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Small-Signal Current Transients in Insulators with Trays*
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The equations for the time-dependent Row of current in an insulator with traps are derived and solved,
subject to the condition that the injected space charge produce a negligible perturbation on the externally
applied electric field. The theory discusses the relaxation of a small quantity of charge which is injected into,
and isolated within, an insulator and allowed to interact with the trap distribution. Explicit solutions for the
current are given for the case of an insulator with one and two distinct trapping levels in which multiple
trapping can occur. The parameters in the theory are the mean free time for a mobile carrier between capture
events at each level and the mean time-of-dwell for a carrier in the trap. A knowledge of these two param-
eters as a function of temperature for any level is sufIjcient to permit a deduction of the capture probability
for and density of states in this level. An experiment is described by means of which these parameters may
be determined. The analysis is extended to the case of an insulator with a distribution of traps in energy
by means of a somewhat arbitrary de6nition of two classes of traps: shallow and deep. The physical signi6-
cance of the time constants (parameters) is sacrificed by this device, but the analysis may prove useful in
studying trapping processes in materials having several distinct species of traps distributed in the forbidden
energy gap, or even a continuous distribution of traps. The practicability of the small-signal technique for
the investigation of trapping processes in insulators is discussed briefly.

I. INTRODUCTION

N many insulators and high-resistivity semiconduc-
~ tors, localized states in the forbidden energy gap

(traps and recombination centers) play a dominant
'role in the mechanism of transport of electrical charge
through the material. The identification of these states
in the terms of their physical and chemical origins
requires erst that they be characterized by parameters
which can be determined experimentally and also
permit interpretation in terms of the physical properties
of the state. The two properties of importance are the
capture probability of the state and its position in the
forbidden energy gap. While the capture probability
cannot be measured directly, its value can be inferred
from a knowledge of the conduction band density of
states, the concentration of trapping centers and two
parameters: the mean free time for a mobile carrier
between capturing events and the mean time-of-howell

for a carrier in a trap. For a particular insulator, there
may be several species of states in competition for the
free carriers, each characterized by distinct pairs of
values of the trapping parameters and by its position
in the energy level structure of the solid. This paper
deals with the analysis of charge carrier motion in such
a material under conditions in which the localized
states act simply as traps. The analysis is subject to
well-dehned boundary conditions which can be readily
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met in an experiment, and it will be shown that when
the conditions are satisfied, the trapping parameters for
each of the competing species of trap may be de-
termined. In the following paper, the theory de-
veloped below will be applied to the analysis of some
experimental results on vitreous selenium which were
obtained by this technique.

The experimental technique is a variation of the
minority carrier drift experiment described by Haynes
and Shocklcy. In thc mod16catlon of intel"cst here thc
experiment consists in placing an insulator in a uniform
electric Geld between plane parallel electrodes and ob-
serving the transient electrical response when charge
carriers of one sign are suddenly injected into the
insulator at one electrode. Since only one sign of carrier
is involved, the localized states function only as traps
for the injected charge and the time history of the
observed current pulse reflects the kinetic processes of
trapping. This general technique has been used by
several investigators' " to study charge-transport
processes in insulators.

There are two modes of operation for this experiment
which can be described with sufhcient precision to allow

' J. R. Haynes and %, Schockley, Phys. Rev. 81, 835 (1951).
s J. R. Haynes and W. Schockley, Phys. Rev. 82 955 (1951}.
s W. E. Spear, Proc Phys. Soc. .(London} B 0, 669 (1957}:

3 76, 826 (1960).
4 W. E. Spear, and J. Mort, Proc. Phys. Soc. (London) S1, 130

(1963).' R. A. Fotland, J. Appl. Phys. 31, 1558 (1960).' J. L. Hartke, Phys. Rev. 125, 11"f7 (1962).' 0. H. Le81anc. Jr., J. Chem. Phys. 33, 626 (1.960).' R. G. Kepler, Phys. Rev. 119, 1226 (1960).' R. Van Heyningen, Phys. Rev. 12S, 2112 (1963).' W. Helfrich and P. Mark, Z. Physik 166, 360 (1960}."A. Many and G. Rakavy, Phys. Rev. 126, 1980 (1962).
"A. Many, S. Z. Weiss) and M. Simhony) Phys. Rev. 126,

