
larger lattice energies per ion should be proportionately
1RI'gcr. This plcdietlon was showQ to bc fulfillcd ln thc
alkaline-earth oxides, and indicated, in addition, the
reason for the observed paramagnetism in certain
transition-metal oxide crystals.

We are now in a position to analyze critically the
assumptions and conceptual foundations underlying
the theory. First, it is apparent from the results that if
the contention had not been made initially that the
angular kinetic energies of the crystalline systems con-
sidered equal E, in magnitude, then it would have been
necessary to assume that the angular kinetic energy
equals a substantial and virtually constant proportion
of the total kinetic energy of crystallization in the
materials considered. Otherwise, the theory cannot be
made consistent with experimental results. Conse-

quently, the contention is consistent with experiment.
Of greater importance, however, is the examination of

the basic mechanism which was assumed in arriving at
this contention, namely, the dominance of the point
charge potential in producing the CRect. The significant

issue here is whether the eRect takes place beyond the
nearest-neighbor distance, as would be required by the
point-charge model. This issue can be settled by simple

calculation, taking advantage of some of the results of
the previous section.

Using the median value of 0.26 for E,'/E„and assurn-

ing p to be unity, one Ands that the quantity q must on

the average equal about 0,42 in order that the theory
conform to experimental observation. Next, using the

value E,=32 CV arrived at in the last section, and taking
X=36 as a typical value for the number of electrons in

an ion, one 6nds, making use of the above result, that
r,' is equal to about 2.4 A. This value, however, is

probably too small since the quantity p=E„'/Egl
would be expected to be less than unity for two reasons.

First, since the sum which de6nes E, does not contain a
negative correlation term, while that de6ning E2 does,
E„ is necessarily smaller than E2 (see Appendix I).
Second, in the only case where the quantities E2 and

g~ are known, namely in the case of the hydrogen atom,
Ejr is about 35% larger than E~ 'lf this is a .typical
result, and the quantity p is typically some 35 to 40%
smaller than unity, then R typical value for I", is 2.7
to 2.8 A, a distance representative of the nearest-

neighbor separations in the alkali hahdes, and some-

what larger than those in the alkaline-earth oxides.

We see, then, that these calculations support the
contention that the ionic perturbations take place
beyond the nearest-neighbor distance. This, in turn,
lends support to the reasonableness of the point-charge
model. In fact, since the theory indicates that the per-
turbations which produce the paramagnetism (and
presumably the changes in ionic polarizabilities and
diamagnetic susceptibilities as well) take place at such
large distances from the nucleus, it would be difficult
to think of any other rneehanism which would produce
such an eRect. This idea gains further support when one
realizes that the assumption that the angular kinetic
energy is a fraction of E, less than unity necessarily
requires that I' be large~ than the values determined
above. Of course, further support of this idea must
await more theoretical work and comparison with ex-
perimental data.

One of the basic conclusions which may be derived
from this work is that the crystalhnc paramagnetisrn,
which is the result of the nonspherical ionic deforma-
tions, is a necessary part of the chemical binding
process. In this connection, the manifestation of a para-
magnetic susceptibility in R crystal is not a contradic-
tion of the ionic model. On the contrary, the results of
this work suggest that in an isoatomic sequence of
ionic compounds, the paramagnetic susceptibility should
very nearly be a constant percentage of the observed
susceptibility. This indicates that the magnetic data
could be used as a tool in the analysis of bond types in
crystals. Therefore, it is hoped that this work will pro-
vide an impetus for the accumulation of more extensive
and accurate magnetic data of crystals, and the means
for their analysis.

where R=Q,=P r;, r, is the radius vector of the ~th
electron, Rnd E is the total number of electrons. This
relation was then used to express the electronic polariza-
bility in the form

e')Vh' e'Eh'
A=-

mERE3 esEg'
(A2)

The mean excitation energies Eq, Eq, and E3, while not
identical, generally have numerical values which are
close to each other. Within the framework of the product
approximation for ionic crystals discussed in Ref. 2,

APPENDIX A: THE NGNADDITIVITY OF THE
IONIC DIAMAGNETIC SUSCEPTIBILITIES

The changes in the diamagnetic susceptibilities of
free ions when they are transported into the crystalline
environment may be discussed in a manner which
parallels the analysis of the ionic polarizabilities in
Ref. 7. In that work, the Thomas-Kuhn-Rcichc sum
rule was written in the form



Eq. (A2) was then applied to the individual ions.
Quantitative estimates of the decreases in the values of
the Eq's for the cations and increases in the values of
E~'s for the anions in the alkali halides brought about
by the inQuenee of the Madelung potential were made.
From these were obtained, using Eq. (A2), quantitative
values for the electronic polarizabilities of the ions in
the alkali halides which agreed favorably with the
least-squares values. The corresponding increase and
decrease in the cation and anion ionic radii was also
inferred from this analysis.

