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for different values of x= Ace/K~T at four different tem-
peratures 2, 8, 30, and 100'K for situations where the
impurity levels overlap the conduction band and where
the impurity states are semi-isolated. For the scattering
of phonons by the electrons in the conduction state,
Ziman's expression for the electron-phonon scattering
relaxation time has been used and for the scattering of
phonons by the electrons in the bound states, Car-
ruthers' expression has been used.

5. Assuming the additivity of the reciprocal relaxa-
tion times and incorporating the electron-phonon scat-
tering relaxation time in the expression for the com-
bined relaxation time, Callaway's theory has been used
to calculate the phonon conductivity of the diferent
Sb- and As-doped Ge samples. The correction due to
momentum-conserving phonon-phonon and phonon-
electron collisions are shown to be negligible. If one
takes into account the temperature dependence of the
reduced Fermi potential and the density-of-states effec-
tive mass, Ziman's scattering can explain the phonon
conductivity of the samples for which the electron
concentration is higher than 10"cm ' and the impurity
levels merge with the conduction band. The decrease in
the thermal conductivity with the increase in doping is
explained by the change in the deformation potential
and the plot of the deformation-potential constant

against the electron concentration is shown to be linear.
Carruthers scattering, for which phonons are scattered
as a result of virtual transitions of the donor electrons
between the ground state and threefold-degeneration
first excited state, is found to be more appropriate for
those samples for which the donor electron concentra-
tion is less than 10' cm '. Values of the shear deforma-
tion potential for Carruthers scattering as obtained
from the phonon-conductivity data are found to lie
between 17.83 and 27.91 eV.

6. For the Sb-doped Ge samples which are compen-
sated by Ga, known as compensated samples, the
phonon conductivity has been calculated on the basis of
Carruthers scattering which is considered to be more
appropriate for the case where compensation may bring
the electrons from the conduction band to any state in
the energy gap. By adjusting 7.,„'a satisfactory agree-
ment between theory and experiment is obtained. The
values of the shear deformation potential for the com-
pensated samples as obtained from thermal conductivity
data are 21.2 and 25.27 eV.

ACKNOWLEDGMENTS

The authors are grateful to Dr. A. Kahn, Professor
K.. S. Singwi, and Professor Vachaspati for their interest
in the project.

PHYSICAL REVIEW VOLUM E 159, NUM B ER 3 15 JULY 1967

Electron Scattering by Pair Production in Silicon

E. O. KANE

Be/l Telephone Laboratories, array Hill, New Jersey
(Received 2 March 196'I)

The energy-dependent rate for inelastic scattering of electrons by production of electron-hole pairs is
computed by first-order perturbation theory for silicon using a screened Coulomb interaction with a fre-
quency- and momentum-dependent dielectric function calculated for silicon in the random-phase approxima-
tion. The threshold for momentum-conserving pair creation is found to be very close to that determined by
energy conservation alone. This follows from the silicon band structure. The absolute scattering rate is
close to that obtained experimentally by 3artelink, Moll, and Meyer. Pair production dominates the scatter-
ing rate for electrons of energy greater than 6.5 eV above the valence-band maximum. For electrons between
4 and 6.5 eV the scattering rate is dominated by phonon scattering, but energy loss is dominated by pair
scattering. Below 4 eV phonon processes dominate inelastic processes as well. The momentum space integrals
for pair-creation scattering are performed by a Monte Carlo method. It is found that the calculations with
momentum conservation can be reproduced surprisingly well by a simple "random-k" approximation, which
effectively ignores momentum conservation. This leads to a very simple expression for pair scattering in the
form of a two-dimensional energy fold over one-electron state-density functions, a result first obtained by
Berglund and Spicer. This simple form facilitates the calculation tremendously and should make calculations
for other materials very simple if the state-density function is known. Using this "random-k" method, the
scattering rate for primary holes is obtained and found to be almost identical with that for primary electrons
of comparable energy. The secondary-particle energy distribution functions are also determined for primary
holes and electrons. One-electron state-density structure is prominent in these distributions.