1989 (1962).
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a quantitative calculation of the current Row. They are
distinguished by thc conditions of calllcI' lnjcctlon RDd

may be designated as (1) the space-charge-limited,
(SCL) mode, and (2) the small-signal mode. An
analysis of thc transient currcQt Qow 1D thc SCL mode
has been given by Helfrich and Mark" for the case of
a trap-free insulator, and independently by Many and
Rakavy" for semiconductors and insulators in the
presence of trapping. The theory was applied by Many,
%eiss and Simhony" in the analysis of Sci, current
tI'RnslcQts 1n s1Dglc clystals of lodlnc, with good Rglcc-
ment between the predicted Rnd observed shape of the
current transient in samples exhibiting both weak and
strong trapping. In principle, this theory is applicable
in the case of an insulator with more than one species of
trap, but because of the mathematical complexities
arising from the presence of the injected space-charge
field, it is practically limited to materials containing
a single trapping level. One purpose of this communica-
tion 1s to show how 1DsulRtoI's with R more coIDpl1CRtcd

trapping structure can be handled.
The theory for current Qow in an insulator with

traps in the small-signal Inode describes the relaxation
of a small quantity of charge which has been isolated
within the insulator and allowed to interact with the
trap distribution. The small-signal condition requires
that the total amount of charge injected into the sample
be a small fraction of that stored on the electrodes, and
further, that the time for injection be small compared to
the f1cc-CRrrlcI trans1t time Rcross thc sample. Under
these conditions, the current in the external circuit may
be regarded as being induced by the drift of a thin
sheet of charge in a uniform electric 6eld, . By requiring
the space-charge 6eld to be negligible by comparison
with the externally applied electric 6eld, the equations
governing the current Row become linear and can bc
solved exactly. The trapping process is described in
terms of two parameters for each trapping level —the
mean free time for a carrier between trapping events and
the mean time-of-dwell for a carrier in a trap, The
values of these parameters may be determined by 6tting
thc thcox'ct1CRl expression foI' thc currcDt to thc cxpcrl-
mentally observed small-signal current transient.

The plan of the paper is as follows: In Sec. II, the
physical problem for the time-dependent Qow of charge
in an insulator with traps is formulated, and the
bouDdRI'y conditions fol thc small-signal Inodc RI'c

discussed. The equation foI' thc currcQt trRDsicDt 1n R

material containing a single trapping level is developed
in Sec. III, and in Sec. IV, the extension of the analysis
to more than one species of trap is given. In Sec. V, the
practicability of the sma11-signal technique is discussed.

II. FORMULATION OF THE PROBLEM

A. General Equations for Current Flour

The time-dependent Row of charge carriers in one
dimension will be considered. . The sample in the form of
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FIG. 1. (a) Sample configuration and idealized circuit assumed
in the calculation of the small-signal current transient. Electrons
are injected at x'=0 when a short Gash light, transmitted by the
transparent electrode, is strongly absorbed by the insulator,
producing a thin sheet of mobile carriers. As the electrons drift
toward the collecting electrode at x' =I., a current J (t') is induced
in the external circuit and measured by a "zero-impedance"
current meter. The potential of the collecting electrode is main-
tained at Vo by battery. (b) Schematic drawing of the essential
elements of a practical measuring circuit for high-capacitance
samples. The current J(t'} is integrated by the I' (C,+Cq) network
to produce a voltage signal. After amphfication, this signal may
he differentiated to produce a signal proportional to J(t'). The po-
tential of the collecting electrode varies as V0 —(1/Cq) fo'J(t')dt'.

a slab is sandwiched between plane parallel electrodes
which have the property of preventing the exchange of
charge between sample and electrodes, i.e., they are
blocking electrodes. As indicated in Fig. 1(a), charge
injection is assumed to be accomplished by illuminating
the insulator through one transparent electrode with a
short Bash of light which is strongly absorbed by the
insulator. For the polarity given in the 6gure, a de6nite
number of electrons is thus injected as a thin sheet just
inside the electrode at x'=0. The sheet of charge
subsequently drifts toward thc collecting electrode at
x'= I.under the action of the external electric 6eld. This
induces the current J(f) in the external circuit which
decreases with time as electrons are lost to traps. The
equation for J(f) will be developed first for the idealized
clrcult of Fig. 1R RDd the changes required 1D thc form-
ulation for the more realistic circuit of Fig. 1(b) will be
given in the Appendix.

