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A self-consistent model of the space-charge potential in narrow, degenerate accumulation regions at a
planar semiconductor interface is constructed and applied to evaluate the binding energies and wave func-
tions of quantized, localized states for motion normal to the interface. The model attributes the space-charge
potential entirely to charge trapped in the two-dimensional energy bands associated with the localized states.
Expressions are derived for the contributions to the absorption coefficient due to vertical transitions among
the two-dimensional bands and due to interband transitions in which either the initial or final state is
localized near the interface. The results of numerical calculations are presented for n-type accumulation
regions in GaAs and at the (100) surface of silicon. Experimental observation of the structure in the ab-
sorption coefficient at infrared frequencies appears to be practical, and would provide a direct observation
of quantization effects in narrow accumulation or inversion channels at semiconductor surfaces.

I. INTRODUCTION

LTHOUGH the customary analyses' of accumu-
lation and inversion layers at semiconductors
interfaces are based on the semiclassical Fermi-Thomas
model of the charge distributions in these layers, the
possible importance of the quantum nature of the one-
electron eigenstates in such regions has been recognized
for at least ten years.2 Most of the experimental data
interpreted as giving evidence for such quantized states
are measurements of carrier mobilities at semiconductor
surfaces.>~® However, serious extensions of the bulk-
mobility calculations to surfaces” have considered
primarily the modifications of the mobility by scat-
tering from the surface. The effects of the quantization
of the single-particle motion normal to the interface
has been investigated only for a quasiclassical limit” in
which it acts to widen the space-charge region. Although
an application of the Kubo formalism to examine
alterations in the influence of the exclusion principle
on transport properties in a two-dimensional system is
in progress,® a quantitative interpretation of the experi-

1 See, e.g., A. Many, Y. Goldstein, and N. B. Grover, Sems-
conductor Surfaces (North-Holland Publishing Company, Amster-
dam, 1965), Chap. 4.

2], R. Schrieffer, Semiconductor Surface Physics, edited by
R. H. Kingston (University of Pennsylvania Press, Philadelphia,
Pennsylvania, 1957), p. 68; J. F. Deward, Ann. N. Y. Acad. Sci.
101, 872 (1963).

¢ P, Handler and S. Eisenhouer, Surface Sci. 2, 64 (1964); F.
Proix and P. Handler, 4b4d. 5, 81 (1966).

¢ N. St. J. Murphy, Surface Sci. 2, 86 (1964).

(156F.) F. Fang and W. E. Howard, Phys. Rev. Letters 16, 797

966).

6 A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles,
Phys. Rev. Letters 16, 901 (1966); J. Phys. Soc. Japan, Suppl.
21, 331 (1966).

7A synopsis of these calculations has been given by R. F.
Greene, Surface Sci. 2, 101 (1964).

8 C. B. Duke (to be published) and F. Stern and W. E. Howard
(to be published) have used a Boltzmann-equation approach to
calculate the impurity-scattering mobility in the limit that only
one localized-state band contains carriers. Their results differ
from those of the Kubo treatment in this limit due to phase factors
which occur when an average over a random distribution of im-
purities normal to the surface is taken.
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mental conductivity and mobility data has not been
given.

More recently, it has been suggested® that tunneling
into and out of these quantized (“localized”) states in
narrow accumulation regions contributes characteristic
structure to the differential conductance of semimetal
(semiconductor)-oxide-metal tunnel junctions. Al-
though experimental datal® on semimetal junctions can
be qualitatively interpreted in terms of this model, the
interpretation is not unequivocal owing both to un-
certainties in the band structure and space-charge
region of the semimetal® and to indications that the
data themselves may not be typical of such tunnel
junctions.!

In this paper we propose that experiments'? on the
absorption of electromagnetic radiation from far-
infrared to optical frequencies provide a more direct
and sensitive probe of the localized states than do
measurements of transport properties. Furthermore,
absorption measurements are more easily interpreted
than those of tunnel conductance. The quantization of
motion normal to the interface contributes character-
istic structure to the absorption coefficient in the
infrared due to transitions among the two-dimensional
localized-state energy bands and in the visible due to
modifications of the Franz-Keldysh effect!® near the
junction by the presence of these two-dimensional
energy bands at energies below the bulk band gap. The
two types of transitions are indicated schematically in
Fig. 1 by the nomenclature “1” and “2”, respectively.
The figure, drawn to illustrate an #-type accumulation
region in a direct band-gap semiconductor like GaAs,
also shows the shape of the space-charge region and the
the density of states p(E-+E;) associated with quan-

9 D. J. BenDaniel and C. B. Duke, General Electric Research
lqn}tli }i))evelopment Center Report No. 66-C-331 (1966) (to be pub-
ished).

0], Esaki and P. J. Stiles, Phys. Rev. Letters 14, 202 (1965);
16, 574 (1966).

1], Giaever (private communication).

2 Such experiments are currently being undertaken by W.
Engeler and M. Garfinkel.

3 Seg, ¢,g., K. Tharmalingham, Phys. Rev. 130, 2204 (1963).
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tized motion normal to the interface. The unhindered
motion in the two directions parallel to the plane of the
junction is responsible for creating a two-dimensional
energy band from the localized-state normal to the junc-
tion.* As in our analysis of tunneling,” we construct
models in which the motion normal and parallel to the
junction is separable. The density of states in such
models is of the form illustrated in Fig. 1 with additional
structure at higher energies in both the continuum (p.)
and two-dimensional (p;;) density of states. A schematic
illustration of the high-energy structure in the two-dimen-
sional density of states and its relation to the three-
dimensional continuum density of states if shown
schematically in Fig. 2 for an s band in a simple
tetragonal lattice. The structure is associated with
symmetry points as indicated in the figure,!s if the
junction is taken parallel to the yz plane, and the axis
of fourfold symmetry is taken along the z axis. In
the tight-binding approximation, motion parallel and
normal to the plane of the junction are identically
separable so that the entire structure in p,, would be
mirrored in tunneling and optical-absorption measure-
ments. To the extent that such consideration apply to
more complicated band structures, these measurements
can provide an additional source of information about
the bulk band structure as well as surface properties
of various materials.

The performance of optical-absorption experiments
to measure the properties of the surface region of a
semiconductor is a familiar idea. Harrick® has de-
veloped experimental techniques for studying and
analyzing absorption at the surface due to both free
carriers and surface states. Optical absorption in layered
materials, like GeS, GaSe, and MoS;, is often inter-
preted as reflecting the band structure of a two-
dimensional system!™ similar to that associated with
the localized-state bands. In particular, phase-sensitive-
detection techniques developed to measure, analyze and
separate the contributions to the absorption from free
carriers and conventional surface states are applicable
also to the investigation of quantization effects in
narrow space-charge channels. The binding energies
and oscillator strengths associated with these states are
sensitive functions of the parameters of both the space-
charge potential and the bulk semiconductor sample.
Our objective in this paper is the development of a
tractable model of the space-charge region near a
field-plate, metal-insulator-semiconductor junction and
its quantitative application to obtain the energies of
the localized states and their contributions to the

4 This situation is familiar from the conventional theory of
Tamm and Shockley states. See, also, V. Heine, Phys. Rev. 138,
A1689 (1965); Surface Sci. 2, 1 (1964).