I. INTRODUCTIOH AND CONCLUSIONS~~

~~

~~

HEN an electron or hole has an energy relative to
its band edge in excess of the band-gap energy,

the energetic particle is able to lose energy by creating

an electron-hole pair. Because there are three final-
state particles, density-of-states considerations lead
one to expect that the cross section for pair production
will be a strongly rising function of electron energy, at
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least within a few electron volts of threshold. These
considerations have long been appreciated and the
importance of pair production in avalanche break-
down, ' ' photoemission, 4 and the scattering and energy
degradation of high-energy particles is widely recog-
nized. Pair-production effects have also been observed
in the quantum yield of photoconductivity. ' More
recently it has been suggested' that pair production is
an important mechanism in providing oscillator
strength at high-photon energies where one-electron
direct transitions are expected to be relatively weak.

Pair-production calculations for metals have been
made based on the free-electron approximation. ~ This
approximation would not be applicable to semicon-
ductors and insulators except at rather high energies
because of band-gap eGects due to energy conservation.

Some attempts have been made to discuss pair pro-
duction in semiconductors based on e6ective-mass
models for the conduction and valence bands. ' This
type of model is not valid at high enough energies to be
useful.

In the present paper we attempt a quantitative cal-
culation of the pair cross section for silicon using
pseudopotential energy bands and wave functions. In
Sec. II we calculate the scattering rate by 6rst-order
time-dependent perturbation theory using a screened
Coulomb interaction. The dielectric screening used is
both momentum- and frequency-dependent as cal-
culated for the silicon band structure in the random-
phase approximation. ' The multidimensional integrals
over k space are performed by a Monte-Carlo-type
calculation as described in the Appendix.

In Sec. IIA the results of the Monte Carlo calcula-
tion are compared to the predictions of the free-electron
model which is found to be useful for electron energies
8 eV or more above the valence-band maximum.

In Sec. IIB we discuss the threshold for pair produc-
tion. We 6nd a pair-production threshold of 2.2 eV
(relative to the valence band). In other words, the
threshold is just one energy gap above the conduction
minimum. This result is shown to be consistent with mo-
mentum conservation on the basis of the silicon band
structure.
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In Sec. IIC we compare the absolute value of our
pair scattering rate to experiment. At a primary energy
of 5.5 eV (relative to the valence band maximum), we
6nd a scattering rate which is within a factor of 2 of the
value determined experimentally by Bartelink, Moll,
and Meyer. " The agreement is probably as good as
could be expected for the theoretical calculation.

In Sec. IID we compare the rate of electron scattering
by pair creation with the rate of scattering by phonons.

If we assume an optical-phonon scattering length of
~60A as estimated by Bartelink, Moll, and Meyer, "
we conclude that above 6.5 eV (relative to the valence
maximum) pair-production scattering dominates
phonon scattering. Between 4 and 6.5 eV, the phonons
dominate as a scattering mechanism but pair creation
is the most important energy-loss mechanism. Below
4 eV phonons determine the energy-loss rate also.

In Sec. III we discuss the "random-k" approxima-
tion. We have found that within the statistical accuracy
the results of our momentum-conserving Monte Carlo
calculation can be duplicated by assuming that the
dependent momentum k4 is distributed uniformly over
the whole Brillouin zone. In other words, momentum
conservation can be ignored. This approximation
reduces the 9-dimensional integrals over k space to a
two-dimensional fold in energy space of three one-
electron state-density functions. (One for each final-
state particle. ) Computationally, the 9-dimensional k
integral, which contains a 5 function for energy con-
servation, is tedious to evaluate because the relevant
fraction of k space is so small compared to the total.
Consequently, the "random-k" approximation which
reduces the integral to two energy dimensions and
eliminates the 5 function makes the problem computa-
tionally trivial.

This approximation has been used previously by
Berglund and Spicer. '

In Sec. IlIA we compare the results of the Monte
Carlo calculations with the "random-k" results.

In Sec. IIIB we use the random-k approximation to
compute the pair-production rate for a primary hole.
We find that the scattering rates for electrons and
holes are practically identical for energies symmetrical
relative to the midgap energy.

In Sec. IIIC we use the random-k approximation
to compute the energy-distribution functions for
"secondary" or 6nal-state particles. We find that one-
electron state-density structure shows up in these dis-
tributions, although it may be distorted or masked by
an over-all "envelope" imposed by energy conservation.

The validity of the random-k approximation has
important implications for extending the present cal-
culations to other materials. One needs only the one-

l k JLMll dNIMy Phy R
972 (1963).
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electron state density function. The multiplicative

constant might crudely be assumed to be the same as

for silicon or more accurately might be determined by a
one-parameter fit to experiment.