Prior to the injection of the carrier sheet, the sample
is electrically neutral, and since wc consider only
insulators, the equilibrium concentration of free and
trapped charge is taken to be zero. After the injection,
a space-charge exists in the sample, part of which is
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mobile with a concentration n(x', t'), and the remaining
part is in traps with a, concentration nt(x', t') In. the
absence of sources or sinks for charge, the equation for
charge continuity states:

aJ.(*',t')/ax'= —q(a/at')[n(x', t')+n, (x', t')], (1)

where J.(x', t') is the conduction current density, given

by
J.(x', t') =qpgn(x', t')E(x', t') qDa—n(x', t')/ax' (2.)

q is the charge on the electron, p~ and D are the drift
mobility and diffusion constant for the electrons,
respectively, and E(x', t') is the electric field. If x is the
static dielectric constant for the insulator, the Beld is
related to the space-charge through Poisson's equation:

BE(x',t')/Bx'= (4aq/x)[n(x't')+n, (x',t')]. (3)

released from this level by thermal processes. If S,
is known for a given insulator, a measurement of T;,
T„, and (E,—E,) will permit the quantities C&; and
Et,; to be determined.

It is convenient to express Eqs. (2), (3), (4), and (7)
in terms of the following dimensionless quantities:

x=x'/L, t=t'/tp, r = T /tp

p=q«/(C, VO), j =Jto/(C, Vo), «=E/(Uo/L). (8)

In these equations, C, =x/(4aL) is the geometrical
capacitance per unit area of the sample, and
t«=L'/(pqVO) is the time of transit for a, single carrier
across the sample. Vo is the voltage applied to the sample
by the battery. With these definitions, the equations
governing the motion of the charge carriers are trans-
formed to

The total current J(t') Rowing in the sample is the
sum of the conduction and displacement currents and.

is given by

j(t)=j.(x,t)+ a«(x, t)/at,

j,(x,t) =p(x, t) «(x, t) —yap(x, t)/ax,

J(t ) J (x t )+ (x/4x)BE(x t )/Bt ' (4) B«(x,t)/Bx= p(x, t)+p (x,t),

(~)

(10)

(11)

The effect of trapping may be taken into account as
follows: If there are m independent species of traps dis-

tributed in the forbidden energy gap, we characterize
each species by a capture probability C„(cm' sec '),
a uniform concentration N&, (cm ), and its position in

energy, E;. We now make the simplifying assumption
that E~,))e~; throughout the period of the current

pulse, so that the number of empty traps may be taken
as constant. (For materials with trap densities in

excess of 10"cm ', this condition can always be met in
the small-signal mode). The probability per unit time
for the capture of a carrier into the ith level is then a
constant, denoted by 1/T, . T, is the mean free time for
a mobile carrier before capture into the level i, and is

de6ned by the relation

Bp&, (x,t)/Bt= (1/r;)[p( xt) g,p„(x—,t)],
i=1, 2, m (12)

with

(12')

B. Boundary Conditions

We consider the current Row only in the time interval
between injection and the time of arrival of the first
carrier at the collecting electrode, i.e. 0(t(1. Since a
definite number of carriers, po, are injected at t =0, the
total change in the sample remains constant in this
time interval, and we have the condition

«,T,=1/N~' (5) Bpp/at=0= (d/dt) [p(x t)+pg(x, t)]dx,

If 1/T„, is the probability per unit time for thermal

release of a trapped carrier to the conduction band, we

may use the principle of detailed balance to express

this quantity as

1/T„= (1/T,) (n/n„) =C„N, exp[ —(E,—E;)/kT]. (6)

In this expression S, is the density of states at the
bottom of the conduction band which is located in

energy at E,.
The rate at which the trapped carrier concentration

changes with time is given by a set of m equations of
the form

an„(x', t')/Bt'= (1/T, )n(x', t')
—(1/T„)n„(x',t'), i=1, 2, . e. (7)

The first term on the right of Eq. (7) gives the rate of

capture of mobile carriers into the ith level, and the
second term gives the rate at which trapped carriers are

«(x,0)= 1, x)0,

p(x,0)=0, x)0,

p((x,0) =0, x&~0.