15 G. F. Koster, Solid State Phys. 5, 173 (1957).

16 N. J. Harrick, Phys. Rev. 125, 1165 (1962); see also Ref. 1,
pp. 202-295.

17 J. L. Brebner, ]. Phys. Chem. Solids 25, 1927 (1965).

18 R. F. Frindt, Phys. Rev. 140, A536 (1965).

9 H. I. Ralph, Solid State Commun. 3, 303 (1965).
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F1c. 1. A schematic illustration of the space-charge region,
localized-state energies, E;, and one-electron density of states
associated with a narrow, n#-type accumulation region at a semi-
conductor interface. Infrared transitions between the two-
dimensional energy bands associated with the localized states are
indicated by the dashed line labeled “1.” Interband transitions
to one of the localized-state bands are indicated by the dashed
line labeled “2.”

absorption coefficient. We consider only vertical tran-
sitions among the localized-state two-dimensional bands
and the effects of these bands on the conventional inter-
band absorption. Exciton correlations®® are neglected.
In Sec. IT we derive the quantization condition for the
localized states, develop a self-consistent model for the
space-charge potential, and apply this model to the
numerical calculation of the localized-state energies for
degenerate n-type accumulation regions in GaAs and
Si. Section II ends with a derivation of the continuum
valence-band wave functions for which the space-charge
potential induces a depletion region. These wave func-
tions are utilized in Sec. ITI to calculate the effect of
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F16. 2. A schematic illustration of the continuum density of
states p(F) associated with an s band in a simple tegragonal
lattice. The letters refer to the symmetry points as given, e.g., in
Ref. 15. The density of states p,,(FE) is that associated with a
plane passing through the fourfold (z) axis of the tetragonal
Brillouin zone and parallel to one of the rectangular faces of the
Brillouin zone. The Eg labels correspond to the parameters in the
tight-binding approximation energy band e(k) =Ei[1—cos(k.a;) ]
+ Es[2—cos (kzaz) — cos (kyaz) ).
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localized states on interband absorption. We conclude
with the derivation of the steplike structures in the
absorption coefficient at infrared frequencies due to
vertical transitions among the two-dimensional energy
bands associated with the localized states, and a
synopsis of our results.

II. EIGENFUNCTIONS AND EIGENVALUES
IN THE SPACE-CHARGE REGION

A. Localized States in Accumulation (Inversion) Layers

We consider a planar metal-insulator-semiconductor
junction of either the tunneling (thin-oxide) or field-
plate (thick-oxide) type. The effective-mass approxi-
mation® is used to evaluate the one-electron wave
functions inside the semiconductor. Therefore they are

1 b
ey 020~ Frn(Ks 1), (2.10)

o 00=N [y, 20
in which ¥y ;(r) denotes the Bloch functions of the
bulk semiconductor, and &V is the number of unit cells
in the crystal. In a previous paper® we demonstrated
that if the effective-mass approximation is valid in both
the semiconductor and oxide, then the wave functions
near the junction are obtained by solving the effective-
mass Schrodinger equation for the envelope functions
f;,8(r) with the boundary conditions of continuity of f
and of m~1(df/dx) at the junction interfaces. The po-
tential used in Refs. 9 and 21 to calculate the wave
functions consists of a uniform potential in the metal
and oxide together with an exponential potential in the
semiconductor. More generally, the potential in the
oxide consists of a uniform electric force field F (in
eV/cm), superposed on a uniform potential attributed
to the difference between the oxide and semiconductor
electron affinities. Thus we write

Vg)=—Vn, < —x;
=Vy+Fx, —x;<x<0
=—V,exp(—gx), 0<w,

(2.2)

where «; is the oxide thickness, g is the decay constant
of the space-charge region in the semiconductor, and
V y=Xs—Xox is the barrier height at the semiconductor-
oxide interface in the absence of band bending (V,=0).
The quantities F, Vs, and g are related via Gauss’s law
at the semiconductor-oxide interface as discussed in
part B to follow and Appendix B of Ref. 21.

The effective-mass equation for the envelope function
fe,u(r) in the (accumulated : ;> 0) conduction band can
be written as
€xp (ik”,c' 9)

e, (2.39)

T

2 W. Kohn, Solid State Phys. 5, 258 (1957).
2D, J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1960).
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ﬁZ kll,c,22 kll,c,32
Ec=_[ + —:I—l— &, (2.3b)

2L my,s myg

Zml,cé’c
h2

Qc2= zml,ch/kz-

d2
[‘*“I‘Qu?e_”—!- :|¢> e, (x)=0,  (2.3¢)
dx?

(2.3d)

The junction is taken normal to a symmetry axis of
the crystal such that all the effective-mass ellipsoids
have principal axes (m,,,) normal to the junction. The
quantities 7,.,1 and m,.,2 are the masses associated
with motion parallel to the plane of the junction; and
4 is the area of the junction. The solutions to (2.3c)
are given by*

E.>0:
¢ (x)=ay¢4 (%) +ao-(v), (2.42)
¢:i:(x)=F(_QL'27 & :i:ipli} x) ) (2~4b)
pe=2k:/g, (2.4¢)
klE=2m, 8./ 2. (2.44)
£,<0:
o+ (x)=a+F(~Q02) g — Do x) ) (253')
pe=24./¢, (2.5b)
gl=—2my, 8./, (2.5¢)
F(_ing; Z’) x) Q P( +1)
© _ Ze—gx n —
=exp(pgr/2) 2 ( > !
n=0 g n!l(n—p+1)
=T(—p+1)J-,(2Qe /) (Q/g)". (2.6)

In Eq. (2.6) J,(x) is the Bessel function? and TI'(p) is
the (complex) gamma function.?® The function F and
its derivatives are generated numerically?! from the
power-series expansion (2.6). The phases in ¢.(x) are
taken to make these functions the one-dimensional
Jost functions in which k,— ig, gives the transition
from positive to negative energies for normalizable
functions.

Our main concern is optical absorption in the semi-
conductor near the interface. Therefore, we neglect the
loss of electrons via tunneling through the oxide and
impose the boundary condition that the envelope
function in the oxide is purely decaying in character.
The Schrodinger equation for the envelope function in
the oxide (for a spherical mass ellipsoid with associated
mass, ms) is given by

d’p 2wy
—_— (Vyt+Fx— 8c)p=0. 2.7
dx*

2F. W. J. Oliver, Natl. Bur. Std. Appl. Math. Ser. 55, 355

(1964).
% P, J. Davis, Natl. Bur. Std. Appl. Math. Ser. 55, 253 (1964).
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Equation (2.7) has the general solution?

