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Approach to the Bound-State Three-Body Problem with
Application to the Helium-Like Atom*
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A technique is presented for treating a general type of three-body bound-state problem for situations
where the interaction may be written as the sum of three pair potentials. The method is based on the work
of Eyges and consists of writing the total wave function for the three-body problem in a special form, i.e.,
as the sum of three diGerent parts or "orbitals" defined in a natural way from the integral equation by
using the appropriate symmetrized or antisymmetrized Green's function. A set of three integral equations
for the three orbitals is derived: first for the situation where each particle is distinguishable, and then for
situations where two or all of the three particles are identical, It is found that, when some of the particles
are identical and the Pauli principle is incorporated into the formulation, the number of independent
orbitals can be reduced. Some simple one-dimensional applications involving 8-function pair potentials
are examined. The helium atom is discussed from a three-body point of view in order to illustrate our
general apporach to the above-mentioned set of coupled integral equations. Each orbital is expanded into
a complete set of two-body Sturmian functions for the Coulomb potential. For states in atomic helium
of the form I=0, the equations assume a simplified form. For these states, the infinite set of integral equa-
tions in one variable generated by the expansion is truncated at several orders and solved numerically.
Rapid convergence is demonstrated for low-lying states of the helium-like atoms using this method. In
particular, results are reported for the 1s1s'S, 1s2s'S, and 2s2s'S states of-He, Li+, and H .The technique
is not based upon a perturbation expansion or a variational principle.

I. INTRODUCTION

T would be impractical to review adequately all of
. . the literature on the three-body problem here.
However, we will mention the most important papers
which relate to our method for treating the bound-
state three-body problem in a general way. Eyges has
shown the advantages of writing the wavefunction for
the three-body problem as a sum of three parts or
"orbitals" defined in a natural way from the Green's
function and resulting integral equation. ' Faddeev
picked up this idea and wrote a T matrix for the
three-body scattering problem which was free from the
difficulties encountered by a Lippmann —Schwin ger
approach to the problem. ' There have been a number
of other treatments of special three-body scattering
problems in nuclear physics (usually for separable
potentials) either using the Faddeev equations or
working with the ordinary integral equations for
scattering in momentum space. 3 Rotenberg pointed
out the fact that the Sturmian set for the analogous
two-body problem forms a natural basis for three-body
expansions. 4 There have also been several attempts to
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set up a general technique for dealing with three-body,
bound-state problems s

The plan of our paper is as follows. In Sec. II we
derive a set of three coupled integral equations for the
bound-state solutions of three distinguishable particles
interacting with each other through pair poteritials.
In Sec. III we re-examine the three-body problem when
two or all of the particles become identical and intro-
duce appropriately symmetrized Green's functions to
take this into account. This gives a generalized set of
coupled integral equations for the three-body problem
where correlation and exchange effects are properly
treated. In Sec. IV we examine the angular-momentum
properties of the wave function when written in this
special form and show how to construct an eigen-
function for any total L and M. Ke also examine the
parity of these solutions and show that for each set of
quantum numbers for L~ 1 we have both an even- and
an odd-parity state. In Sec. V we treat several prob-
lems involving 8-function potentials in one dimension
which give us some insight into problems of more
general interest. In Sec. VI we discuss the helium-like
atom from a three-body point of view. Here we demon-
strate the general technique for treating the coupled
set of integral equations by applying the method to
this problem. The method consists of an expansion of
each orbital into the Sturmian set for the analogous
two-body problem. The explicit appearance of the pair
potentials may be eliminated and the resulting set of
infinite coupled integral equations is then truncated at
some order and solved by numerical methods. The
energies and wave functions for some states of the

' W. Zickendraht, Ann. Phys. (N.Y.) 35, 18 (1965).
69



70 J R JASPERSE AN D M. H. FRIEDMAN

form I.=O in the helium-like atom are calculated, and
rapid convergence is demonstrated.

II. FORMULATION OF THE THREE-BODY PROB-
LEM FOR DISTINGUISHABLE PARTICLES

A. Jacobi Coordinates and the Associated Green's
Functions for the Problem

Three-body problems governed by the following
Hamiltonian are investigated:

a=+ ' ++V;,(lr;—r;I). (1)
j=j, 2mt', jgj

It has been shown by Eyges' that it is convenient to
use Jacobi coordinates in dealing with three-body

problems where all three particles have identical masses.
For the same reasons given by him it is also convenient
to use the full Jacobi coordinates when the three masses
are not equal. The three sets of Jacobi coordinates are
given by

R= (m~r, +m, r;+mirI, ) /(m;+m;+mi),

r;, = r, —r, , gi ——rq —(m;r~+m~r;) /(m;+m;),

where the different sets are generated by i, j, and k

assuming the values 1, 2, and 3 in cyclical permutation.
We note, of course, that these representations are not
independent and linear relations between them can be
found. In any one of the three frames the Schrodinger
equation with the center-of-mass motion separated out
1S

1(m m'l, 1f m ml—
I

—+ —
~

~...'+ —
I + —

I
V,„2—(v,,+s,,+~„) @=Km@,

2 km; m;i
" 2 (m;+m; mi, &

(2)

where K'=m
)
E ~//fi2, v;; =mV,;/fP, and the choice of

m 6xes the mass scale. We now imagine a six-dimen-

sional con6guration space defined by any one of the
three sets of Jacobi coordinates. Let us represent a
general point in this six-dimensional space by the
vector P so that%', in general, will be a function of P.

Each of the three relations embodied in Eq. (2) may
be converted to an integral equation for + of the
following form:

+(P) = — dP'+(P') ~ (P') G(P —P'), (3)

where vg is the total potential and G, the Green's

function, is the solution to the following differential

equation:

I.„G,,= (n,;V„,'+PI,V—„'—K') G,;(rg —r,,', yg
—gy')

= —&(r' —r' )~(p —9 ) ~

The subscripts on G refer to the Green's function

expressed in a particular set of Jacobi coordinates.

G may be represented in integral form as

1 expLilr (r,;—r; )+i (p —
g

'~)]
Gg= dk d'h

(2s.)' n; k'+Pox'+K'

Each of the three Green's functions will have a similar

form, i.e., that of Eq. (4), and the constants n;; and Pq

may be read off from Eqs. (2) . It is easy to show that
all the G's are identical by considering the proper trans-

formations of the variables of integration k and x.
Since the three Green's functions are identical, one is

to regard the subscripts as referring to G expressed in a
particular Jacobi frame.

