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increases on cooling. This behavior is the case for most
semiconductors.

IV. SUMMARY AND CONCLUSIONS

The electrical properties of several polycrystalline
samples of P-AgsSe with identical x-ray diffraction
patterns have been studied as a function of temperature.
The results suggest the existence of two phases with
energy gaps at O'K of 0.07 eV and 0.18 eV, respectively.
The latter value agrees with the figure reported by
Baer et al.r for the Ps phase. The threshold of optical
absorption due to direct band-to-band transitions was
0.13 eV at 5 K. The probable existence of a Burstein
shift of the absorption edge suggests that these optical
data correlate best with the value of Eo——0.07 eV. The
optical-absorption data also indicate that the energy
increases on cooling.

It appears that further study of the energy gap of

P-AgsSe is warranted. It would be of primary impor-

tance to make measurements of the temperature varia-
tion of the electrical properties on well-defined single-

crystal samples if they can be prepared. Such studies

would certainly be of great assistance in defining the
semiconductor properties of P-AgsSe in general, and

in providing further information on the Ps phase in

particular.
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The binding energy of an exciton bound to a neutral donor is estimated using the quantum-mechanical
variational principle. We obtain the dissociation energy of an exciton-donor complex as a function of the ratio
of the eRective mass of the electron to that of the hole. The theoretical analysis is carried out within the
framework of the effective-mass approximation, assuming a simple model of a semiconductor with parabolic
energy bands.

I. INTRODUCTION

~

~

CONSIDERABLE amount of optical data in
semiconductors can be interpreted as resulting

from the existence of excitons bound to impurity
centers in semiconductors. Haynes' studied the photo-
luminescence of Si of known donor and acceptor concen-
trations and interpreted the observed spectral lines as
resulting from complexes involving an exciton associated
with a neutral donor or with a neutral acceptor. From
his results one Ands that the dissociation energy of the
exciton —neutral-donor complex is nearly 0.13 times the
ionization energy of the donor. This ratio is inde-
pendent of the chemical nature of the impurity atoms
(Sb,P,As, Bi). Several authors' ' also observed similar
spectra in the photoluminescence of defect-exciton

* Supported in part by the Advanced Research Projects Agency.' J. R. Haynes, Phys. Rev. Letters 4, 361 (1960).' R. E. Halsted and M. Aven, Phys. Rev. Letters 14, 64 (1965).' D. G. Thomas and J.J.Hopfield, Phys. Rev. 128, 2135 (1962).
D. G. Thomas, M. Gershenzon, and J.J. Hopfield, Phys. Rev.

131, 2397 (1963}.' Y. S. Park, C. W. Litton, T. S. Collins, and D. C. Reynolds,
Phys. Rev. 143, 512 (1966).

e W. J. Choyke, D. R. Hamilton, and Lyle Pa&rick, Phys. Rev.
133, A1163 (1964).

complexes in II-VI compounds, namely ZnS, CdS,
ZnSe, and CdTe. They 6nd the ratio of the dissociation
energy' of the complex to the ionization energy of the
donors to be about 0.20. No detailed theoretical calcu-
lations of the binding energy of the ground states of such
complexes have yet been reported. The object of the
present work is to attempt an investigation of this
subject. We have assumed that the eRective-mass ap-
proximation is valid and that the constant energy
surfaces are spherical. Making use of a method due to
James and Coolidge' for the calculation of energy matrix
elements, we have obtained the ratio of the dissociation
energy of the exciton —neutral-donor complex to the
ionization energy of the neutral donor as a function of
0, the ratio of effective mass m, of the electron to the
effective mass mJ, of the hole. Our calculations of these
energy ratios for the cases of Si and CdS yield the values
0.13 and 0.125, respectively, which compare not too
unfavorably with the corresponding experimental
results, namely 0.13 and 0.20. The next section is

7 The dissociation energy of a donor-exciton complex is the
energy absorbed when the complex dissociates into a neutral
donor and a free exciton.

s H, M. James and A, S, Coolidge, J. Chem. Phys. 1, 825 (1933),
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FIG. 1. Dissociation energy of a donor-exciton complex as a
function of a =m./mq.

p=2rll/R.

The transformed Halniltonian can be put into the form

X= ——',0 Vb'+ H,
where

2 4X1 4X2
H= —-', Vl2 —-'V '+—1+——

P ~1 P1 ~2 P2

We are interested in the lowest eigenvalue 8' of the
devoted to the calculation of the dissociation energy of Hamiltonian 3'. which we estimate by applying the
the system we consider. The results are summarized by variational principle. If the total wave function of the
the graph in Fig. 1. system is P, we have

II. CALCULATIONS

X=— V'I,2—— V'j'—
2me

g2

g2 g2

The exciton —neutral-donor complex is regarded as
consisting of a singly charged donor, two electrons and a
hole, all interacting with one another through Coulomb
forces. The singly charged donor is taken to be fixed at
the position a and the coordinates of the hole and of
the electrons are designated by b, 1, 2, respectively.
The model Hamiltonian of the system is written in the
form

We can immediately write

where
k~&fg(v" I

—fg)+&fl l'(&)
I f)

1'(&)= &gl&la)

Following James and Coolidge' we choose for g a
five-parameter wave function of the form

where P is assumed to be normalized. The simplest form
of the wave function 1t is a product of two wave func-
tions, one of which depends on the coordinates R and
the other on the coordinates ) 1, p1, ) 2, p, 2, and p such as

Kr, 2 Er q1 E-r M Er12

In the above equation the first, second, and third terms
are the kinetic energies of the hole, of electron 1, and of
electron 2; E. is the distance between u and b, the po-
sitions of the donor and of the hole; K is the static
dielectric constant of the host crystal. The distance
between the position a and electron 1 is denoted by r 1.
Other distances are defined in a similar fashion.