It appears that the random-k approach as used here

may be applicable to all the "nearly free electron"

materials for which a simple pseudopotential works well.

On the other hand, it would not be expected that
materials with d bands could be treated without im-

portant modifications. Coulomb matrix elements be-

tween d-like and free-electron-like states would presum-

ably be much smaller than between two free-electron-

like states because of the relatively large spread in

momentum space of d functions.

IL MONTE CARLO CALCULATION OF
SCATTERING DUE TO PAIR

PRODUCTION

In this section we describe a calculation of the
scattering rate, w, for an electron to produce an elec-
tron-hole pair in silicon. The calculation is done using
first-order time-dependent perturbation theory with
pseudopotential wave functions and energy bands. "
We use a Coulomb interaction between electrons with
dielectric screening. A frequency- and momentum-
dependent dielectric constant was used as computed
for silicon using the random-phase approximation
(RPA)."

We calculate w(E) using first-order time-dependent
perturbation theory

21r/ U )s J ~kl(fks(iks 6(@1(kl) E)
~(E)=—

I
()(8,(k )+84(k4) —Bs(k,)—B,(kp))

fg l, (21r)sd) "1'rr2')rr' d p J'(fk13(br(ki) —E)

M, —=M(1,4; 2,3) M& =—M(1,4; 3,2),
tr) 2

ddp, d; 2,3)—: (4,(r,)4,(r,) 4,(r,)4,(r,))dr,dr, ,

X{(M.~'+ ~Mp~' —(M.*Mp+M.Mp*)/2},
(2)

(3)

k,+k4 ——k,+ks+ Kp, (4)

where V is the volume.
State 1 is the initial state, consisting of a primary

electron of energy E. In Eq. (1) we average over all

initial states with momentum k~ and band index m~

having energy E. State 4 is the hole state. We sum over

the band index m4 of the hole but allow the hole

momentum to be determined by momentum conserva-

tion, Eq. (4). Kp is a principal lattice vector (which may
be zero) to insure that ki, ks, ks, k4 are all in the first

Brillouin zone. States k2, e2 and k3, e3 are 6nal electron
states.

Allowance is made in Eq. (1) for the effect of exchange

which gives rise to the matrix-element expression in

braces after summing over spins. The indicated sums

over e~, e~, e3, e4 do not include spin.
~ js the matrix element of the screened Coulomb

interaction. ~ is the frequency- and momentum-

dependent dielectric function.
To indicate more explicitly the way we use the

dielectric function, we write the pseudopotential wave

functions 1b,(r,) in the form
~i(k,+K) r;

P,(r;) =g a(K,k;,44,)I QU

We also write 1/~ ri—rs~ in momentum space

Equation (3) then becomes

M(1,4; 2p) = Q a*(Ki,k1,141)aa(K4, k4, 444)

K1,K~,K~

e'44r) 1
Xa(Ks,ks, ass)a(Kp, ks, ns) ~-, (7)

q'U) e(q,o))

q—=ki+Ki —k,—K„
4)—=81(ki) —8s(ks) .

Momentum conservation together with Fq. (4)
determines K4 according to

Ki+ K4+ Kp ——Ks+ Ks. (9)

The e((t,p)) was obtained from an RPA calculation
using pseudopotential energy bands and wave functions
for silicon. '

The integrals in Eq. (1) were performed by a Monte
Carlo method. This part of the calculation is described
in more detail in the Appendix. The results are shown as
circles in Fig. 1. There is a considerable scatter of the
data points due to the statistical fluctuations inherent
in a Monte Carlo calculation.