B. The Form of the Wave Function

Kyges has shown that it is advantageous to write

the wave function for a three-body problem as a sum

of three "orbitals" when all the particles have the same
mass. ' Faddeev has also used a similar form in writing
a T matrix for three-body scattering problems. '

Following Kyges, let us write 0 as a sum of three
parts where each part, or orbital, is associated with
one term of the three-body potential:

+(P) $12(P) +4'23(P) +O'$1(P) (5)

where the individual orbitals are de6ned with regard to
each part of the three-body potential

4 (P) —= — dP'+(P') sv(P') G9(P—P') (6)

We may easily verify that the form of 4(P) given in

Eq. (5) satisfies the differential equation by sub-

stituting Eq. (5) into Eq. (3) and operating on both
sides by I.. The Green's functions in Eqs. (6) are each

expressed in terms of the natural variables of the
particular orbital. For example, when i= j and j=2,
P» is the orbital associated with the potential s» and

G~~ would be written as

1 expLilr. (r» —ri2')+ix (y3 g3 ) 7
Gyp =

(2x)' u»k'+P3x'+K'

since the natural variable of v~~ is r~2.

C. The General Set of Coupled Equations for
Three Distinguishable Particles

In the first two sections we have introduced the three

sets of Jacobi coordinates as possible representations
of the three-body problem, and also discussed a special
form for @(P) which arises naturally when we recast
the differential equation for the three-body problem
into an integral form. We are now in a position to
derive a general set of coupled integral equations which,

if solved analytically, would give the complete solution

to the three-body problem. If Eq. (5) is substituted in

the right-hand side of Eqs. (6) and the natural variables
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y»(k, 23) = —[(22{-)'(n„k'+plK +E') ]-' dr, 3 dk v23(123 )
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Equations (Sa), (Sb), and (Sc) are the basic set of
coupled integral equations for three distinguishable
particles interacting with each other by two-body forces.

III. GENERALIZATION TO INCLUDE
IDENTICAL PARTICLES

A. Two Identical Fermions and One Different Particle

Now we wish to discuss the problem of two identical
fermions and a third particle which is diferent. The
Jacobi coordinates satisfy the following relations upon
exchange of the two identical particles:

R~R,
&12~—43 &23~—42 &31~—&31

93~94 91 9» ~$2.
Since we have chosen particles one and three as the
identical pair, we may write the three-body potential as

Vl (r12) +Vl ( r28) +V2 (r31) (9)

where v2 must be an even function of its argument. We
note that no restriction need be placed on the form of
e1 which is the pair potential between the second
particle and either one of the two identical particles.
The Hamiltonian operators defined from Eqs. (2)
and the L operators corresponding to the diGerential
equations for the Green's functions expressed in each
Jacobi frame, have the following properties upon ex-

change of the two identical particles:

H12 H23p H23 H12p 831 H31p

L12~L23p ~23~L12) L31~L31.

Here, the subscripts refer to the operators expressed in
a particular set of coordinates. All of the H's and all
of the L's are, of course, identical.

Rather than satisfy the Pauli principle by explicitly
symmetrizing the wave function, we choose to work
with a symmetrized and antisymmetrized Green's func-
tion. The symmetrized Green's function in the Jacobi
frame defined by (rla, {()3) satisfies

((au~ru'+Ps~ps' &')Gu—
29(ru r12 )~(gs gs ) &8( r23 r12 )8(pl ps )].

Similar relations hold for G expressed in the other two
Jacobi frames. It is easy to show that there is only one
Gs and one G" for the problem. In the Jacobi frame

(rla, {()3) the two functions are

Gu ' = 2Gu(rla lu {()3 {03 )

+2Gu( —ras —ru', {.o1—ys'), (10)
where the G» is the previous unsymmetrized Green's
function given by Eq. (4). Again, similar relations
hold for G expressed in the other two center-of-mass
frames. We may now write three new equations for the
orbitals in terms of the symmetrized Green's functions:

l//u(I12 gs) = dr12 dgs {$12(r12 {{)3) +$28(ras pl ) +$81(rsl ga ) }

Xvi(ru') [2Gu(ru —ria', ys —{()3')+2Gu( —ras —ru', {vi
—gs')], (11a)

d„(r„,r,) = jdr dr{d—(r r„,'')+,'d („r„'„,'r, ,')+P„(r„', r, ') j)

X»(—r»') [-,'G»(r» —r»', yl —yl') +-2G23( —rla —ras', ys
—pl')], (11b)

lpsl(rsl ga) = dr31 d{p2 {$12(r12 {()3 ) +{{t'23(ras {{)1) +4'31(rsl pa ) }

Xva(rsl ) P2G31(rsl rsi 92 92 ) &12G31( rsl r31 92 02 )] (11C)
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Using arguments similar to those of Sec. III A we may show that F 12
——pll=&pal. Thus we have

@'0(k «) = —L(2s)'(k'+3II'+Z') j-I drdk' I(r) Iy'0(k') «) expir (k' —k)

+y''(-'k' k' —2«) expir ( —k ' —k+ '-«)+qv ('—-'k 'k' —2«) expir (k' —k—-'«) I (15)

We have used the fact that when all the masses become
equal:

Pa=PI=P~=X.—3

Equation (15) is the same as the one derived by
Kygesl whose starting point was a three-body system
of particles with the same mass.

vectors may be written as

@o(k, «) = Qa„I„(«)S„I(k)FP(QI,), (16)

where S„l (k) form a complete set of functions and
thc coeKclents 8 I («) Rlc unknown fllllctloIls of tllc
vector g. If we impose the condition that each orbital
must be an cigcnstate of L Rnd M, then

4""(k «) =Z ~~f1 "'(~)S.I(&)

The general expression for the angular momentum
operator for three particles of arbitrary mass in a
Cartesian coordinate system is L= (L„L„,L,), where

8

L„= i5g—
~
y„——s„

m=l k ~&n Ilya

The other two components of L are given by cyclical
permutations of x, y, and s. It can be shown that the
cxpl cssloD fol the RngUIal -momentum operator for
three particles of different mass in each Jacobi frame
is given by L= (L„L„,L,), where

XQC«(L, M, m, m') FI "'(Q„)FI"{QI,), {17)
mm~

where C«. (L, M, m, m') is the Clebsch —Gordan co-
efBcient. This is the most general expansion for aD
arbitrary orbital where the f1 "I(~) are regarded as
unknown functions of ~. For I.=O and M=O the
Clebsch —Gordan coc@cicnts vanish fox 1&1' and for
mN —m'. The remaining coefIIcients are just ( —1)~.
FoI' thcsc stRtcs wc have