é(x) =P84+ Ai(£)+B- Bi(£), (2.8a)
Fr= (2myF /7218 = 1382 10°F cmt,  (2.8¢)

The Ai(¢) and Bi(#) are linearly-independent solutions
to Airy’s equation.* The requirement that the envelope
function be purely decaying in the oxide is that 8;.=0.
The normalizability of the wave function in the semi-
conductor has been guaranteed by the use of only
¢, (x) in (2.5a). The equality of the logarithmic de-
rivatives at the boundary gives the bound-state
quantization condition for &,<0.

F’_CZ,,""M', cVF i’ 0,
(—0, 8~ 0)_<mk\B1<s>’ 200

F(—Q2 g —pe, 0)  \ my / Bi(k)

Vb+ 1 gcl
EoE(——>kF.
F

As for sensible parameters even a field-plate device
exhibits £>>1; we use the asymptotic expansions for
the Airy functions* to obtain

(2.9b)

(kaF\Bi/(&) fo>1 Mk péol?
e
my /Bl(Eo) my

C|

=1”.[2h_”:”(v,,+ | an]w (2.90)

iz

which makes (2.9a) identical to the form found in
Ref. 9 for a square-barrier model of the oxide. We
emphasize that if £>>1, Eq. (2.9¢) indicates that the
bound-state eigenvalues in the accumulated conduction
band are independent of the electric field in the oxide
when V, assumes a fixed value. Therefore the entire
influence of the field-plate bias on the eigenvalue con-
dition (2.9) occurs because the bias determines the
shape of the space-charge region (i.e., both V, and g)
via an appropriate Poisson equation.

The final preliminaries consist of determining a; in
(2.5a) from the normalization of the envelope functions

0

de(x)pe (x)dr=0s6, E<0 (2.10)

—00

and discussing tractable approximations to integrals
needed in considerations of oscillator strengths of
various transitions. We first note that when £>>1 in
(2.9), we can neglect the contribution to integrals from
#<0 (in the oxide) to an accuracy of usually better
than 19,. In fact one can derive closed-form expressions
from the integral in (2.10) in terms of Bessel and gamma

#H. A. Antosiewicz, Natl. Bur. Std. Appl. Math. Ser. 55, 435
(1964).
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functions if we take the V3— o limit so that (2.9a)
becomes

F("ch’ & —Peir 0)=01 (29d)

However, these expressions are not useful for com-
putations because they involve differentiation of Bessel
and gamma functions with respect to order and argu-
ment, respectively. Therefore we use the power-series
expansion given in Eq. (A6) of the Appendix to write
from (2.5a) and (2.10)

2 » 1 '—ch m
w(p=- £ —(—)

gm=om!\ ¢

Ve— .

I (2pet2m)
T (2p+m—+1)
I'(p+1)
[FQCJF 1+m)
The leading term in the expansion gives
o 21/gpo=1/2q., (2.12)

which is the result obtained by approximating ¢, (%)
by a simple exponential with the decay constant asso-
ciated with the binding energy of the eigenstate.
Equation (2.12) gives an excellent approximation to
ay for any bound state in “shallow” potentials (Q./g)<1
or loosely bound states, &1, in any potential. We
also evaluate the matrix element relevant for dipole-
allowed absorption between two localized-state bands.

:|2. (2.11)

o d
(Apeliy== [ o peas,
1) dx
. (2.13)
== (pesr)or (pe)Is(— Pos, — Pei)
P
with I3(— pes, — pes) given by Eq. (A14) in the Appendix.

Taking the leading term of the expansions for both
ay and I3 we get

4h ch‘
(fl Pz 1)=2—(gesqen) ' , (2.14a)
7 Geitqer
(Qquci) 2
| P o |1)=216% ——— | . (2.14b
(i1l DA 213D [(M%J (2.14b)

Equation (2.14b) is used in Sec. III to approximate the
oscillator strength for transitions between localized
bands associated with the states at energies §;=—#2
X (2poig)?/2my,. and Ep=—12(2pos2)?/2mi,.. It is a
valid approximation when Eq. (2.12) gives an accurate
normalization integral for both states.

B. Self-Consistant Capacitor Model for a
Field-Plate Geometry

A complete model of the semiconductor-oxide-metal
electrostatic potential requires specification of the
detailed surface-charge density in the oxide near the
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GaAs

me = 0.07m
€ =125

Qg =102 em?
Vp = 44eV
E, = .006 eV
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Fi16. 3. Localized-state binding energies for accumulation regions
satisfying Eq. (2.15) with Q;=102 cm™ in GaAs. The horizontal
heavy dashed line indicates a hypothetical Fermi energy of —12
meV. The lightly dashed and light solid lines indicate constructions
used in determining the self-consistent potential as discussed
below Egs. (2.16) in the text. The localized-state eigenvalues are
obtained by solving Eq. (2.9a) in the text using the parameters
indicated in the figure.

semiconductor surface. In terms of such a model, the
parameters of the space-charge potential, V; and g in
Eq. (2.2), can be determined as a function of the
voltage applied across the junction by solving Poisson’s
equation.!"* For an accumulated surface, the relevant
parameter characteristic of the bulk semiconductor is
the total mobile charge per unit area, ();. Therefore
we use (Q, rather than the applied bias to characterize
the space-charge region. From Gauss’s law, the de-
rivative of the electrostatic potential is related to the

charge Q. via
av 47Q;
() et
dx =0 €

in which e is the dielectric constant of the semicon-
ductor. Thus each value of Q. specifies a family of
possible space-charge potentials whose range and depth
are related by (2.15). The self-consistent potential is
that member of the family which traps just the (mea-
sured) total charge per unit area Q. Therefore the final
self-consistent potential depends on the properties of
the particular bulk sample under consideration as well
as on the band bending in the surface region.