A. Comparison with the Free-Electron Model

In Fig. 1 we show as a dashed line a pair-production
calculation using free-electron bands, wave functions,

'~ E. O. Kane, Phys. Rev. 146, 558 {1966).
(6) "S.L. Adler, Phys. Rev. 130, 1654 (1963); H. Ehrenreich and

M. H. Cohen, ibid 115, 786 (1959). .



PAIR PRODUCTION I N Si

4 X IO

2 X10

f X)0

4 X IO

2 X 10
~

& x&o~—

4 Xfo

2 X)0

X)0

4 x&0 5-
2X~O'-
~ x&0 5-

I I I I

2 3 4 5 6 7 8
PRIMARY ELECTRON ENERGY IN gv

Fyo. 1. Scattering rate for pair production by a primary elec-
tron jn energy units. F is the scattering rate or reciprocal lifetime.
Plectron energy zero is the valence band maximum. Circles are
the results of a Monte Carlo calculation. The solid curve is the
"ra dom4. " approximation. The dashed curve is pair scattering
computed in the free-electron approximation with an electron
density corresponding to silicon.

and a dielectric function computed for an electron
density appropriate to silicon. The calculation can be
carried Inuch fur~her analytically in this case as has
been done by Quinn and Ferrell. r r4 However, Quinn

and Ferrell's treatment does not include exchange.
The tmo curves appear to be coming together at high

energy as one mould expect, assuming the correction
for exchange to be small on this scale. The large reduc-
tion of the scattering rate for silicon at low energy is,
of course, due to the presence of a band gap.

3. Threshold for Pair Production

In Fig. 1, electron energies are measured relative to
the valence band maximum. At lom energies the cross
section appears to go to zero at a threshold of 3ust
twice the band gap, as required by energy conservation.
This conclusion divers from predictions based on simple
parabolic conduction and valence bands. If the masses
are taken equal, the threshold with momentum con-
servation is 2.5 times the band gap' (valence band

energy zero). However, it is easily seen that for the
band structure of Si, the threshold with momentum
conservation is actually very close to twice the band

gap.
If me start mith a primary electron of 2.2 eV, i.e.,

twice the band gap, we can locate this electron at
k=(2w/a)(032, 0,0)." H we take the hole to be at
i's= (0,0,0) and put two electrons at k= (27r/a)(0. 84,0,0),

r4 j. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).

we can conserve momentum with the help of a (2m/g)

&&(2,0,0) reciprocal lattice vector. Feher" has located
the conduction-band minimum at (2m./a)(0. 85,0,0), so
that the threshold is very nearly equal to twice the
band gap. Even if the momentum for which the primary
energy equals 2.2 eV mere uncertain by as much as
a(2m/a) (0.2,0,0), if one shifts the two 6nal electrons by
+(2m/a)(0. 1,0,0) each, the threshold is only increased

by 0.1 eV since the longitudinal conduction-band mass
is nearly equal to the free-electron mass.

Of course, the scattering rate is very low near thresh-
old so that the effective threshold may be much higher
than 2.2 eV and will depend on the experiment being
analyzed.

C. Comyarison vrith Experiment

To compare our calculated pair-scattering rates with
experiment, we have a pair-production mean free path
l„of 190A as determined by Bartelink, Moll, and,

Meyer. " Baraff' has analyzed Bartelink, Moll, and
Meyer's data more extensively and estimates 8, value
of 270 A for L„.For clean silicon the vacuum level is at
5.15 eV as determined by Allen and Gobeli. '7 If we add
a, thermal spread of the order of 0.5 eV as estimated by
Bartelink, Moll, and Meyer, "we get an average elec-
tron energy of 5.65 eV for their experiment. At this
energy we have calculated an average group velocity,
e„of0.66 atomic units from the silicon band structure. "
Using the scattering rate of Fig. 1, we calculate a mean
free path, /n, =v,/wn„of 180A. The agreement is
probably within the limits of uncertainty of the
theoretical calculation.

D. Comparison of Pair Production and
Phonon Scattering Rates

If me take an optical-phonon scattering rate of
0.1 eV, (based on a mean free path given by Bartelink. ,
Moil, and Meyer, ")we see that the pair scattering rate
equals the phonon rate at 6.4-eV electron energy. How-
ever, the energy loss in pair production is 2—3 eV per
event whereas in phonon scattering it is only 0.05 eV
per event.

Taking an energy loss ratio of 50, the energy loss
rate to pair production equals the loss to phonons at
about 4 eV, primary electron energy. For electrons well
below 4 eV in silicon pair production mill be quite unim-. ".

portant in photoemission and in. many other experi-
ments as mell. A possible exception is avalanche
multiplication where extremely small multiplication
factors may still lead to breakdown. In this case the

"G. I'cher, Phys. Rev. 114, 1219 (1959)."D. J. Bartelink, J.L. Moll, and N. I. Meyer, Phys. Rev. 130,
9V. (1963}.