(14)

(15a)

(15b)

Furthermore, for the circuit shown in Fig. 1a, the
battery maintains a constant potential difference be-
tween the sample electrodes, so that

«(x, t)dx=1, 0& t& 1. (16)

Since the left side of Eq. (9) is independent of x,

0(t(1. (13)

At the instant of injection, the free and trapped carrier
density is zero everywhere, except for the thin sheet of
free carriers at x=0. We have, therefore,



we can write this equation equivalently:

j(t) = j.(x,t)dh+ {d/dt) e(x,t)dh. (9')

Subs tltutlng for j from Eq. (10) and applying the
boundary conditions (16), the total current becomes

Equation (22) predicts that the initial current should
increase linearly with the voltage, and that for optically
generated carriers, its magnitude will be proportional
to the intensity of the exciting light. The observation
of this behavior in an experiment may be taken as
evidence that the conditions for the small-signal mode
have been met.

j(8)= p(x, t) e(x,t)dx+yp{O, t).

The last term in this equation is the contribution to the
totRl current froIQ (Musion~ Rnd vfas obtRlncd by
noting that p(1,t) =0 for )&1.The constant y, defined in
Eq. (12'), is the ratio of a diffusion velocity" to the
drift velocity and will be much smaller than unity for
all cases of interest in the small-signal mode, which
requires p(0,$)«1. Therefore the diffusive contribution
to the current wiH always be exceedingly small and can
be neglected. Equation (1'/) can then be rewritten as

p, (x,t)e{x,t)dx. (18)

IIL TRANSIENT CURRENTS IN THE PRESENCE
OF A SINGLE TRAPPING LEVEL

For an insulator with a single level of traps, the
general shape of the current transient is easy to predict.
At the instant of injection, all the carriers are mobile,
and a large current will be observed, which will subse-
quently decrease with time as carriers are lost to traps.
In general, the current is composed of two components:
the drift of the primary carrier sheet and the motion
of the carriers behind the sheet which have been
thermally released from the traps. The relative con-
tributions of the two charge distributions and the rate
at which the current decays are determined by the
capture and release times ~& and ~„.

Thc analytical cxprcsslon fo1 thc current 1s obtained
by 6rst taking the time derivative of Eq. (22) and sub-
stutiting Eq. {12},where the subscript imay be dropped.
This yields

The first term in Eq. (18) ls lust the initial current
jo, since at t= 0, the second term vanishes by Eq. (15b).
With the help of Eq. (11), the 6rst term in Eq. (18)
may be integrated to give the initial current:

dj /dh= —j o/r+ P(1+B)/rj pe~d~

(Be/Bt)pox (23}.
ja= (2)L~'(1,0)—~'(0 0)3 (19)

At the instant of injection, an amount of charge, po,
is removed from the electrode at @=0and made mobile
at @=0+,so that the Geld at x=O, 1=0 is

The term involving fo'p, edh can now be eliminated
between Eqs. (22) and (23), giving

e(0,0)=1—p0. (20) di/«+L(~+B)l j1 = {B/ )~.— (Be/Bt) p,dg. (24)

Substituting Eqs. (14}and (20) into Eq. (19),we obtain

jo=no(1-s 0/2). (21)

i {f)=no — u~(«) ~(~ ~)d&. (22)

With a light Gash of suQicicnt intensity to inject all the
charge on the electrode, the injection is space-charge
limited so that po ——1 and e{0,0)=0. Under these con-
ditions, Eq. (21) gives for the initial current, ja=~,
and Eq. (19) predicts that the initial current will vary
as the square of the applied voltage. This is in agree-
ment with the results for transient SCL currents
obtained by Helfrich and Mark'0 and Many and
Rakavy.

In the small-signal mode, we require pod&1, so that
we may set jo=po without appreciable error. The
equation for the transient current then becomes

This equation has a simple solution in the small-signal
lHllltq which requ1res that

po«1 and. Be/R«1.