(2.15)
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In order to get widely spaced (AE> 10 meV) localized
states suitable for direct observations by optical
absorption, we consider values of (s which lead to
relatively deep, narrow accumulation regions. The total
mobile charge density consists of contributions from
the carriers in the bulk material and from the charge
trapped in the accumulation regions. A fully self-
consistent model of the space-charge-induced band
bending in the semiconductor requires the consideration
of both contributions to the charge density and hence
a detailed specification of the carrier statistics in the
bulk sample. In order to avoid lengthy considerations
of a variety of bulk-semiconductor statistics (which
considerations are largely irrelevant for our present
purposes anyway), we devise approximation procedures
to estimate the space-charge potential. The funda-
mental approximation, common to both of the pro-
cedures we utilize, is that for narrow, degenerate
accumulation regions, the total mobile charge Q, can
be replaced by only the contribution to it due to charge
trapped in the accumulation region. If the bulk-carrier
contributions to the charge density were truly negligible,
then for a fixed value of Vs, g could be determined by
calculation of the asymptotic form of V(x) as x —
from Poisson’s equation using as a source the charge
density obtained from asymptotic form of the wave
functions of the trapped charge. The quasi-Fermi
energy Ep in the accumulation region is determined
by condition that the total trapped charge density be
Q5. The inadequacy of this approximation in a particular
sample is reflected in the fact that the Ep calculated
by the above procedure does not in general equal the
bulk Fermi energy. If we considered an initial-value
problem using the above-calculated trapped charge and
space-charge potential, we would find that as time
progresses, charge leaks out of the space-charge region
until £r equals the bulk Fermi energy, and that usually
the space-charge potential simultaneously becomes
wider. This observation motivates our second estimation
procedure for the range of the potential in which Er is
taken as fixed at the bulk value, and the parameter g
is determined by the requirement that the trapped
charge be equal to Q. These ‘‘self-consistent” esti-
mation schemes are discussed subsequently in more
detail. They exhibit the attractive feature that for their
application the only property of the bulk sample that
is needed is its bulk Fermi energy.

The charge density in narrow accumulation regions is
usually well approximated as a series of two-dimensional
degenerate Fermi gases for temperatures (7)) near 77°
and below. Unfortunately, the extensive literature! on
the shape of the space-charge region and charge dis-
tribution at semiconductor interfaces is of no direct
assistance in our analysis. In this literature the space-
charge region is treated as a three-dimensional Fermi
gas in which the quantization effects which we are
studying have been neglected. Using degenerate Fermi
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statistics at 7=0, the total charge trapped by the
two-dimensional energy bands with E,<Ep is given by

Q:=2 pu® (Ep+ 8.0 (Ert+8.:9), (2.16a)
oy A

0x)=1, x>0
(2.16b)
=0, %<0,
é”ci(m = +h2(gpci(ﬂ))2/8ml,c(m ) (216C)
pu® = (27O 1)n® (mu1,e0,vm11,0,2)"%/ 2072, (2.16d)

in which #® is taken to be the number of equivalent
ellipsoids of the Bth type containing charge in localized
states. The quantum number 8 denotes the various
sets of inequivalent ellipsoids relative to a particular
surface in a many-valley semiconductor. The p.;® are
the eigenvalues obtained from Egs. (2.9) for the 8 set
of ellipsoids. The effective spin of the ellipsoids is taken
to be j® which, evidently, is not always % for de-
generate valence bands associated with p-type accumu-
lation regions. It should be emphasized that Egs.
(2.16), and our entire analysis, are valid only if the
motion parallel to the semiconductor surface is separable
from the motion normal to the surface. In particular
this separation does not occur for #-type accumulation
regions on the (111) surfaces of Si. This fact may
account for the failure to observe evidence of quantized
states associated with these surfaces.’®

We conclude this part of Sec. II by outlining the two
procedures to estimate the parameters of the self-
consistent space-charge potential and presenting calcu-
lations of the binding energies of the bound states in
various families of potentials which satisfy Eq. (2.15).
We illustrate the procedures in a case in which only a
few localized states contain electrons. In Figs. 3 and 4
we show the possible binding energies, 8,=— &, of
the localized states associated with the conduction
band of GaAs for Q;=10" cm™2 and 10® cm™?, respec-
tively. Energies are measured in units of the (normal-
motion) shallow-donor binding energy, E.=#%/
2my, a0, and distances in units of the conduction-
band Bohr radius for motion normal to the interface;
apei=h*/m, 2. Let us consider in detail the case of
0s=102 cm? for a bulk Fermi energy of Ep=—2F,
=—0.012 eV. A vertical line drawn at a particular
value of gag., in Fig. 3 intersects the solid curves at
the binding energies &.:/E.. of the localized states in
a space-charge potential of range g~' and depth ob-
tained from Eq. (2.15). These energies are calculated
by graphical solution of Eq. (2.92) using the parameters
indicated in the figures. As g decreases from right to
left in the figures, the potential becomes both wider
and deeper because of Eq. (2.15). Therefore both the
binding energies and the number of bound states
increase as the value of g diminishes.

As discussed below Eq. (2.15), we can construct an
estimate of the range of the potential by assuming its

SPACE-CHARGE-INDUCED LOCALIZED STATES
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9%,

FicG. 4. Localized-state binding energies for #-type accumulation
regions in GaAs satisfying Eq. (2.15) with Q,=10% cm™2. The
eigenvalues are obtained by solving Eq. (2.9a) using the param-
eters indicated in the figure.

asymptotic form to be determined by the spatial
distribution of the trapped charge. This estimate is
given by

(2.17a)

802Bc1= 28,12 ,

in which &, denotes the energy of the least tightly
bound occupied localized state. The total accumulated
charge Q, in the potential determines the quasi-Fermi
level Ep via

A= Z (8ei+Er)/Ec=Qs/pnEs

=0./(1.78X101) : GaAs.  (2.17b)

For Q,=102 cm™?, Eq. (2.17b) requires A=5.62 in
GaAs. The satisfaction of (2.17a) is determined graphi-
cally from Fig. 3. Several solutions may exist which
correspond to varying numbers of bound states being
occupied. If only the lowest-energy bound state is
occupied we find goaga~1.6, and Er==5E,. However,
if the second bound state also is occupied, we obtain
2005,=21.0 and Ep=20.75E.. More than two bound
states cannot be occupied if (2.17a) is satisfied simul-
taneously with (2.17b) for Q,=102 cm~2. The smallest
estimate for the range of the potential is that obtained
when only the lowest-energy state is occupied.

An estimate of the upper bound on the range of the
potential is obtained by recalling that the total mobile
charge is due to both bulk and trapped charge. In the
limit that equilibrium between the accumulation layer
and bulk material has achieved, the charge trapped in
the accumulation region is determined by the bulk
Fermi level which also is denoted by Ep. If we use Ep
as given in Eq. (2.17b) and neglect the difference
between the total mobile charge and that trapped in
the accumulation region, then (2.17b) determines the
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4
Si (100)
m=0.98m
€ =11.6
3 Qg = 102 em?
E,,* 0.099 eV
Vb 4,4 eV
K
~
o
21

\

gasn

F1c. 5. Localized-state binding energies associated with the
(100} ellipsoids in Si for #-type accumulation regions on the (100)
face satisfying Eq. (2.15) with Q,=102 cm™2. The eigenvalues are
obtained by solving Eq. (2.9a) using the parameters indicated in
the figure.