» F. G. Allen and G. %. Gobeli, Phys. Rev. 127, 150 (1962).
E. O. Kane, Proceedings of the International Conference on"

Semiconductor Physics, 1966, J. Phys. Soc. Japan Suppl. 21
(1966).
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effective pair-production energy depends on the maxi-
mum in the product of a rapidly falling distribution
function and the rapidly rising pair cross section. The
effective threshold can only be determined with the use
of a very good electron distribution function which is
probably rather sensitive to the experimental details.

III. RA5DOM-k APPROXIMATION

The Monte Carlo calculations of m are rather tedious.
%e have tested a much simpler approximation in which
we electively neglect momentum conservation. A
similar approach was first taken by Serglund and
Spicer. 4

We still use Eqs. (1) through (4), but we assume that
k4 as given by Eq. (4) is a random variable whose
probability P(k4) of falling in the energy interval dE4 in
band n4 is proportional to the density of states p4(E4) of
band e4.

P(k4) =p4(E4)dE4 p4(E4)dE4

Of course, fp4(E4)dE4 2N, ——where N, is the number of
unit cells and the 2 is for spin. With the above assump-
tion and taking an average value of 3f', we can write
Eq. (1) as

—, (11)

J"p2(Eo)po(Eo)p4(E4) 8(E+E4—E2—Eo)dE2dEodE4

ia, (E)=——( l
3II.

l

'j
l
M $

l

' (CV,*3f$+—3II.Mg*)/2)
h SE,

where the integral over ki in the numerator and
denominator of Eq. (1) has cancelled out. The p's are
assumed to include spin. The sum over e~, n3, e4 con-
verts the p; to total p's and the 8 function may be
integrated over to give

w, (E)=A, p(E2)p(Eo)p(E4) dEodEo. (12)

E=E2+Eo—E4, E,Eo,Eo&Ep,E4&Ep,

2'
~.=—{I~.l'+ l~ol'

h

(13)

—(tV,*Mo+3I,3IIo*)/2)/(8N, ) . (14)

E~ represents the Fermi energy which we may take as
the top of the valence band. We have used an energy
scale with Ep=0.

A. Comparison of Random-k and
Monte Carlo Calculations

Equation (12) is plotted. as the solid line in Fig. (1).
Any deviations from the more exact theory are within
the random scatter of the Monte Carlo calculation. The
fit is accurate not only as to shape but also as to absolute
value. An equation similar to (12) was first given by
Berglund and Spicer. 4

The source of this rather surprising agreement
probably depends partly on the following consider'a-
tions. Let ki, k2, ko be general k vectors lying in the
cubic sector (1/48 of the Brillouin zone). Then if we
consider the entire set of cubically equivalent vectors
and use Eq. (4) we have

k4 ———Qiki+Q2k2+Qoko+ Ko, (15)

where Q; is one of 48 operators which generate cubically
equivalent k vectors. There are evidently 48' diferent

values of k4 in Eq. (15). Of these, 48' or 2304 are cubi-
cally nonequivalent (for suKciently general ki, ko, ko).
This large set of values of k4 will tend to scatter more or
less at random throughout the zone. The three integrals
over k space also perform considerable averaging which
tends to eliminate any possible structure.

The double fold of the one-electron density of states
in Eq. (12) washes out all noticeable structure in the
final density of states.

One would expect the "random-k" approach to be
least applicable near threshold, however there is no
evidence for this in Fig. (1) for energies as close to
threshold as computations were feasible. Since the cross
section is so very small in this region the exact behavior
near threshold seems to be of no practical importance.

The computed values of M' were very insensitive to
the primary electron energy. The variation from 5 to
8 eV was less than 30%, which is of the order of the
statistical uncertainty in the computation.

The success of Eq. (12) in reproducing the more exact
Monte Carlo results is very gratifying in that it should
make calculations on other materials extremely easy
once the one-electron density of states p(E) is known.

B. Primary Hole Scattering Rate

Ke have used the "random-k" approximation to
compute the pair-scattering rate for primary holes.
We obtain an equation completely analogous to
Eq. (12), namely,

~.(E)=4. p(E2)p(E~)p(E4)dE2dE~ y

E=Eo+Eo E4, E,E2,Eo&EI,E4& Ep. —(16)

In all our equations we have used the convention that
E refers to the electron energy of a state. The energies
of holes are, therefore, —E.
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Fto. 2. Scattering rate for pair production by a primary hole
in energy units as calculated by the random-k approximation.
Energy zero is the valence-band maximum.