~';(k, ) =Z(-1)"f.( )S. (&) F--(Q.) F-(Q.).
nbn

For these FI"{Q),
FIm+ (Q) ( 1)waF -m(Q)

wc obtain

y;;(k, «) =gf.I(~)S„I(k)F,"*(Q„)F,-(Q,). (1g)

8
+yij s~j +plII

Bs;& 8p;z Ops~

and where the components of R, &;;, Rnd py are given by

R= (R., R„,R,), r;;= (a;;, y;;, s;;), ye= (pI., pl,„pI*)

Similar expressions hold for L,„and I., We note that
tile follll of L 18 thc sanlc 1II cRcll JRcobl flRIIlc Rnd ls
also the same as L expressed in Cartesian coordinates.
If we require that %(r;;, yI,) is an eigenstate of both
the total angular momentum and the total Z component
of angular momentum, we may then deduce tha, t each
orbital is also an eigcnstate of L and M. I.ct L;;~ denote
L expressed in a particular Jacobi frame, then L,;I=
L;q;=Li,;;. Since the most general form of the total
wave function. is that given by Eq. (5), we may write

Kc see that for particles of arbitrary mass each orbital
must be an eigenstate of L and M.

The IDost gencx'Rl cxpaDslon fox' a fUDctlon of two

Ol, ln Inorc compact notation,

4V(» «) =Zf.I *(«)S I-(k).

B. PRx'BQ C05,81d,8x'Rtlorls

Under a parity transformation all the coordinates
are inverted through the origin. In Cartesian coordi-
nates this transformation for three particles is

In each of our Jacobi coordinate frames the parity
tI'RDSfoI'IDRtlOD lS WrlttCD RS

R—+—R,

Now we wish to examine the properties of our solutions
Undcl' this tlRnsformatloD.

For solutions with I.=O wc see that, for two identical
particles and a third diGcrcnt particle, the equations
fox' thc ox'bltRls dlvldc into two clRsscs. They Rlc the
symmetric space solutions where the cp,;(k, «) are even
in k and the antisymmctric space solutions where the
Ip„(k, «) are odd in k. Since these solutions are ex-
panded into complete sets with terms containing
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Fi"*(Q„)Fi"(Qk), they will have the parity of (—1)"
and will always be even.

For the most general situation, where I./0 and the
individual orbitals are expanded by Eq. (17), we see
that each term in the q;; will contain factors like
F&m'(Q„) Fi (Q&) and will have the parity (—1)'+".
Since l and l' may assume all integral values, the
parity of each term in the expansion may be either
even or odd. The parity operator P commutes with the
Hamiltonian; therefore we may require that each
eigenstate be constructed with a definite parity. For
states where l./0 we may have eigenstates with either
even or odd parity. For example, for I.=1 we know
from the addition of angular momenta that

i'
i

&—L&i+P

and we may form I.=1 with terms like l=1, l'=1;
l=2, l'=2; etc. or with terms like l=1, l'=0; l=0,
l'=1; l=2, l'=1; l=1, l'=2; etc. The first set will

form an orbital with even parity and the second set
will give an orbital with odd parity. The complete set
of commuting operators is then H, L, M, P, 0, Oq, S,
and Mq, where 8 and Ma are included separately in
nonrelativistic mechanics as the spin parts. The opera-
tors 0 and 08 are the space-exchange and the spin-
exchange operators. Our set of eigenvectors may be
written as

{ ELMPOOESMs) =+ELMPo(r;, ; t2k) } SMs),

where it is understood that the antisymmetric combina-

tion of the space part and the spin part is taken. The
total space part of the wave function is

+ELMPo(r;, , yk)

fijELMPo(rijq gk) +4j'kELMPo(rjkp Pi) +4'kiELMPo(rkiy gj) ~

V. SOME ONE-DIMENSIONAL APPLICATIONS
INVOLVING DELTA-FUÃCTIO5' POTENTIALS

In Sec. III we have seen how identical particles can
be treated in this formulation of the three-body
problem. In Sec. IV we found that each orbital must
have the same angular momentum properties as the
total wave function. The general equations for distin-
guishable particles simplify to Eqs. (14a) and (14b)
for two identical particles, and to Eq. (15) for three
identical particles. Now we wish to examine some
artificial one-dimensional problems in order to gain
insight into problems of more general interest.

We first consider the ground state of three identical
spinless particles which attract each other with one-
dimensional 8-function potentials. The total potential is

2t, = —Sb (xk —x2) Sb (x2 —xs) —S—b (xs—xr),

where S is the strength of the 8 function. This problem
was studied by McGuire' using ray-tracing techniques
and by Eyges' working with Eq. (15). For complete-
ness, we wish to summarize Eyges's results. The ground
state of this system is represented by the one-dimen-
sional analog of Eq. (15):

S cQ co

y'(k «) = dk'dxb(x)
(22r) (ks+-,'«2+E2)

X{&'(O', K) expiX(k' —k)+qV(sk', k' 2«) {e—xpiX(k' k 2«—)+—expiX( k' k—+-,'K—) j}
Performing the integral on x and dropping the superscript e gives

We note that the right-hand side is only a function of ~ and so we make the following substitution:

y(k, «) =g(K)/(k2+42«2+E2).

The resulting integral equation for g(K) is

s s -, g(")
g(K) 1— dK

2(-'«2+E2)'~2 2r —,'(K'+2«) 2+2«"+E2

If we substitute

g(K) =1/(«2+u2)

the integral on a' may be done by extending the integration to the complex plane. This satisfies the above integral
equation for g(K) if ci=E =S. The exact total wave function in momentum space (unnormalized) may then be
written as

C(k, K) =q(k, )+Kg( ', k+ ,", k —', K)+-y( -;k—4«, k l«-),---
@(k K) (k2+ 2 «2++2) —r {(k2+1t2) —I+L(k+2 K) 2+It21—

1+ L(k 122K) 2+E21—r
}

2 J. B. McGuire, J. Math. Phys. 5, 622 (1963).
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TABLE I. One-dimensional 8-function potentials (xii =3133«N33).

Potential (e]) Energy (—E') g1 (K) approx. g3 (3) appl'ox.

—s (x») —h (x„) b(—x3i)
—s(x„)—s(x„)+s(x„)

s(x—») —s (x23}+-,'s (xg }

—1.664+0.002
—0.648&0.001
—0.789&0.001

+2.25/(32+2. 25) +0.05 +0.680L5.05/(32+5. 05) )&0.05

+0.55/(3'+0. 55) +0.05 —0.310t 2.80/(33+2. 80) )+0.05
+0.575/ (32+0.575) ~0.05 —0.200L3.35/ (3'+3.35)$~0.05

In coordinate space we may also show that the total unnormalized wave function is

+(x» ys) = exp I
—2ELI x»

I + I sx»+ys I + I 2x» —
y3 IjI

+(», x2, ») = expI —2EII »—» I+1*2—» I+ I
»—» IlI.