range g of the potential that just traps the charge Q..
This procedure usually overestimates the effective
range of the potential near the interface because it
requires the estimated potential to trap more charge
than does the actual space-charge potential. As wide
accumulation regions exhibit more closely spaced
localized-state energies, this latter estimation scheme
is more restrictive, hence more useful, than the former
one. Making the application to GaAs, we see that the
“self-consistent” g must be smaller than g, illustrated
in Fig. 3, which is the decay constant at which the
lowest localized-state energy is at the (bulk) Fermi
energy. We recall that for Q,=102 cmr?, Eq. (2.17b)
requires that A§=5.62 for a single localized state.
This requirement gives the inverse range g, indicated
in Fig. 3. However, for gap.<0.75 two localized states
lie below the Fermi energy so we require that the sum
of their heights, A&y, and A&, respectively, gives the
total required number of occupied states, i.e., from
Eq. (2.17) A8=A&+A&;. This construction shown in
Fig. 3 with lightly dashed lines, gives the inverse range
g3a.1=0.715 and depth obtained from (2.15). The
space-charge region contains three localized states with
41-, 15-, and 3-meV binding energies. The 41 and 15
meV bands are filled up to the Fermi energy of —12
meV, and the 3-meV band is completely empty. Noting
that A8 scales linearly with Q,, via Eq. (2.17), we
employ a correspondingly larger energy scale in Fig. 4
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for Q,=10" (A8=56.2) than in Fig. 3 for Q,=10"
(A8=5.62).

As measurements of transport properties at accumu-
lated (100) surfaces of silicon indicate the presence of
localized-state bands,®® these surfaces are of particular
interest as an example of the above analysis. The two
electron ellipsoids whose long axes lie in the (100)
directions are inequivalent to the other four. For these
two ellipsoids, #,,=0.98m and #,c,1="m11,,,2=0.19m,
whereas for the other four ellipsoids #,,=0.19m,
mi,e,1=0.19m, and m,.,2=0.98m. Therefore the local-
ized states associated with the two (100) ellipsoids have
less kinetic energy and therefore greater binding energy
in the same space-charge potential. Figures 5 and 6
illustrate the binding energy versus space-charge-
potential curves for the (100) ellipsoids using Q.= 10%
and 10% cm™2, respectively. The equation which relates
the self-consistent potential to the trapped charge,
analogous to (2.17b) for GaAs but accounting for the
occurrence of two equivalent ellipsoids, is

A&=(Q,/(1.574X10%), (2.18)

Therefore A§=0.0635 for Q,=102 cm~2 and A§=0.635
for Q,= 10" cm2. Inspection of Figs. 5 and 6 indicates
that only the lowest two-dimensional band contains
electrons for almost any bulk Fermi energy Ep. This
result is consistent with the model used by Fang and
Howard.? However for |Er|/E,2>1 (e.g., 2002 cm

Si (100) ellipsoids.

20—
20 $i (100)
19 m, =0.98m
1.8 € =16

Qs = 10%cm?

17— E;, =0.099 eV
1.6 Vp =4.4eV
14
13—
1.2+
LI

{3 10

5 9

(%
8-
=
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d 2 3 4 5
gqlcl

F16. 6. Localized-state binding energies associated with the
(100) ellipsoids in Si for #-type accumulation regions on the (100)
face satisfying Eq. (2.15) with Qs=10% cm™2. The eigenvalues are
obtained by solving Eq. (2.9a) using the parameters indicated in
the figure.
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Si . (100)

2 3 4 5 6 1 8 9 10
qoucx

Fi6. 7. Localized-state binding energies associated with the
(010) and (001) ellipsoids in Si for #-type accumulation regions
on the (100) face satisfying Eq. (2.15) with Q=102 cm™2. The
eigenvalues are obtained by solving Eq. (2.9a) using the param-
eters indicated in the figure.

Si at 77°K gives Ep=—80 meV, Er/E.=—0.8), we
obtain at least five additional unfilled higher-energy
bands at Q,=10"¥ cm~? and approximately 10 for
0,=102 cm 2.

The binding energy as a function of space-charge
potential for the other four ({010) and (001)) ellipsoids
is shown in Figs. 7 and 8 using Q,= 10 and 10 cm,
respectively. The difference in normal mass values
between the two sets of ellipsoids causes the (gag.i)
axes to differ by a scaling factor

(gaBer)ets 0 =0.194(gapcr) @0, (2.19)

in which (gape1)eis™® is the “comparable” (100) value
of gap. to that obtained from Figs. 7 and 8. The self-
consistent-potential criterion, incorporating the effect
of all four ellipsoids, is

AE=0./(1.36X10%): Si (010) and (001)

ellipsoids. (2.20)

We can examine, for a given value of Q, and Ep,
whether or not the (010) and {001) ellipsoids contain
charge by computing g without considering them and
subsequently inquiring about their occupancy at that
value of g. Thus for Q,=10% cm™? and Ep=—80 meV
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we find from Fig. 6 that (gap.)”=0.19. From Eq.
(2.19) we find that (gapei)ers®®=0.97. Inspection of
Fig. 8 reveals that for this potential the (010) and (001)
ellipsoids contain two localized-state bands of which
the lowest has its minimum at the Fermi energy and
hence is not yet occupied. Therefore increasing Qs> Q,°
=10% cm™? will populate the lowest (101)-(001) band
in our model. This estimate of the crossover value of
Q.°for Ep=—80meV is to be compared with the quoted
value of Q,°=(3—5)X10® cm™ of Fang and Howard,
who do not give their bulk Fermi energy. Application
of the estimation procedure associated with Eq. (2.17a)
gives a value of Q,° closer to that of Ref. 5. We see from
the above analysis that for Q,=10" or 10* cm™ the
curves in Figs. 5-8 permit the estimation of the space-
charge potential and evaluation of localized-state
binding energy for any value of the bulk Fermi energy
associated with some particular sample. The values of
102 to 10" cm™2 of , span the region of experimentally
available parameters which give sufficiently widely
spaced localized states that detection of these states
by optical absorption is practical.

C. Continuum States in Depletion Regions

In order to discuss interband optical absorption near
the semiconductor interface, we must calculate the wave

22
Si (I
20 i (100)
me=0.19m
€ = Il.‘G, .
- Qg = 10® em™
'8 Eg, = 0.019 eV
» Vb = 44 ¢V

0.8 1.0 1.2
99,

Fic. 8. Localized-state binding energies associated with the
(010) and (001) ellipsoids in Si for #-type accumulation regions
on the (100) face satisfying Eq. (2.15) with Q,=108 cm™2. The
eigenvalues are obtained by solving Eq. (2.9a) using the param-
eters indicated in the figure.



640

functions for bands characterized by a depletion region
(in our case the valence band) as well as those char-
acterized by accumulation regions. The calculation is
an extension of Tharmalingham’s!® treatment of the
Franz-Keldysh effect to the case of an inhomogeneous
electric field near the interface.