Therefore, the last term on the right of Fq. (24) may
be neglected, since it is the product of two quantities,
each of which is much smaller than unity. This yields
a simple, 6rst-order diGerential equation which has the
solution

(j~) /.j=L /1{1+)B3-p-L( 1+)B/j~+B/{1+8). (26)

In the case of deep traps, 8=0, and there is no con-
tribution from thermally released carriers. Equation
(26) then states that the current decays exponentially
with time. When Eq. (26), with 8=0, is expressed in
terms of the dimensioned variables according to Eq. (8),
and integrated between the limits 3=0, and. 3=12/
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IV. TRANSIENT CURRENTS FOR A DISTRIBU-
TION OF TRAPS IN ENERGY

The extension of the analysis of the preceding section
to an insulator with several species of traps at different
energy levels in the energy gap is straightforward. We
discuss first the case for two trapping levels character-
ized by v-&, 0& and v.2, 02. Two equations are now required
to describe the trapping kinetics:

Bptl/8t (1/Tl) (p 81ptl) s

8P 2/8t= (1/T2) (p —82pt2) ~ (28)

The total density of trapped carriers is pt ——ptl+ p, 2, and
the equation for the total current becomes [see Eq. (22)]

j(t)=j o ptledX pt2edX ~

0 0

(29)

The small-signal condition can be applied at this point
by noting that

e(x, t) =1—el(x, t), (30)

where el(x, t) is the contribution to the electric 6eld due
to the injected space charge, and is a small quantity
compared to the applied field. Therefore, terms like
p~y, p~ei, etc., may be dropped without incurring appre-
ciable error. When the first and second time derivatives
ofj (t) in Eq. (29) are taken, and the appropriate trap-
ping equations from Eqs. (28) are applied whenever

p 8/ tla8nd 8pt2/8t appear, one obtains

dj/dt+(1/rl+1/T2)j=(8l/rl) ptldx

+ (82/r 2) p, odx, (31)

(ttdVo), the Hecht formula" in one of its conventional
forms is obtained:

Q= (gAottdEoTi/L)(1 —exp[—L/(tttdEoTi)]j. (27)

Here, we have put Jo=ttlVottdVo/L2. Q is the charge
induced onto the sample electrodes by the motion of
E0 charges injected at one electrode and driven through
the sample by the electric field Eo= Vo/L.

The solution of Eq. (33) is

j (t) =A exp( —nt)+B exp( —Pt)+j„, (34)

n+p = (1+8l)/rl+ (1+82)/T2,
np= [82+82(1+8l)]/(rlr2),

nA+PB= jo/Tl+j o/r2, A+B+j =j o,

~.=~ 8 8/I 8+8.(1+8.)] (»)
j„ is the steady-state current which Rows after the
injected carriers have come into equilibrium with the
trap distribution. (As soon as the first carrier reaches
the collecting electrode, of course, Eq. (34) no longer
applies. ) In principle, all the constants in Eq. (34) can
be determined from a single observation of a current
pulse, and the relations (35) can be employed to obtain
7.i, 7-2, ei, and 02. How well this can be done in practice,
however, depends on the relative magnitudes of n and
P and the signal-to-noise ratio of the current measure-
ment. Unless the rate processes for the two levels
differ significantly, the two-level model might be dificult
to distinguish from the single level case discussed pre-
viously. However, if one of the levels is deep, in the
sense that thermal release of captured carriers is
improbable in a time interval equal to the transit time,
then 82——0 in Eqs. (33), (34), and (35), so that j„=0,
and the current will decay to zero with all the carriers
in the deep traps. This situation is frequently en-
countered in real insulators. Note that if both 02=0
and 8l ——0, Eq. (33) reduces to the equation for a single,
deep level.

With the following modifications in the interpretation
of the time constants, this analysis may be applied to
transient currents obtained with materials having
many trapping levels distributed in energy. As suggested
above, one can expect to distinguish at least two classes
of traps in the distribution: (1) shallow levels (denoted
by the subscript s=1, 2, ) which release trapped
carriers in a time shorter than the free-carrier transit
time; (2) deep levels (subscript d =1, 2, ) from which
thermal excitation of trapped carriers is improbable in
a transit time interval. For each class of levels, the
trapping kinetics are described by equations of the
form

apts/8t= p/ s pts/Trs t 8ptd/8t= p/rd ~

doj /dt2+ (1/rl+1/r2) (dj /dt) (8i/ri +82/r2 )j—
(8l/Tl) P t ldx (82/T2) P t 2dx '