We now turn to a more general case where two of the particles are identical and the third particle is diGerent.
We may also imagine that two identical particles (one and three) repel each other as long as the total system
remains bound. Therefore, we consider a one-dimensional, three-body problem where the potential is given by

B,= —Slb (xl—x2) —Slb (xs—xs) W Ssb (xs—xl),

where we may consider either. an attractive or repulsive interaction between particles one and three. The motive
for studying an artificial three-body problem like this is to learn about the effect of a repulsive part of the total
potential on the total solution, provided that the system remains bound. Substituting these two types of poten-
tials into the one-dimensional analogs of Eqs. (14a) and (14b) and performing the integrations over the 8-function

potentials we obtain

&1(k, K) = . . . dk' Iq&1(k', K)+pl( —bk', k' —K/b)+y2(-', k', k' —2K) I,
(22r) (n»k'+p3K'+E')

&2(k, K) = . . . dk'
I 42(k') K)+pl(ak') k' K/a) +y—l( ak', O' —K/g—) I.

(22r) (nslk'+p, K'+E')

Making the following substitutions for y~ and q2.

$1(k) K) =gl(K)/(n12k +p3K +E ) p $2(kq K) =g2(K)/(n31k +p2K +E ) q

and simphtfying the resulting equations for gl(K) and g2(K) gives

2' gl(y) g2(y)

Sl (n12p3K +n12E ) — n12(by+K)'+psy'+E' nsl(2y+K)'+psy'+E'

gl(y)
g2(K) + ——

2 (n3lp2K +n3]E') 'I' n»(ay+ K) '+psy'+E' (19b)

C~1q

Ps= 2

b—+0,

P2= 3,

An exact solution for this set of coupled integral
equations for gl(K) and g2(K) would solve the problem
of two identical particles and a third particle interacting
through 8-function pair potentials. At present, we have
not been able to find exact solutions to Eqs. (19a) and

(19b). We have been able to solve them on the IBM
7044 computer and obtain an approximate eigenvalue
and eigenvector for the ground state of the system.
We are particularly interested in examining the numeri-

cal solutions when the masses of the two identical
particles are much smaller than the mass of the third
particle. In that case

and Eqs. (19a) and (19b) become

2 2x
g'(") S, (.+2K. ) i

S (K'+4E') 'I'

gl(y)

,'(y+K)'+ ', y'+E-' '-
We. found one eigenvalue and the associated eigen-
function representing the ground state of the system



Hc-I. I K E A To M

for each of several combinations of values for Si and Sq.
The results for the ground-state energy and approxi-
mate functions for gt(s) and gs(~) are shown in Table I.
The approximate functions for gi(s) and gs(~) in
Table I are included only to give the reader a feeling
for the numerical results. In order to obtain more
accurate functions, more complicated terms would have
to be included in a curve-fitting procedure. The machine
results for gt(a) and gs(s) .are plotted in Figs. 1(a),
1(b), and 1(c) and have about the same accuracy as
the computed values for the energy listed in Table I.
Since g&(«) and gs(a) are even functions, only the values
for positive I(: are shown. Ke may write the total
unnormalized wave function in momentum space by
recalling that

C (k, a) —= (2s.)-' dxisdy, e(xis, ys) exp(ikxis+i«y}}) .

Substituting the orbitals in coordinate space for
@(xis, ys) and transforming to the appropriate Jacobi
frame for each term of the integral gives

C (k K) = i/i (xis y3) exp ('LkxQ+Mys) dxistys

1.0 '

0.8
A
L- O.e
O.
X~ 0.4

0.2

l.O

0.8

~ 0.6
A

—0.4
Q.

0.2

-0,2

l

0.5 l.0
l l I l I I l

l.5 2.0 2.5 5.0 KS 4.0 4.5 5.0
WAVEVUM8ER (k)

+ fA(x,gy}e p~[,xky,~+i ( x„}]—da, dy,

0.5 l.O l.5 2.0 0.5 5.0 5.5 4.0 4.5 5.0
WAVENUt}}rt8ER (k)

+ A(»i, ys) expCsk( —sxst —ys)+s«(sxsi —ys) jd*sidys,

4 (k, z) =yt(k, K)+dr( —}}:,k) +ps( —-', k+-,'«, —k —«) .
For this problem the orbitals are given by

yt(k, z) =gi(«) /(-'k'+-'s'+Z')

ys(k, z) =gs(a) /(k'+-,'«'+E') .
Several comments are in order about these results.

%e recall that when all three particles are identical a}nd

interact through attractive 8-function potentials the
exact energy of the ground state was —E'= —5'=——j.
%e see that when two of the particles are identical and
much lighter than the third, the binding energy in-
creases. %e also 6nd that if the light pair of particles
repel one another the binding energy decreases from
that of the previous case as expected. Another feature
which appears is a negative sign in the second term of
the total wave function for the orbital representing the
repulsive pair of particles. In addition a decrease

e relative strength of the repulsive interaction is seen
to increase the binding energy as expected.

VI. THE HELIUM-LIKE ATOM

A. Formu1ation for States of the Form I.=0

In previous sections we have seen how the three-bod
problem for particles of arbitrary mass may be formu-
lated in momentuxn space. %e also have shown how to

O. a

~ 0.6
A
'D

—0.4

~ 0.2

f . i
I

-0.2 t

0.5 l.0 j.5 . 2.0, .-2.5 5.0 3.5 4.0 4.5 5.0
VfAVE NUMBER (k)

(c)

Fio. 1. (a) The functions g} and gl for eg
———g(g») —g(«,, —

g(xl}) and my=ma«ms, (h) the functions—(»s) —(»s)+&(x}}i) and m}=ms«m}}, (c) the functions
and gs for eg ———g(»2) —g(x2}})+-,'b(«g) and m, =m}}«ms.

deal with situations where some or all of th
0

o e parsec es
are id.entical and obey either:Fermi-Dirac or Einstein—
Bose statistics. Ke have examined the an le angu ar momen-
tum and parity properties of these solutions and seen
how to exp}and the orbitals for states of arbitrary L,
and M. Novr we turn to a realistic pxoblem and demon-
strate our general method by treating the ground state
and som9 excited states of the helium-like atom. From
our discussion in Sec. III and IV we note th t le a soutions
to Eqs. (14a) and (14b) are divided into two
classes for states of the.form J=o Inn our 'erivation
we will carry both tlM even and odd i so that bqt
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Sg ——2e'tw /)r), '