We consider the eigenstates of a spherical valence
(hole) band with mass —m, in the potential (2.2). The
envelope functions of the hole wave functions are given

by
fv,E(r)=6XP(ikn,v'9)¢8v(9€), (2.21a)
7Pkt
E,=—E,— —6&,, (2.21b)
2m,

a? 248,

[:“*—Qﬂe_”-f— sz g,(x)=0, (2.21¢)
dx? 7?

Q2=2m,V,/#2. (2.21d)

The top of the valence band lies at energy — E, relative
to the bottom of the conduction band. The general
solution to Eq. (2.21¢) is

¢, (x) =le(Qv2ag’in’x)+d2F(Qv2x f) —'ipv, x) ) (2-223)
po=2ky/3, (2.22b)
k2= 2m, &,/ 1. (2.220)

The coefficients dy and d, are determined by the con-
tinuity of ¢ and m~'d¢/dx at the origin using Eqgs. (2.8)
for the wave functions in the oxide with the boundary
condition 8,=0. In the limit that V,~— o, which is
taken for convenience in later evaluating oscillator
strengths, we find

¢8u(x):dl[F(QvZ)g7in7x)_7'F(Qv2> g —ips, %) ], (2.23a)
7=F(Q?27g7iP070)/F(Qv2’ & _in: 0) . (223b)

The wave function ¢, (x) is normalized according to
/ ¢sv(x)$8v' (x)dxza(gvﬁ gv’) y (224&)
0

which requires?
di1= (m,/2nh?k,)\2. (2.24b)

The function F(Q?%g,p,x) is defined by the series in Eq.
(2.6) and is related to the Bessel function of the second
kind, I,(x), by

Ir'(p+1)
(Q/9)*

We later need to know the overlap integral between
a localized conduction-band wave function and the
continuum valence-band wave function (2.23). Equa-

F(Q% g, —p, %)= 1,(2Qe7?/g). (2.25)

2% C. B. Duke and M. E. Alferieff, Phys. Rev. 145, 583 (1966).
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tions (2.5) and (2.23) lead to the result
Mch/:ésc(x)mu(x)dx:04+d1[12(—Qc2, —pe;

Q2 ip0) —r12(— Q7 —pe; QF, —ip)],  (2.26a)
I(=Q2, —pe; Q24 ipn)= : F(=Q2 g —pe v)
XF(Q2,g,ipux)dx.  (2.26b)

I, is evaluated in the Appendix and is given by Eq.
(A8b). A convenient approximation, valid for either
Pey poS1 or (Q./g)>>1, consists of taking only the
leading term in Eq. (A8b), and leads to,

Io(—Q2, — pe; Qv ip0)=2/g(po—1ipy)
= 1/(qa~$kv) .

This approximation also corresponds to setting =1
and . 22(2g.)"? so that Eqgs. (2.26) give

1/2 94 (kvq@)lm
qit+k}?

which is the form of (2.26a) we use in the next section
to illustrate the character of the contribution of vertical
interband transitions to the absorption coefficient.

(2.27a)

My

Mcv(gc, é)v)g(_)

wh?

. (2.27b)

III. OPTICAL ABSORPTION
A. General Formulas

The expression for the optical-absorption coefficient
(per unit volume), a(w), is given by?S

2e?
a(w)=——2 | Psi|?(E;— Ei—hw),

w omiw 1

(3.1)

in which ¢ denotes the initial state of the system with
no excitation, f denotes the final state with an electron-
hole pair, #’ is the optical dielectric constant, w is the
angular frequency of the incident light and Py; is the
momentum matrix element?>

Ppi= 3 Vg niiLiy (Kol £,0)

kekp

(3.2a)

7t
Iy (ke,kh,é,q)=7/d3r Vit (1€ 978 Vi, 50 (1) . (3.2b)
7

The wave vector of the incident light is denoted by q
and its polarization vector by £. As in previous sections,
the ¥, ;(x) denote the Bloch functions associated with
the jth band. We always use the dipole approximation
and set q=0 in Egs. (3.2).

26 T, Bardeen, F. J. Blatt, and L. H. Hall, in Photoconductivity

Conference (John Wiley & Sons, Inc., New York, 1956), p. 146.
27 R. J. Elliott, Phys. Rev. 108, 1384 (1957).
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In the subsequent sections we consider both the
interband transitions between localized conduction-
band states and the valence band (j=¢, /=v) and
intraband transitions among the localized states them-
selves (=7 =c). Electron-hole (exciton) correla-
tions?*” are neglected. These correlations have been
studied in two-dimensional systems by other authors.!®
Using this approximation, the coefficients in (3.2a)
become

Vi, iniir = fi,85 (Ke) fir, 550 (Kn)
EJ"_—E p=FEy,

(3.3a)
(3.3b)

fi (k)=—1—/d3re—“‘"f' (r) (3.3¢)
7B N j,E\I). .

The envelope functions f;, z(r) are given by (2.3) and
(2.21) for the conduction and valence bands, respec-
tively, in the case of an accumulation region in the
conduction band near the semiconductor interface.

In parts B and C of this section, we apply Egs. (3.1)-
(3.3) to calculate the absorption coefficient a(w) for
interband and intraband transitions, respectively.

B. Interband Transitions

We consider only (vertical) dipole transitions which
are “allowed” in Elliot’s notation.?” For interband
transitions we apply the customary approximation!®:26:27
that matrix element (3.2b) is given by

Icv = ake,thO(E) ) (3'43‘)

Co= / Prind OEWa®),  (34b)

as long as one considers absorption near the interband
threshold. The integral in (3.4b) is over a unit cell of
volume B. Equations (3.4) are applicable to the direct
edge in group IV and III-V semiconductors, and in
particular to GaAs, for which the localized-state
binding energies were evaluated in the previous section.
Insertion of (3.4) into (3.2a) gives

Pfi=CO/d3’ fe.m6(x) fo,2,(x)

=C06knc,k”chv(8c, 81}) ) (3.5)

in which M., is given by Egs. (2.26) and (2.27). The
absorption coefficient a7 for absorption into unoccu-
pied two-dimensional localized-state bands is given by

27I'82|C012(ﬂll,1”ll,2)1/2
n cmioh?

XE G(w,8:)0(lo—E,+8.:), (3.6a)

ar(w)=
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hw—Egt+8ci .
G, 80) = / | M or(80:,8) |28, (3.6b)
0
1 1 1
—_=—t (3.6¢)
MHi Moy My,

The total absorption coefficient is obtained by adding
to (3.6a) those contributions due to transitions to
continuum states in the conduction band which, how-
ever, enter only for #w> E, when exciton correlations
are neglected.