The scattering rate for holes is shown in Pig. 2.
%e have arbitrarily used A&= A, in this calculation, an
untested assumption but one which we feel is probably
not too bad in view of the insensitivity of M' to primary
energy. Even though AA, =A, one would not necessarily
expect res(E) to equal rp, (E) for equal energies relative
to midgup because the density-of-states functions are
not symmetrical with energy about the midgap posi-
tion. "Nevertheless, if we line up Pigs. 1 and 2 so that
the energy 1.1 eV in Fig. 1 coincides with 0 eV in Fig. 2
we see that the curves are virtually identical. This fact
suggests that asymmetries observed between electron
and hole processes in avalanche breakdown" are more

likely to be associated with the phonon scattering rate
or with the hot-carrier distribution function than with
the pair-creation process.

C. Secondary Distribution Functions

We have also used the "random-k" approximation
to compute the 6nal-state energy distribution function
for the secondary particles as a function of the primary
particle energy. The secondary distribution functions
are given by

2p(Es)fp(Es)p(E4)dEs
S..(E,E,)=fp(Es)p(Es)p(E4) dEsdEs

p(E4)fp(Es)p(Es)dEs
S, (aE, E4)=fP(Es)p(Es)p(E4)dEsdEs

E=Es+Es E4, E,Er—,Es& Er,E4& Ep,

p(E4)fp(Es)p(Es)dEs
Sa,(E,E4) =

f'p(Es) p(Es)p(E4)dEsdEs

2p(E,)j'p(E, )p(E4)dE,
SM(E+2)

E=Es+E, E4, E,Es—,Es&Er,E4& Ep.

S„(E,Es) is the distribution function for secondary
electrons of energy, E2, produced by a primary electron
of energy E. ,Sz( E, E4) is the distribution of secondary
holes produced by a primary electron. Sz., SI,& have
analogous meanings for primary holes. S„and S~~ are
normalized to two since there are two indistinguishable
secondary particles in these cases while S,~ and Sq, are
normalized to one.

Plots of S.. and S,I, are given in Fig. 3 while Sp„
and Sj,~ are given in Fig. 4.

2.0

1.8— 4eV-- SeV—8eV

FIG. 3. Energy distribution for
secondary particles excited by a
primary electron for several primary
energies. Secondary electrons nor-
malized to two and holes to one.
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r9 C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, and W. Wiegmann, Phys. Rev. 134, A761 (1964).
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secondary particles excited by a
primary hole for several primary
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The secondary distributions in Figs. 3 and 4 are very
similar apart from the normalization which rejects the
differing numbers of secondary particles in the two
cases. One-electron state-density structure is quite
apparent in most of the curves as one would expect
from the form of Eqs. (17) and (18). For instance, in
formula (17) for S„(E,E2) the factor p(E2) is multiplica-
tlvc which pI'oduccs most of thc structure obscI'vcd "n
8„.The factors under the integral sign are folded which
tends to smooth out any structure due to them. The
integral provides a strong envelope factor which pro-
duces peaks in some curves but the energy location of
these peaks are not independent of the primary energy
as are the peaks from the p(E2) factor.
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APPENDIX

In this Appendix we describe the Monte Carlo
program for performing the integrals in Eq. (1). For a
given run the matrix element factors are assumed to be
constant so that the principle problem is to evaluate the
integrals over delta functions.

The delta functions are represented by rectangles of
unit area and width O.j. eV for the primary energy and
0.4 eV for energy conservation so that energy conserva-
tion is satis6ed to within &0.2 cV.