Sm= —e'm. /A, ', u(r; —r;) = —1/) r;—r; ~.

solutions to these equations can be examined. For where
states of this type, we may expand the two orbitals
p&(k, u) and p2(k, u) in the following way, where the
sum on / is restricted to either both even / or both odd I:

y) (k, x) =Q f p(~) F(™(Q.) S.p(k) F),"(Q),), (20a)

y2(k, x) =Q f„P(x)FP*(Q„)S„P(k)FP(Q),) . (20b)
nltn

The total potential for the helium atom is

v, = S&u(r& —r,)+S,u(r, —r, )+Smu(r, —r~),

We note that the third term in the potential is the
electron-electron repulsion and is positive. The func-
tions S„p(k) and S„P(k) will be chosen as the Sturmian
set of strength cx' and P' for the analogous two-body
problem. Some of the properties of the Sturmian set
for the Coulomb potential are discussed in Appendix A.
Substituting the expansion (20a) in Eq. (14a) and
rearranging slightly gives

—Si
(n&k'+P&~'+E') g f„&„*(L)S„&„(k)=, d'k'd'r u(r)

XI+f„~„"*(x)S„~~ (k') expir (k' —k)+g f„&„~*(k'—2x) S„~~~(-,'k') expir. [—k' —k+(2 —a)x]
nlm nbe

+g f„~„*(k'—x/b) S„~~ (—bk') expir [k' —k —(1/b —b) x]j.
nlm

Here, we have written the expansion of pq(k, u) in more compact notation. For the second integral equation we

may also write

(nmk'+$2~'+E') Q f„r e*(x)S„)J(k)=, d'k'd'r u(r)

XI Qf &J*(x)S &
~(k') expir (k' —k)+P f &

*(k'—x/a)S„t ( —ak') expir [k' —k —(a ' ——',)L)
nlm nlm

+Qf ) *(k'—x/a)S„( (ak') expir [ k' —k+(—a ' ,') gj—I.-
nlm

We may now multiply the erst equation by S„.& „.*(k) F& "'(Q„), the second by S„& e*(k) F& '"'(Q„), and inte-

grate with respect to k to obtain

Q f~(.~ *(x)Fi"'(Q.) (Pj~'+E') dk k'S ) (k)S„) (k)+ng dk O'S„p (k)S„i (k)

(2~)'
d'k' d'kd'r u(r) S i ~*(k) Fi "'(Q.)[gf„~~ *(x)S„t„(k') expir (k' —k)

+g f„&„~~(k'—2g) S„&„~(-',k') expir (—k' —k+(2 —a) u)

+g f„~ ~*(k'—x/b) S„~„(—bk') expir (k' —k —(b '—b)~)]
num

For the second equation we have

Ef «" [«) F«"'())) ()) «'+E') dk O'8 «.«()) S &

k)+«f)ikey'8„,

«()') S,„,«(k)

d'k'
(2~)'

d'kd'r u(r) S(.„.~*( )kFp"'(Q«) [Qf„(„&*(x)S„( ~(k') expir (k' —k)
nbn

+gf ) *(k' r/a)S„~ (—ak—') expir (k' —k —(a ' ——,')x)
nlm

+Qf ( *(k'—x/a) S„(„(ak')expir (—k'-k+(a-'--', )x)j
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From our discussion in Appendix A we see that the Sturmian set in momentum space obeys the following double
1ntegral equation .'

—20,"A„

S„~ *(h')=, , ", dakd'r N(r)S„~ *(h) expir (h' —h),

where cF is the two-body energy, or strength, of the set and the f X„j are just the positive integers. We may also
verite

—2eX„
S„,„-'(—h'+(2 —a) «) =- d'kd'r u(r) S„(h) e p r (—h'+(2 —u) «—h).

(2-) L(-h'+(2-.)-}+-j
Using this property of the Sturmian set, @re may elilninate the integration over the potential on the right-hand
side of each of the turn equations. This gives

Q f~v~"*(«) Fv"'(&.) &(Pi~'+E.")~ vav +~is~ v~v j
k"+a'

=Sg d'O' Fg"'(Q„) Q f„(„*(«)S( (h') S p '(h')
2Qgnl

(—h'+ (2—a) «)'+n'
+Q f„) ~~(h' —2«) S„)J(-,'h') S„p„N*(—h'+(2 —a) «)

nbn 20.X„

(h' (b —' b) «—)'+n'
+Qf ( *(h' —«/b)S. ( (—bh') 8, g« *(k'—(b '-if) x)I,

nba 20;)„
Rnd for the second equation

Zf E -~(«) F~ '(Q.) L(P2~'+&')~ ~"~'+~2m;i.v'g

=S2 d'k'F(™(Q„) Qf„(J*(«)S„(„t'*(h') S„) .~(h')
g 2P)„

(h' —(&/a —2) «)'+0'+Q f„„"~(h' —«/a) S„„(—ah'} ' S„~ ~~ (h' —(1/u —-', ) «)
nbn

( h'+—(&/~ 2) «)—'+0'+Zf i "(&' «i~)& ~ -(~&') — -„* &"r-'"(—&'+(~i~=:)~)j.
nfl m

The foHovring constants have been de6ned:

e„)„)"»=— dkk' „.)."» k && &'~n~V» & ~&&~"» & ~

These integrals are all trivial and may be easily computed. UtiHzing the orthogonality relation in momentum
space derived in Appendix A gives

Zf~v~' («) Fp (Q~) f(Pl~ +It )~~'v~v ++17~'psv 2 (Sl+)ban' j

d'k' F~ "'(Q.) ( Z f.s-"(h' —2«) S.~-'(4h') C(h' —(2- } )'+ 'j( —&) "S"~ "(h'—(2—) )
2(xX„ nb@

+Zf. :*(h --/b) (-l}S.:(bh) &( -(l/b-b}-)+- jS..."*(h -(l/b-b}. &~.