From Egs. (3.6) we see that the analog of the Franz-
Keldysh effect in an inhomogeneous electric field near
an interface introduces a series of broadened steps in
ar(w) below the interband threshold. These steps are
caused by transitions from the valence band to the
two-dimensional bands associated with localized states
in an accumulation region near the interface. They are
described by the spectral function, G(w,8.;), and are
sharp only in the limit that m,>m.; i.e., that the
valence band is much more flat than the conduction
band for #-type accumulation regions and vice versa
for p-type accumulation regions. This result may be
illustrated by considering the approximation (2.27) to
M., in which case, for spherical bands, we find

2 81248
G (0, 8o)2 (rm8u) 2 / ot
. 0 (8t rnbor)?

Ho—Eg+-8ei

2 hw—E g+ 8.2
=—[mn—1<______> (3.72)
m rmgci
[(m8s:) (hw— E,+ gm.)]x/z:I
hw_Eﬂ_i_ é’ci"‘rmé’ci ’
= e/ M- (3.7b)

Denoting by x= (hw—E,+&.:)/8.; the normalized
energy above the threshold, we see that G(x,8.) ap-
proaches its maximum value of 1 below the band edge
(x<1) only when 7,<1. This result is shown graphi-
cally in Fig. 9. As for light holes in GaAs 7,~0.7.%8
The structure introduced by the localized states will
be hard to distinguish from the inhomogeneous strain
broadening of the direct edge. Absorption from the
heavy-hole band exhibits 7,~0.175 with correspond-
ingly sharper structure.

For those localized states which are occupied, the
contribution to the sum in (3.1) vanishes because it is
weighted by a [1—=(E,) n(E,) factor. This result has
the consequence that (3.6a) becomes

27r62|C()|2
——— ()2 2 G(‘*’,gci)

ar(w)=
n'mioh?

X[0(—Er— 8:))0 (o— E;+ &.:)
+0(Er+ 8.:)0(o—E,—Er)]. (3.6d)

8 J. W. Conley and G. D. Mahan, General Electric Research
and Development Center Report No. 66-C-443 (to be published).
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F1c. 9. The spectral weight G(x,8.;) for interband transitions
calculated from Egs. (3.7) in the text for various mass ratios
rm= (m¢/m,) associated with spherical energy bands.

The second term indicates that although G(w,8.;) may
rise gradually, if the localized-state band is occupied,
no absorption occurs until %w> fwe=E,+ Er so that a
sharp onset of the absorption, analogous to the Burstein
edge in a bulk-degenerate semiconductor, occurs at
w=wy with strength G(wo,8.:).

An attractive interaction between the electron and
hole sharpens all the absorption edges?:° in addition
to introducing bound-state (exciton) peaks. Therefore
the structure predicted in this section will be made more
pronounced by electron-hole correlations.

Finally, the contributions to the absorption illus-
trated in Fig. 9 exhibit the same qualitative features
as those due to transitions from the valence band to
sharp “conventional” localized surface states.!1® This
result is a consequence of the similarity between the
wave function of such a state and that of a tightly
bound, space-charge-induced state. For transitions
from the valence band to the “conventional” surface
states, the imposition of an ac modulation of the
field-plate bias affects the absorption coefficient only
by modulating the valence-band space-charge potential.
Thus when the change in « induced by the shift in the
valence-band edge is detected in phase with the modu-
lating voltage, the effective Aa measured is that due to
a shift of an absorption edge like those shown in Fig. 9.
As expected, such a Aa has the form attributed by
Harrick!® to his type-2 transitions. The Aa obtained
for transitions between the localized states and the
valence band is also due to a shift of the absorption

%Y. Toyazawa, M. Inoue, T. Inui, M. Okazaki, and E.
Hanamura, ]J. Phys. Soc. Japan 21, 209 (1966).

%7, J. Hopfield, Tokyo Summer Institute for Theoretical
Physics, 1966 (to be published).
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bands shown in Fig. 9. However, this shift is not as
large as that for a surface state of fixed energy because
the localized-state energy is altered by changes in the
space-charge potential. The oscillator strength of the
transition also is modified in accordance with Egs.
(3.6) and (3.7).

C. Intraband Transitions
In calculating the momentum matrix elements (3.2)

for intraband transitions, one uses the theorem?® that

(3.8)

m 9¢; (k)
/ P it (X) pa (x) =—
h Ok

(]

to relate the dipole matrix element (3.2a) directly to
the envelope function. For vertical transitions among
the two-dimensional localized-state bands associated
with the Sth mass ellipsoid one finds*

m

® )
Prmge( ) [ dnnpsnt, 69

m*

in which (1/m*),, is the effective-mass tensor for the
ellipsoid. Using Eqgs. (2.3) we see that in the dipole
approximation (vertical transitions), for which (3.9)
is relevant, one finds the selection rule that only the
component of the polarization vector ¢ normal to the
plane of the junction causes transitions. For this
polarization, the momentum matrix element becomes

1hm

Pyir= (ﬁ)aﬁ-(Pd)a+(?ci)]3(“?6fy —pei), (3.10)

aw

in which 73 is given by Eq. (A14) in the Appendix. Using
the approximation (2.14), which is comparable to the
use of Egs. (3.7) for interband transitions, we find that
we should use

IPfi(ﬁ) |2= IPfix(ﬁ) Iz‘sknf'kni’

m N qei®q® P
| P;® 2= 16h2< ) [ ] (3.11b)
Mo, ®/ Lgoi®+4qo,®

in Eq. (3.1). In the case that more than one localized-
state band is occupied, the strength of the transition
between the localized levels is reduced, but, unlike the
case of interband transitions, there is no Burstein shift
of the edge.

Taking into consideration the fact that in a many-
valley semiconductor the intraband transitions asso-
ciated with each valley are independent in the effective-
mass approximation, we find that the absorption co-

(3.11a)

3 See, e.g., E. Spenke, Electronic Semiconductors (McGraw-Hill
Book Company, Inc., New York, 1958), p. 205.
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efficient is generally given by
472’
a(@) =3 p® T | P ® |2
' emPoh? 8 PR
XO(lw—8.s®+8.,:,8)0(8.:; P+ Er)
x[(8ci(ﬁ)+EF)e(_gcf(ﬁ)_EF)
+ (6= E,2)0(E,®)],  (3.12)

in which p,,® is given by Eq. (2.16d). From Egs. (3.11)
and (3.12) we see that small m,,, and large binding of
the individual localized states (i.e., large ge:, ges) favor
strong transitions. The spectral form of a(w) is a series
of step functions, as expected for a genuine two-
dimensional system.