0 0

(32)

If p, l(x, t) and pt2(x, t) are the concentrations of carriers
in all of the shallow and deep levels, respectively, then
ptl ——ps pt„pto=pd ptd. The COrreSpanding trapping
equations become

One can now eliminate the terms involving p&~ and
p, 2 from Eqs. (29), (31), and (32) to obtain a second-
order differential equation for the total current:

doq/dtoy [(1+8,)/„+ (1+82)/«](dq/dt)
+ (1/rlr2)[8l+82(1+82)]j = [8i82/rlr2]go (33)

's K. Hechts Z. Physik 77, 235 (1932).

8ptl/8t p/rl ptl/Trl s

8pt2/8t =p/t2

The time constants r~ and v 2 may be regarded as the
effective capture times for the two classes of traps, and
g„~ is the mean time-of-dwell for a carrier in the
shallow levels. These three quantities are defined as



SMALL —SIGNAL CURRENT TRANSIENTS 663

follows:

1/ri ——Q, (1/r, ), 1/r2= Pg(1/rd), pri/r, i=P, (p~,/r„, ).
With these definitions, the case of many trapping
levels may be discussed in terms of the two-trap model.
This device, of course, means that the significance of
the observed time constants in terms of the capture
probabilities and trap densities is sacrificed. Neverthe-
less, this approach might be employed with profit to
study changes in the relative distribution of shallow
and deep levels due, for example, to impurity effects
or sample history.

Many insulators display trapping phenomena which
can be interpreted in terms of a continuous distribution
of traps in the energy gap."Vitreous selenium has been
cited as an example of such a material. ' "The small-
signal transient current analysis may be applied to
these materials also, by replacing the summations in
the above equations by integrations over the energy
range appropriate to each of the two sets of traps. If
the distribution extends far enough below the conduc-
tion band so that the two classes of traps may be defined,
the small-signal current is given by Eq. (33) with
r2/rr2 82

V. DISCUSSION

The main experimental requirement in the application
of the small-signal technique to insulators is that the
injected space-charge produce a negligible distortion
of the externally applied electric field. This necessarily
limits the magnitude of the currents which can be
observed, and the signals one expects to encounter
will be much smaller than those obtained with space-
charge-limited injection. To achieve as large a signal
as possible, one wants to use the highest-injection level
consistent with the small-signal condition. Therefore,
an estimate of the magnitude of the upper limit for
injection is of interest.

Using the linear relation between the initial current
and the Gash intensity as the criterion that the small-
signal condition is satisfied, Eq. (21) indicates that as
much as one-tenth of the stored charge can be injected
without serious error. At this level, the proportionality
constant between the initial current and the light
intensity is 0.95 instead of unity —a difference which
would be hard to detect in experiments of this kind.
The experiments of Many, Weiss, and Simphony" on
Gash illumination of iodine crystals provide evidence
that this criterion is met when as much as 10% of the
stored charge is injected. These authors have plotted
the initial current in iodine as a function of applied
voltage for a range of Rash intensity. When these data
are replotted to show explicitly the dependence of the
initial current on the Rash intensity, the linear relation
appears to be well established when the intensity has

"A. Rose, R.C.A. Rev. 12, 362 (1951)."H. P. D. I anyon, Phys. Rev. 130, 134 (1963).

dropped to 10% of that required for space-charge-
limited injection. Thus, it appears that the small-
signal condition should still be satisfied for current
transients as large as one-tenth the maximum current
which can be passed by the insulator.

In practice, the small-signal technique is limited to
materials in which the carrier mobility is on the order
of 1 cm2/V sec or less. When such materials are
being studied, the interpretation of the trapping
parameters obtained from the current transients must
be made in the light of the mechanism responsible for
the low mobility. Consider, for example, a material in
which the carrier drift mobility is limited by a high
density of shallow traps, and assume that the injected
carriers come into equilibrium with the traps in a time so
short as to be unresolvable in the transient current
measurement. If deeper traps are also present, the
above theory will still predict the form of the current
transient, but the trapping parameters so obtained will
not all be simply related to the trap densities and
capture probabilities. The mobility appearing in the
current equations will now be the trap limited mobility,
rather than the microscopic mobility. The trapping
times deduced from the current transients will be
larger than the true trapping times Lsee Eq. (5)] by a
factor of (1/8ti+1), where 8ti is the ratio of free carrier
density to the density of carriers in the traps which
control the mobility. However, the time-of-dwell T„
for a carrier in the deeper traps should be independent
of the presence of other trap species, so that the mag-
nitude and temperature dependence of T„should appear
as given in Eq. (6). Hence, if 1V, is known, the capture
probability for these levels can be deduced by measurio g
1/T, as a function of temperature.