The second equation for.. the electron —electron orbital is

Qf g ~*(«)Fp™(Q.)P(P2z'+E') e„g g ~+n~„p„)~ ,'(SgP) b„„j= ——d'O' Fg.~'(Q,)

XtZL(-l) +(-l}"jf..-*(h'-./a) S.--(oh) t:( -(~/a-~). ) +PCS. ..~( -(l/. -s}.)».
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The quantity (—1)"may be factored out since l and l' are either both even or both odd. Making the appropriate
transformation of variables on the right-hand side of these two equations leads to a more simplified result:

Qf.~ "*(»)F~ "'(0.) L(Pi~'+&') ~~ i ~d"+niv~ vnv 2—(sin)4" 7

(—1)" d'x Fd "'(0„){Q f„).p(x) S„i„~(-',x+») L(x+a»)'+n'7S„ i "*(x+c»)
aX„ nlm

+Q f„)„*(x)S„(„(bx+»)L(x+5») '+n'7s„d ~ *(x+5»)}.
nlm

For the second equation

Q f i '*(») Ft "'(0.)&(Pu~'+&')~ ~ v'+n2v i v' ~S2P~~~7

(—1)" d'x F( "'(0„){Q f„(„~*(x)S.( (ax+») L( +x-,' )»'+P'7S„( ~ &*(x+-,'») }.
nlm

These two equations are a set of coupled integral equations, where the two different kinds of particles have arbi-

trary masses. The equations simplify if we let the mass ratio of the electron to the nucleus go to zero. The error
introduced by this approximation is of the order of 1 part in 8000 for the helium atom. There is really no loss of
generality in doing this since the equations are still tractable if this approximation is not made, However, it does
simplify the computational aspects of the problem. In this limit the constants appearing in these equations are

A]~2 p pg—+4,1 b—&0.

Substituting, we obtain

Q f„v "(»)Fd™(0„)I (-,'dd'+E')e„) „v +2y„)„("——,'(sgn)8„.7

(—1)" d'x Fv"'(0„){Q f„(„s*(x)S„d~~(-,'x+») L(x+»)'+n'7S~ ( ~"*(x+»)
2o.)„ l

+Qf„„*(x)S.(„(»)(x'+ ') S„ i *(x)}.
nlm

For the second equation

Q fddl'na' (K) Fl' (Qd) D4K +E )6a'vddv +vs'vsv g (sgP)8n'n7

'
(—1)" d'xF(."'(0„){Q f„g„*(x)S„d„(x+»)L(x+-', »)'+p'7S„.( t'*(x+-,'») }.

nlm

Now we may sum both sides of these two equations on nz' and integrate with respect to 0„:

Qf v (K)D&'+i~')~;~nv +~v"v"v 2(Sin)4~—7
n, mi

( —1)" dxx' d0 d0„{ Q f„d (x)s„d (dd) Fd"*(Qx) Fd (0„)(x'+n')S„( (x) Fd."'*(0„)Fd."'(0„)
2+X nlmm~

+ g f.p(x) s.p(l —:«+»I) Fd"*(0*)Fd"(0»2-+.) I (K+») +n'7s„,"(Ix+» I) Fd -'*(0-+.) F~ ™(0.) }.
nlmmi

For the second equation we also obtain

g fddv (dd) L(& +4& )&n'vdlv +vn' Pddv 2 (S2P) &ddtd'7 =.
nm/

d
I

(—1)" dx9 jdOdB

&&{ g f„p(x) S„p(I x+» I) Fp (0.) Fp(0„,„)I(x+-', ») +p 7s..vs(I x+-,'» I) F, -'*(0„+»2„).Fv- (0„)}.
nlmmi
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The additional theorem for spherical harmonics is

= 21+1
Q Fp*(Qr) FP(Q2) = P)(cosy),

S2~» 4x

where 7 is the angle between the directions Qr and Qe. Using this theorem and the fact that the cosine of the angle
between any two vectors A and 3 1s A 8/I A

I I
3 I, we may simplify our equations to give

Q(21'+1)f„) ((()L(E'+-,')(') e„(„(. +-,'y„) „( —-', (Sr(r) 8„„j

Sr „. . . (21+1) (2t'+1)
(—1)" dx x' dQ dQ„Q f„p(x)S.( ()() (x'+u') S„.p (x) P((cosy) P( (cosy)

(2l+1) (-',x+)( cosy& {2l'+1) ()(+x cosy+Zf.('(x) S-('(I 2x+~ I) C(x+~)'+~'jS- ~"(I ~+~ I)

For the second equation

Z(2~'+&)f «'( ) L'Ã.'+«') r «'+v .r.i'—.'(.s4) &".'j=+ ( &) "f«—

buffa)&D

(21+1) Ix+)( cosy~ (2l'+1) fx cosy+2 ((
&& Zf.( (*)S-( (I x+~ l)L(x+l~)'+PjS. p'(I x+l~ I) Pi I, I

Pp I,
n»

We may now choose the z axis to be along the vector x and do some of the integrals over the angles to obtain

()() I {E'+-,')(')e„p„( +-',y„p p —', (Sra)b„.„j= {—1)"
n 0' n'

CO 1
d**' Z2f-'( )S-"( ) (++ ') S- .( )+ d Zf-z(*)S-aL(!*'+"+")'I'jL*'+"+2*"+'3

0 n —1 n»

ex Kz K xz

(-,'x'+ '+x z)'I' ( '+ '+2x((z)'I'

For the second equation we have

Zf ~'(~)E(J."+-'~')e p"p'+v ( p' 2(SP)&" j—

m

dzgy„;(x) S„,-L(~+.2+2x")r(qLx+-.'"+x"+Pj
2P),„ 0 tb»

-')( xz

where z has been substituted for cosy. We note that all the integrals over z can be done because of the special
form of the I'» and the associated S„».These integrals vill just be sums of polynomials in x and x multiplied by
integrals of the type

I gk

(as+a) '((;z+d) s'

where u, b, c, and d are simply polynomials in the x and x and the i, j, and k take on integral values. %e de6ne
the following two symbols:

1

H„.p„p~= x' dh
I
x'+)('+2x((z+n']

H„.(.„((s~—=x' dz I
x'+-,')('+x)(z+P'j

)&S„p~L (x'+-,'(('+x((z) '('jS„) L(x'+)('+2x((z) 'ls)P(, , „Ppx'+(('+2x)(z '(e x'+-,'(('+x((z 'I'

W. Grobner and N. Hoireiter, Ietegralfafe/ Ersier Teg UnbestsmNste Integraie (Springer-Ver1ag, Wien, 1965), Vol. I, p. N.
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s (2Ia) and (2Ib) now may be writte

——'S n8

~( ) ( 2+ 2) S, ,»(x) +Q(21+1)f»l (x)B»'t'»t (*& ) I
nl4nX~ o

$2
( I) t& d {g(2)+I)ft (x)@ rp&&t (x& K) I ( )&2( ) [(+2+—&rs) eastssp + t» l't»it

r2
sp && &&]

2p)jn

0 o. e uations for the hehum-liken and fourth truncations of this system o equ

) nddb k
'

h fi, h fiatom where l is restricted to the even
'

ginte ers. The truncations are genera e
e two in e endent orbitals. For example, the first trunc-n a-second, and t e rs ourd h fi t f terms in the expansions for the two in epen en or i a

tion for even / is

16n4Sgf ~(&r) [2E2+ns —2Srn+&rs] = + — dxf '( )I '(* ) (23 )
(&rs+ns) ', (x'+ n') n