We take the unit of length to be 4bb* IVA'/rn, e' an——d
the unit of energy as e'/E 4bsoo that, in these units,

where

f „,b„(2m) ' expL ———8(Xl+X2)]
X p l"4"pl'p~ p"+&l"&2"pl ul p ) ~ (11)

The factor E is determined by the normalization
condition

(12)

and 8 and C „;I,„are variational parameters.
It can be easily shown that

3C= —~aV'I, '—2 V1 —
2 V'2'

1 1 1 1 1 1
+

R ra1 ra2 rg1 r g2 r12
(2)

where

+0 m. ,e.,j.,k.,p.
ma, nt,j t,kt, pb

V (R)=A/R' 8/R, —

Cma'+ aj a le a Pacmgnyj flIcy @fan

(13)

We g.ow transform the Hamjltonjag. using paraboljc X(u b&"+u b&"+u b~3'+u. b~4'J, (14)
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With

pb, b('& = —(1/64) {[(n,—nb)' —(k~ —kb)'+ (n,+nb)
—(k.+k,)+(p.—pb)(n. —nb k +kb)]X(00000)
—4()X(01000)—[(n,—nb) '—(n,+nb) )X(0—2000)

+[(k.—k,)'—(k +kb) )X(000—20)+ [(p —p,)'
+(p.+p,)+(p.—pb)(n —nb+k, —kb)][X(0200—2)
—X(0002—2)]—(p. pb)(ng nb (kg kb))

X [X(2000—2)+X(0020—2))+ 2(p,—p b) (n,—n b)

XX(1—111—2)—2(p —pb)

X(k~—kb)X(111—1—2)}. (15)

Here, X(01000) stands for X(m,+mb, n +nb+1,j,+j b, k,+kb, P,+Pb), where

operator
d' A 8

10 +
dR' R' R

where we have restored the original cgs units. The
symbol

E» ——(m,e4/2K')rb') (22)

stands for the ionization energy of the donor. The
dissociation energy Do of the complex is

belonging to its lowest eigenvalue. This completes the
choice of the form of the variational wave function. The
expectation value 8' of R is given by the expression

~=—(4&'E / )[1+{1+(g~/ )}'"j' (21)

X(m,n,j,k,P) = (X&.
'—)(b&')exp[ —28(&(&+4)j

4m'
Do= —5'—ED—E, , (23)

Cmana jaA'agaCmf&nf&jf&Ibf&yf&

ma, '+a, ja,ka, P(b,
mf, nt „jbkf,Pf

where
XP' b(&)+g b(2)+g b(3)+g b(4)} (16)

S~b & = (1/64) [X(02000) X(00020)j (1'/)

To obtain S,~"', S ~&'), S.~&", we make changes in
S,~&'} similar to those used above for obtaining N, ~&",

&.,&», and N. ,(4).

The parameter 8 is defined by

No m. ,m. ,j.,k.,p.
mf, nf, jf,kf, jf

Cma'rtaj a&a paCmgngj f)kgb

where
X {p.b'"+pub"'+ p b"'+p.b"'}, (Ig)

p, b
"&= —(1/64) {X(02000)—X(00020)+
+2X(0200, —1)—2X(0002, —1)—8X(01000)}. (19)

The quantities v, ~"', v ~(", and e ~(" are obtained in
the same manner as I ~('), I ~&3), and I ~( ) from
I t, "). The normalization constant occurring in Kq.
(10) and defined by Eq. (12) is connected to Np by

XX& X2 pp p2 p"(&yD2dpydp2dpjdp2.

The other quantities have similar meanings. I ~&'} is
obtained from N, t,

&'~ by making the substitution
[m, ~+—n„j,~k,g. (bimilarly N, b('& is obtained from
sgb(" by [mb ~+—nb, jb +~ kb) and I b(" is obtained from
pb, b(" using the transformations [m, ~n„j,~k„
mb+~ nb, jb+~ khan. The quantity Np in Eq. (14) desig-
nates the sum

where E, is the binding energy of the exciton, which in
our model is simply

E,„=(1+()-'E».

Making use of Eqs. (21), (22), and (24), Eq. (23)
simplifies to

(Dp/En) = (4g'/p. )[]y {1+(gg/g )}'('q —'
—1—(1+a) ' (25)

Here A and 8 depend on the variational parameters
5 and C „;».The five sets of values of mnjkP which we

have chosen for our computation are (00000), (00020),
(00110), (10000), (00001).In actual calculation we have
kept the 6rst coefFicient Cooooo equal to unity and varied
the parameters 8 and the other coeKcients, namely
Cooo2o, Cooixo, C~oooo, and Cooooi in order to obtain the
minimum value of 8' or maximum value of Do. The
calculation was performed for various values of the
mass ratio p. The maximized value of Dp/En was then
plotted as a function of r and displayed in, Fig. 1.

Finally we make the following remarks. From
Feynman's theorem one can easily demonstrate that
(W/En) is a monotonically increasingP function of p.

where 8' is the exact ground-state energy of the com-
plex. Our variational calculations give a result which
agrees with this condition. Now (Dp/En) is the differ-
ence of the two monotonically decreasing functions
(—W/En) —1 and (1+o) '. Thus the graph of (Dp/En)
in Fig. 1 is not a monotomic function of r. Our calcu-
lations have not been extended beyond r=1.0 because
the trial wave function is not appropriate for large
values of r.

N= NoR'. (20) ACKNOWLEDGMENTS
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