D. Summary

Equations (3.6) and (3.12) give the contribution to
the absorption coefficient due to transitions from the
valence band to localized states in the conduction band
and due to transitions among localized conduction-band
states, respectively. The absorption edges in a(w) due
to transitions to localized states from the valence band
are broadened considerably due to the continuum
character of the valence-band eigenstates and the small
oscillator strengths associated with the continuum
eigenstates near the band edge. Only if the binding
energy of the localized state is much larger than that
of an exciton and (m./m,)<1 is this structure in a(w)
likely to be distinguishable from the inhomogeneous
strain broadening and bulk exciton affects at the direct
absorption edge. The structure in a(w) in the infrared
region (AE~10-25 meV) consists of a series of steps
characteristic of the density of states in two-dimensional
systems. The positions and dipole strengths of these
steps scale with field-plate bias. Equations (3.12) and
the considerations of Secs. ITA and IIB permit a quan-
titative analysis of the strength and scaling of these
contributions to a(w) for any given bulk and surface
parameters of a given sample. Experimental observation
of this scaling of the predicted structure in either a(w)
or Aa(w) with field-plate bias would provide an un-
ambiguous verification of the existence of quantized
states in narrow accumulation or inversion regions.

Finally, our analysis also can be applied to describe
the influence of quantization effects on the energy
dependence near threshold of photoemission across the
oxide barrier in the case that the photoemitted electrons
originate in the space-charge regions. For a p-type
accumulation region, the direct, surface-emission
threshold energy is raised by distance of the most
tightly bound hole from the top of the valence band.

Note added in proof. The above analysis also forms the
basis of a model for calculating line shapes in surface-
barrier electroreflectance®? in cases for which the space-

% B. O. Seraphin, Phys. Rev. 140, A1716 (1965).
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charge potential can be determined and subsequently
approximated by an exponential. An important conse-
quence of the model is the possibility of optical fre-
quency transitions between occupied quantized-state
bands and either quantized or continuum states asso-
ciated with higher-energy bands. These transitions lead
to edges in a(w) which exhibit a strong dependence on
the surface potential, crystal face, and temperature.
Therefore interpretations of measured peaks® must be
regarded as tentative until the experimental results are
correlated with a detailed model of the space-charge
potential on the basis of which surface effects can be
eliminated as the mechanism for these peaks. Such a
detailed analysis is of particular importance near the
3.5-eV spectral region in Silicon where the interpreta-
tions of the electroreflectance®® and piezoreflectances®
data differ substantially.
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APPENDIX: EXPANSIONS OF INTEGRALS
INVOLVING THE F(Q?%g,p,x)

Let us first consider the normalization

L(=p, —p)= / |F(=Q% g, —p, )| *dw. (A1)

The general procedure we use to evaluate all such
integrals is to use the relations between the F and
Bessel functions:

P g =, 9= 20 oemg, (a2
—¢Hh 8 —pX)= D g0l y a
©/9)” ;
I'(p+1
F(QZ) g, _P, x): (p )

(Qeit/g)7

><J,,<2Q exp[ﬁr—;ﬁ] / g> (A2b)

and the expansion of products of Bessel functions®

D (bx/2)?’
7 (a) ] (ba) = 2 /BT
T (p/+1)
i (—a2/4)™ oF1(—m, —p—m, p'+1, 8%/ a?)
m=o m T (p+m+1) ’
(a)a () (A5
WF1(a,hex)= Y —— (A3D)

n=0

7!(¢)n
(a)n=1XaX (a+1)X - X (a+n). (A3c)

(13936%}). W. Gobeli and E. O. Kane, Phys. Rev. Letters 15, 142
G, N. Watson, Theory of Bessel IFunctions (Cambridge
University Press, London, 1945), p. 148,



644

The hypergeometric function »F; occurring in (A3a) is
a polynomial in (4%/a?) of order m. In the case that
p=9p', a=b, Eq. (A3) reduces to?"

()

o (—a2/4)"T (2p+2m+1)
m=0 m T (2p+m+1)[T (p+m+1) P

(A4)

Use of (A2a) and (A4) gives the product expansion for
the F functions:

o 1
F2(___Q2, & ”‘P? x)=exp(—ng) Z _‘7
m=0 !
y (——Q2e—0‘>’" TQp+2m+ 0 T+ T' "
T 2p+m-+1) LT (pFmt-1)

Equation (A5) can be readily integrated to give

g2

2w 1 /—07" T(2p+2m)
I =p=- % —( )
gm=0m!\ g r(2p+m+1)

rip+1) 7
X[r(p+m+1)] (46)

A closely related integral to Iy is the overlap integral
between conduction band and valence band F functions:

I2(""Qc27 —Pes Qv2) 1?”)
=/ dxp(_ch7 g — Pe, x)F(sz,g,in,x)~ (A7>
0

Use of (A2) in (A3) gives the product expansion
F(—Q& g —pe, #)F (Q%,8,ip0,)

w© 1 Qn2 —gT\ Mm
=exp[<—pc+z'm>~§] 5 ——( ‘ )

m=0 71| g2

T (—ip,st+1)
I'(—ip,+m+1)

oF1(—m, ip,—m;

P0+17 _Q62/Q1’2) ’ (Aga)
which when integrated gives
2 Qg
I(—Qf = po; Qb ip) == 2 ——
2 ’ ? g m=0 (po—ip.+2m)
T'(—2p,+1
__L_i?_.___)__ 2F1(_m’ ,L'pv_m,
r (_ z?v"‘m‘" 1)
pet+1, —Q2/Q2). (A8b)

3 Reference 32, p. 147.
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The fact that in general m,,<<m,,, has the consequence
that (Q./0,)*<1 in the hypergeometric function in
(A8b).

Our final integral is that needed in the calculation of
the oscillator strength of transitions between localized
states:

]8(“‘P1: _P2)= / F("QZ: &, _Ply x)
J0

For the evaluation of this integral it is most convenient
to make the neglect of the x<0 terms in the integral
rigorous by taking the V3 — o limit in the text. In
this limit we see from (A2) and (2.9d) in the text:

I (20/8)=75,(20/8)=0. (A10)
Using (A2) and the identity?®
I (W) =T p-1(u)— (p/u) T () , (A11)

we obtain, by making the wvariable substitution
u=(2Qe¢=7%2/g) in (A9), the result

L' (pr+ 1T (pt1)

Is(—p1, —p2)=
( ? P) (Q/g)p1+p2

X/:Q/g o (u)[],,z(u%—gfpz(u)} du. (A12)

The integral of the last term in the integrand in (A12)
can be performed explicitly?” and vanishes due to the
quantization condition (A10) if p1, p. are not both zero.
Using another limiting case® of (A3), i.e.,

J 1 (%) po()

5 (=) (w/2)7t22nT (p1+ po-t-2m+-1)
720 m I (pr+ pot-mA1)T (prbm-+ DT (pat-m+-1)
(A13)

We obtain, after integrating in (A12), the final result:

Ii(—p1, — p2)=2p2 f: _1_<—Q2>’"

m=0 l g2
T (pr+pot2m) T (p+1)
(pr+pat-2m)T (pr+pot-m) T (pr+14-m)
T
T@)
T(patm)

36 Reference 32, p. 83.
37 Reference 32, p. 135.