An analysis similar to this can be used for the ionic
diamagnetic susceptibilities. Within the framework of
the product approximation, the diamagnetic suscepti-
bility of an ionic crystal exhibiting over-all inversion
symmetry, i.e.

~ &KIRI»=+&ylr1lv)=0~ can be written
in the form'"

(A3)

where q; is the number of electrons associated with the
ith electron group, and M is the number of ionic elec-
tron groups. We can now make use of the sum rule'7

excited states involved in the sum can include the un-
observable symmetric states and states of mixed sym-
metry in addition to the observable antisymmetric
states. Therefore, E„ is a weighted average energy of
excitation which involves the energies of all the eigen-
states of the Hamiltonian and not just the observable
excited states as is the case for the quantity E2.

The value of the sum rule (A4) lies in the fact that in
many eases, it is much easier to estimate the relation-
slllp betwcc11E wl11ch RppcRls 111(AS) Rnd the E s wlllcll
result from sum rules involving real transitions than
to determine the magnitude of 0 and. its variations
directly. In this particular case, it is demonstrated in
Appendix 8 that thc 1atlo Eg/EI fol tllc flee-1011 sys'tc111

is very nearly the same as that for the crystalline
system. This means that the discussion given in Ref.
7 in which quantitative values for the electronic polar-
izabilities of ions in the alkali halides are obtained is
also applicable to the diamagnetic susceptibilities of the
ions. However, because X~;, is inversely proportional
to a mean excitation energy rather than its square,
as is the case for cx, the percent change in the diamag-
netic susceptibility of an ion when it is transported
into the crystal is roughly half that of the electronic
polarizability.

This sum rule is similar to the Thomas-Kuhn-Reiche
sum rule, and differs in that it does not contain the
correlation term

in the sum. If we define a mean excitation energy E,
such that

APPENDIX 3: THE RELATIONSHIP
BETWEEN E2 AND E„

In this section, we wish to establish the connection
between the quantity E2 obtained from the Thomas-
Kuhn-Reiehe sum rule and the quantity E, obtained
from the sum rule for one-particle transitions (A4). In
particular, we wish to establish that the relative changes
in these two quantities when the free-ion system under-
goes crystallization are essentially the same.

The Thomas-Kuhn-Reiche sum rule involves transi-
tion integrals of the type

=E„P P&yl*rI2ly)=3h'1v/2m, (As)

then Xq;, can be written in the form

E„(6mc'/e')Xq;. =3A'S/2rN

and an inverse proportionahty exists between xd;,
and Et.

The apparent ease with which we have bypassed the
problem of evaluating the quantity o which appears in
the Thomas-Kuhn-Reiehesum rule is misleading since
we have actually substituted one problem for another.
As has already been explained, II the sum rule (A4) does
not involve observable transitions, but rather, unob-
servable one-particle transitions. Consequently, the

"The superscript ~ was not used in Ref. 8 but is included here
to make clearer the summation over electron groups.

while the sum rule (A4) involves the transition integrals

Since R is completely symmetric in all the particles of
the system, the %'7. in (8]) must all bc antisymmetric
functions of the particle indices, just as is the ground-
state wave function %'~. This prohibition does not
apply to (82) so that the %'~, which appear in these
integrals include the unobservable states as well. Since
(pl Rly')=E(ylr;I7') when the II' ~ are restricted to
the observable states, our problem consists of evaluating
the contribution to the sum (A4) of the transition
integrals in which the unobservable %'~ appear. In



order to do this, we will separate the unobservab1c
%'~. into two classes, those in which two or more elec-
trons have the same spin and/or orbital quantum num-
bers, and those which do not. The 6rst will be shovrn to
make an unimportant contribution to the sum (A4),
vrhile the terms involving the latter will be shovrn to
behave in essentially the same vray as those involving
the observable %'7 .