APPENDIX

2(x,t)dx= 1—a) (t) . (A1)

Here, 1 co(t)= V(t')/—V2 is a dimensionless quantity
corresponding to the potential V(t') of the collecting
electrode. Integration of Eq. (9) over the volume of the

In this Appendix, we indicate the modification to
the boundary conditions of Sec. IIB required for the
more realistic measuring circuit of Fig. 1 (b). The capaci-
tance of the sample, C„ is in parallel with the input
capacitance of the amplifier and the distributed
capacitance in the circuit. The parallel combination of
these latter capacitances is represented as Cq in Fig. 1(b).
As soon as charge begins to move in the sample, a
current is induced in the external circuit and charges
Cd. Consequently, the potential of the collecting elec-
trode is not constant in time but varies with the rate of
charging of Cz. The boundary condition Eq. (16) must
therefore be replaced by
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sample then gives obtains

j(t) = j,(x,t)dx (d—/dt)~o(t). (A2)
-(t) = (C./C. ) i(t)«. (A4)

The potential, V(t') is given by Equation (A2) for the current can now be written

V(t') = Vp —(1/Cd) J(t')dt''. (AB) j(t) = X j,(x,t)dx, X= Ca/(C, +C&), (A5)

Converting the right side of this expression to dimension- which replaces Eq. (17). The rest of the analysis is

less quantities by the prescription of Eqs. (8), one unchanged.
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The theory of small-signal current transients is applied to the study of electron trapping processes in

amorphous selenium. In the experiment, a 10 -sec light pulse illuminated one side of the sample and pro-
duced free carriers near this surface. The free electrons were drawn across the sample in an applied electric
6eld, and the shape of the current transients thus produced was studied. The shape of these transients in-

dicated that electron trapping processes in vitreous selenium involve three distinct species of trap: those

which control the mobility (m traps), a deep trapping level (d traps), and a shallow trapping level (s traps).
Magnitudes are given for the ratio of the m-trap density to the density of states in the conduction band

(N /N, ) and for the ratio of the s-trap density to the density of states in the conduction band (N, /N, }.
For a selenium film which has been evaporated onto a substrate held at 38'C during the evaporation, these

ratios are N /N, =5.2 &10 and N, /N, =2.4&10, respectively. It is further shown that the magnitude

of these ratios decreases as the substrate temperature at which the samples are prepared is increased. The

energy separation of the s level and the m level from the conduction-band edge depends also on the sample

preparation, the separation increasing as the substrate temperature is increased. For the 61m prepared at,

38'C, the levels are at B,=0.39 eV and E =0.29 eV, respectively, below the conduction-band edge. The

capture probability for both the s and d traps was measured and was found to increase exponentially with

1/T with a characteristic energy. It is suggested that the electron trapping processes in vitreous selenium are

closely connected with the structural properties of the material. This is strongly indicated by a decrease in

the shallow-trap density as the measuring temperature approaches the glass transition temperature.

I. INTRODUCTION

' 'N this paper, we present the results of an experi-
~ - mental investigation of electron trapping processes
in amorphous selenium. The theoretical basis for these

studies was given in the preceding paper. ' There it
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was shown that under certain well-de6ned and experi-
mentally realizable conditions, the equations governing
the transient fiow of current in an insulator with several
species of traps could be solved exactly. These conditions
are: (1) A small quantity of charge is injected into the
insulator such that the injected space charge 6eld
produces a negligible perturbation on the externally
applied electric field. (2) The time for injection is much
shorter than the free-carrier transit time across the
sample, so that in the absence of trapping, the current
induced in the external circuit is the result of the drift
motion of a thin sheet of charge along the potential
gradient in the insulator. (3) Blocking electrodes are
applied to the sample to prevent further injection of