To illustrate the method we will ignore the sum over
band indices in Eq. (1) although all four valence bands
and the lowest four conduction bands were actually
summed over. This is adequate for primary energies

8 eV which was the highest energy computed.
The sum over II'», k2, Its was performed over a coarse

mesh of 89 inequivalent cubic boxes in the cubic sector
(1/48 of the Brillouin zone). The length of the bmes
was (2ir/a) (0.125). Each box was assigned a weight,

wr(j), equal to the fraction of its volume lying inside
the cubic sector. j is the box index running from
1—89. For each box the average energy h (j) and the
rms fluctuation of the energy

was computed in advance and stored on tape.
The computation of the integrals over 8 functions in

Eq. (1) is indicated by the flowchart of Fig. 5 with the
operations described in Table I. The boxes in Fig. 5
labeled 0 are arithmetic computations while the boxes
T and C involve testing and branching depending on
whether the test condition is satis6ed or not. C is simply
counting so that the total number of selections of mesh
boxes j~, and j2, j3 is equal to a prescribed number.
Clearly, the essential test is T~2, the satisfaction of
energy conservation. The intermediate tests greatly
speed up the calculation by bypassing later computa-
tions when it is already clear that energy conservation
would be impossible. Tests Tv and T~o are of this type.
In T7, E„ is the maximum valence-band energy. The
energy subscripts such as i in E; refer to band indices
which are summed over in the actual calculation.

Tests T2 and T5 limit the computation to primary
energies less than a prescribed value, E . A range of
primary energies about 1—2 eV below E could be
covered in a given run before the statistical Quctua-
tions for the less probable lower energies became too
great to tolerate,

In operation Og, the operators Qq and'Q3 convert k
values in the'cubic sector into cubically equivalent
points (points in the star of k) in the first BriHouin zone.
There are 48 different operators, Q, . The i index is
chosen at random. It would be preferable to sum over
the entire range of any index with 6nite range such as
the index of the Q; operators and the mesh indices j.
Only the band indices e; and the j~ mesh index were
actually summed in this way because of the necessity
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TABLE I. Table of Operations

01:
T2'.
C3'.

04.

T5 o

06.

Op.
Tv'

Og.

Tao:

011:

Select j1, mesh index of electron 1.
Test 8&(j&)—&8&(j&)&E, .
Counting number of j1 selections, to be less or
equal prescribed number, e1.
Calculate 8k~, k& ——5k&+k(j&), random point in

mesh box j&. Calculate 81(k1).
Test 8g(kg)(E ~.
Add contribution of k1 point to integral
J'dkgb(Eg —8g(kg)).
Select j2, js.
Test 81(kl)+E +82(j2)+ 88(j3) ~82(j2)—~8~(ia)
Counting number of j2, j3 selections, to be less
or equal a prescribed number, m2.

Compute k~= Q2k( j~)+Q3k( ja)—k(ji). Compute
j4(k4).
Test 8&(k&)+84(j4)+884(j4)& 82(j2)+8, (j,)—&8~(j2)—~83(j~).
Compute random points 8k2, hk3 in mesh boxes

ju, ja. k2=5k2+k(j2); k3 ——5ka+k(j3). Compute
&k4=Q2&4+Qs&ks —54, Compute 82(k ), 8 (k ),
84(k4).
Test

~
8~(k~)+ 84(k4) —82(k2) —83(k3)

~

—0.2 eV
&0.
Add contribution of point k~, k2, k3 to integral
1'dkgdk, dk, b[(8g(kg) —R)&(8g(kg)+ 84(k, )—82(k2) —8,(k,)].Tabulate k~, k2, ka.

to limit the total computing time ( 6 min per run).
The other indices and the 8k values were chosen by a
random number generating routine which generated
numbers between 0 and 1. To get i in Q, the random
number was multiplied by 48 and rounded up.

After k4 was determined by momentum conservation
as indicated in Og, it had to be mapped back on the
cubically equivalent point in the cubic sector of the
6rst Brillouin zone so that the appropriate mesh index

j4(k4) could be determined.
After values of 8k were determined as in 04 and On
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F1G. 5. Flow chart for Monte Carlo program to calculate
pair-scattering density of states.

the energies 8(k) were determined to an accuracy linear
in bk.

At the conclusion of the run the integral of 013 was
divided by that of 06. The set of all k$ tip k2 Ã2 k3 N3,

k4, n4 which satisfied energy conservation was re-
corded. The Coulomb matrix elements M in Eq. (3)
were then computed in a separate program and averaged
over the sets of k;, I,. In this way a value of 37' was
found which was strongly weighted in the vicinity of
the maximum primary energy E, . Values of 3f2 were
determined for an E of 5 and 8 eV. The variation
with primary energy was within the statistical Quctua-
tion ( 30%).