&r) [4I& 2+4ps 4S2p+&r2] =
I I

dx fro (x) &or (23b)

4 ~

where the two I's may be written out explicitly as

—2$2

2 2 2+.2P2 2) [( 2+1 2+P2) 2 2„2]

2X [(X+&r) 2+n2][(K—-', X) '+p']
K[&rs ——x2+2P2 —n2]2 [(x—

&r) 2+n2][(&r+rsx) 2+Ps]

x [(x+-'&r) '+p'][(x—&r)'+n']
'~&r2 ' r&n' I' —[(x 's) 2—+-P2][(x+&r) '+n']x' 'ss—+-p22 n') [—( +xs+K2)n'24x' '—] [x'——,&rX 2K

We note that these functions are well behaveh ved for all
values o x an d The second and fourth truncations
f the s stem were treated in the same fashion. ey

will not be developed explicitly here since t ey ghe are ion
and involved, but the results (energies and wave
functions) are presented in the next section.

B. Results for Helium-Like Atoms

We will not attempt a detailed review of the htera-
on the helium atom here since there are severalture on e e

excellent references on the subject. There
for the round statesome very accurate calculations or e gr

and some exci e s a't d t tes of the helium-like atom.
P k

'
nd co-workers' have obtained accuracy up toPekens an co-wo

r ei envalueor ten significant figures in the energy eig
o a trial functionb applying the variational principle to a ria

containing, in certain cases, as m y
terms. Our purpose in this paper is to present a genera

~ ~

of the approach by considermg only enougnou h truncations
of the system to demonstrate rapid convergence.

The behavior of the three-body energy as n' and
are varied was studied for the first, second, and fourth

e for exam le, H. A. Bethe and E, Salpeter, Quantum Me-
f - T El t Atoms (Academic Press Inc. ,.H lleraas Aduancesin Quantum Chemis-

j964)try (Academic Press Inc.
&

New Yor
&

d H L'f Ph R 13798. SchiG, C. L. Pekeris, and H. c son, y .
A1672 (1965); C. L Pekeris& ibid 115, 1216 (1959)..
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'
ns of the system. Figure 2 shows the ground-truncations o

state energy in atomic units — or e
n ' where n' is thet cation as a function of n anrun

h of the Sturmian set for the electron-nu-nucleusstrengt o t e u
r the electron-b't 1 x ansion and p' is the strength or

electron orbital expansion. The experimenta energy
'

atomic uni s or't f the ground state of the helium atom
is —2.9037 and is shown by the dotted line m ig.

truncations an absolute minimum in the energy appears.
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TABLE II. Three-body energies for helium-like atoms in atomic units.

Atom
Order of
truncation 1s2

Our energy
1s2s'S 2$2

Comparison energy
1s2 is2s'S 2s2

aE
is2

sE
is2s'S

sE
* 2s2

He
He
He
H
Ll

1st
2nd
4th
4th
4th

—3.00—2.928—2.9001—0.5320—7.2646

~ ~ ~ ~ ~ ~

—2.094 —0.7581—2. 1335 —0.7756—0.1722—5.0535 —1.8660

—2.9037.—2.9037—2.9037—0.5278.—7.2799~

~ ~ ~

—2. 1460»—2. 1460

5 0409s

+3.3'—0.7788s +0.84%—0.7788 —0.12%
+0.79%—0.21%

~ ~ ~

—2.4%—0.58%
~ ~ ~

+o.25%

~ ~ ~

—2.6%
0.41'

~ ~ ~

A. L. Stewart, Advan. Phys. 12, 299 (1964) (variational calculations).
A. K. Bhatia arid A. Temkin, Bull. Am. Phys. Soc. 11, 722 (1966)

(variational calculation) .

0 To the best of our knowledge there are no other calculations or ex-
perimental values for these states.

It should be noted here that this minimum in the energy
is not equivalent to a variational minimum, since no
variational principle has been employed in our treat-
ment. If we choose p' such that Es cha—nges the least
when small changes are made in p', i.e., in regions where

then the energy depends only on cP. Figure 3 shows
these results for the fjrst, second, and fourth truncations
of the helium atom in the ground state. We note that
for any reasonable choice of the parameter 0.' the
maximum difference between the calculated energy
and the experimental value is about one part in 30 for
the erst truncation, one part in 125 for the second
truncation, and about one part in 850 for the fourth
truncation. From Figs. 2 and 3 we see that the depend-
ence of the energy on crs and P' rapidly becomes smaller
as the order of truncation is increased. For example, in.

the first truncation the energy changes by &3% as ns

and p' are varied from 2 to 6.5, while in the fourth
truncation the energy varies by about +0.20% for
approximately the same variation in us and P'. This
method produces a rapidly convergent energy as more
functions are taken in the expansion of the orbitals,
and the energy is seen to converge toward the exact
value.

3.05-

The unknown functions f„t (z) and f„ts(K) are given
as functions of a for these three truncations in Figs. 4,
5(a) and 5(b), and 6(a), 6(b), 6(c), and 6(d). The
stability of the system is seen by noting that small
percentage changes in the wave function, produced by
taking higher-order terms in the orbital expansions,
results in smaller percentage changes in the energy of
the system. Each successive order of truncation repro-
duces the preceeding f„t (~) and f„tf'(s) to within a
small percentage, which is also to be expected. The
unnormalized wave function in momentum space may
be written down for the ground state of the helium
atom. We recall that

C (k, v) —= , drt, dffs% (r», fts) exp(ik rts+t'tt tts) .
2tr s

Substituting the orbitals in coordinate space for
@(rts, fts) and transforming to the appropriate Jacobi
frame for each term of the integral gives

C(k, L)

For symmetric states of the type I=0 we have

C (k, tt) =Pt(k, x) +yt(x, k) +ps(-', k——,'tt, k+tt).
Energies and wave functions may also be calculated

for other helium-like atoms as well as for some excited
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states of the helium atom itself. By changing the rela-
tive values of s& and s2 occurring in the three-body
potential, we were able to calculate energies for the H
atom and the Li+ atom. These energies along with the
results for the helium atom are shown in Table II. The
values for our energy shown in the Table are chosen at
the absolute minimum of the energy versus n' and P'
surface for the second and fourth truncations of the
system of equations. The numbers quoted for "com-
parison energy" were taken from the literature and
represent values which have the accuracy of at least
the number of digits carried. In the fourth truncation
of the He, Li+, and H atoms as many as nine roots
were found for each atom. The problem of identifying
all of these is not an easy task since other calculated or
experimental energies do not exist for most of them.
Since these highly excited states have many nodes, the
numerical integrations give energies and wave functions
which are less accurate than those for lower states.
Because of these difhculties we confine our attention to
only a few of the lower-lying states. Again we empha-
size that it is not our purpose to obtain highly accurate
results in this paper, but to demonstrate the validity
of our method.