The argument can be suxnmarized as follows: First,
we consider the system of free ions. The antisymmetric
ground state of each ion is a spherically symmetric,
spinless state. %C imagine a complete set of functions
from which a set of electronic spin orbitals can be con-
structed. All of the observable ionic states can be con-

structed from expansions of Slater determinants of the
spin orbitals. The unobservable ionic states are not
antisyrnmetric and must, therefore, be constructed from
series expansions involving permanents of the spin
orbitals, in the case of completely symmetric states,
or expansions involving products of permanents and
determinants of the spin orbitals, in the case of states of
mixed symmetry. Now any one-particle-transition
integral involving an observable and an unobservable
state which has two or more electrons in the same orbital
will generally vanish since at least two orbitals will

usually be paired in the integrand which have either
different spins and/or orbital angular momenta. In
either case, the orbitals are orthogonal, and the integral
vanishes. Possible nonvanishing contributions exist in

transitions which involve highly ionized excited states
in vrhich several electrons are stripped avray from the
ion core. Hovrcver, these states are energetically far re-

moved from the ground state in comparison with the

values of E, determined earlier, so that we may con-

clude that the terms involving these states do not con-

tribute appreciably to the sum (A4). When the ions

form the crystal, the electronic orbitals acquire an

additional component, which to 6rst order, has the

point symmetry of the crystalline environment sur-

rounding the ion. The orthogonahty of the orbitals

discussed above does not apply to these added coxn-

ponents, but since the crystal is assumed to ha,vc over-

all inversion symmetry, the transition integral wiB still

vanish) slncc the OI'bltals hRvc thc lnvclsloD syIIlmctry,
while the total integrand does not.

The only appreciable contributions to the sum (A4)
which lnvolvc unobsclvRblc states arc those ln which

the unobservable states do not contain orbitals in

which quantum numbers are duplicated. These un-

observable states diGer energetically from the observa-

blc states primarily in the expectation va1ucs which

they yield for the two-electron interaction potential

V;;=+;~;~'/rg

which appears in the nonrelativistic Hamiltonian. This

energy difference is relatively small and is of the order
of the exchange energy which appea, rs in the Hartree-
Fock treatment. A completely symmetric function
includes no exchange, whBC a function of mixed sym-
metry includes some since such a function is antisym-
metric in some of its electron indices. The expectation
value of V;; should not vary much because of the
crystallization process, since the percent change in the
total energy of the system in this process is small.
Therefore the unobservable excited states of this type
shift with, lcspcct to thc gI'ound state ln essentially thc
same manner as do the observable excited states. The
lowest-lying unobscrvable state does not contribute to
the sum (A4) since, like the observable ground state,
it has inversion symmetry both in the free-ion system
and in the crystaL Consequently (pl r, ly') vanishes in
this case. This means, then, that in. the passage from
the free ion to the crystalhne system, the unobservable
states which contllbutc ln RDy appI'cclablc manner to
the sum (A4), and consequently to E. shift in essen-
tially the same manner vrith respect to the ground state
as do the observable states which determine the
change in E~ so that E~ and E„maintain an almost
coDstRnt pl opol tlonRllty.

The meaning of this conclusion can be seen by com-
parlsoll of Eqs. (A1) and (A5). If the quantities E„
and E~ remain strictly proportional, then this means
that the ratio of

=Zhlr'r I» and Z(~lr"I»

must also remain constant. Now rf we set (ylr& r2I»
= (p I

rP I p) cosy, where the "correlation angle" q is the
average angle between the two electronic radius vectors,
this results means that cosy has essentially the same
value for both the free ion and crystalline systems. This
conclusion is in accord with the calculations by Hart
and Herzberg'0 on the mass polarization correction to
the energy of the helium atom. Their results indicate
t at (~ I p, p, I ~) for t e ground s~~~e increases roughly
as the square root of the total energy. Since (Yly&'Iv)
is proportional to the total electronic energy by the
virial theorem, this means that in this case cosy de-
creases roughly as the square root of the total energy.
Since the crystaBine system has a total electronic energy
of only a small fraction of a percent less than that of the
frcc-ion system, the calculations for the helium atom
support the above conclusion that cosy remains essen-
tially constant in the transition from the free ion to the
crystaBine system. In a similar manner, this conclusion
also is substantiated in the case of the individual ions,
since the magnitude of the crystaBine potential is usually
no more than a few percent of the total energy of a
given ion.

' J. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).