VQ. CONCLUSIONS

We have presented a general method for treating
bound-state, three-body problems which does not de-

pend on perturbation theory or a variational principle.
We have considered some simple examples involving
one-dimensional 8-function potentials. We have also
treated the helium-like atom from a three-body point
of view and demonstrated that rapid convergence is
achieved for bound states of the form J =0 when a
Sturmian two-body expansion is used. For three-body
problems where the two-body Sturmian set cannot be
found analytically, machine solutions for the two-body
functions can be used. For these situations several
expansion techniques may be investigated for perform-
ing the angular integration. With the general method
presented here, accurate wave functions and energies
can be constructed for the bound-state problem of
three particles interacting with one another through
pair potentials. There are, of course, limitations as to
how many excited states can be handled on the present
computers.
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APPENDIX: STURMIAN FUNCTIONS

dx g(x) y„*(x)y„(x) =l)„„.

The two-body Schrodinger equation for a hydrogen-
like atom in three dimensions is

{—("'/ t")~'+l'(') }~(')=~('»
where V(r) is the attractive Coulomb potential between
the nucleus and the electron. Separating out the angular
parts and multiplying through by 2'/fi' gives the-
following equation for the radial part of ))t (r):
1/r'(d/dr'l $r'(d/dr) Rj

—2ntt (r) R—Ll(l+1) /r'jR =E(2)'R,
where

R(2)'= (2t(/&')
~

& ~, N(r) = —1/», n =e't/A, 't.

To find the Sturmian set for this equation we consider
the diGerential equation where the potential assumes a
set of decreasing values (increasing values of X) such
that the boundary conditions of the problem are
satis6ed.

, d8„, l(1+1)
—,—r' " —2nl(„ttt(r) 8.i ——,' S„t——X(,)'8„(.
r2 dr dr r'

nE. L Ince, Ordinary Digerentiat E(tnations (Dover publi-
cations, Inc. , Nevr York, 1926).

The Sturm. —Liouville equation is

d{k(x) (dy/dx) }/dx+P.g(x) —l(x) jy=o, (A1)

where k, g, and 1 are real, continuous functions of the
real variable x throughout the closed interval a~x~b.
If k&0 and g&0 then the Schrodinger equation for the
radial function R(r) in three-dimensional problems may
be written in this form. Here g(x) depends on the
potential, and the energy of the system appears in the
function t(x). The normal energy-eigenvalue problem
is to find solutions of equation (A1) for the set of values
of the energy such that the boundary conditions are
met. We may turn this problem around and examine
the eigenvalue —eigenvector solutions to this equation
when the energy of the system is Axed and the strength
of the potential is allowed to vary so that the boundary
conditions are met. It can be shown that there will be
an infinitely denumerable set of values {l(„}and their
associated eigensolutions, y„(x).m It can also be shown
that this set of functions {y„}may be constructed so as
to form a complete set of orthonormal functions on the
interval c~x&b with respect to the weighting function
g(x).'e These functions have been called Sturmian
functions and form a set closely related to the eigen-
functions in the conventional quantum-mechanical
problem where the potential is specified and the energy
assumes a set of values. 4 The orthogonality condition
for the Sturmian functions may be written as
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The problem is to And the values of X„~and the functions
associated with these values. Ke choose the erst value
of ) to be 1 so that the 6rst Sturmian function is a
physical ground-state wave function with energy Eg~'.
%1th th1s choice of units~ the constant E(2) ls deter-
mined as n'. By choosing XM

——1, it is also easy to show
that the )„~ are just the positive integers from 1 to ~.
The corresponding Sturmian functions may be found
and are given by '

n(e —l—1)!"'
8„((r)= — (2n) '+'r'e "I P'+'(2nr)

2(e+l)!'
(A3)

where I.~~ are the associated Laguerre polynomials. A
related set of functions has been used by Schull and
L6wdin. "The 8„~ have the same form as the ordinary
Coulomb functions except that the energy eigenvalues
do not appear in the argument of the functions. Ke
also note that the orthogonality integral is diGerent
for the Sturmian functions since the weighting function

g(r) in Eq. (A2) contains the potential

dr r'i —
i S„i(r)8 '2(r) =nb

(rj

This normalization has been chosen so that the
Sturmian set will have the conventional units of
probability amplitude. Thus, the complete set of
Sturmian functions for the problem in coordinate
space is

Taking in the Fourier transform of the differential
equation for 8„& (r) gives a double integral equation
for the Fourier transform of S„i (r) . In our system of
units the integral equation is

—20.) „g

(22r) '(k'+n')

dh'dr I r exp ir k' — 5„) k', A4

"H. Schu11 and PA). Lowdin, J.Chem. Phys. BQ, 617 (1959).

where S„~ (ir) is the Fourier transform of 8„i (r):

S & (ir) = „, dr 8„i„(r)exp( —iir r) .

For our formulation of the three-body problem we
need the Sturmian set for the Coulomb potential in
momentum space. This may be calculated by taking
the Fourier transform of 8„~„(r),where 8„~(r) is given
by Eq. (A3):

—1 n(e —l —1)! 'i2

(22r) "2 2(e+l) ts

dr r'e-~'L„+p'+'(2 rn) exp( ik—r) &P(&s).

Using the plane-wave expansion for exp( —ih r),

exp( ik —r) =42rpp( —i)'j)(kr) Fp*(Q,) Fp(Qg),
m

and invoking the orthogonality relation for spherical
harmonics gives an integral expression for S„2(k):

n(e —l—1)!"'
S„i(k)= — (2n) '+'

2r(e+l)!'

X dr r'+2s 'I.„+P'+'(2nr) jg(kr) .

Arbitrary phases have been dropped since we are only
interested in the set of functions f S„2I. This integral
may be evaluated in general, giving

n(e —l—I)! '~2

S )(k) =22&'+'& el in'+2
2r(e+l)!

k' k' —0.'
(k2+n2) (+2 k2+.n2

i+I

where C„~ is the standard Gegenbauer polynomial. The
orthogonality condition in momentum space for our
choice of units is

f dk k'S i (k) (k'+n') S„.p(k) =g„.„nsy„.2,.
0


